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We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to
order and size. All bounds presented in this paper are asymptotically sharp.

1. Introduction

Graph theory is used to study the mathematical structures of
pairwise relations among objects. Mathematically, a pair G �

(V, E) is a crisp graph, where V is a nonempty set and E is a
relation on V [1]. -e order of a graph G is the number of
vertices of G and is denoted by |V| � n. -e size of G,

denoted by |E| � m, is the number of edges of G. -e dis-
tance, dG(u, v), between two vertices u, v of G is the length of
a shortest u-v path in G. -e eccentricity, ecG(v), of a vertex
v ∈ V is the maximum distance between v and any other
vertex in G. -e maximum distance among all pairs of
vertices [2], also known as the value of the maximum ec-
centricity of the vertices of G, is called the diameter of G

denoted by diam(G). -e degree, deg(v), of a vertex v of G is
the number of edges incident with v. -e minimum degree,
δ(G) � δ, of G is the minimum of the degrees of vertices in
G. -e open neighborhood, N(v), of a vertex v is simply the
set containing all the vertices adjacent to v. -e closed
neighborhood, N[v], of a vertex v is simply the set con-
taining the vertex v itself and all the vertices adjacent to v.
We denote by E(V1, V2) the set e � xy | x ∈ V1, y ∈ V2􏼈 􏼉 of
edges with one end in V1 and the other end in V2. -e edge
connectivity, λ(G) � λ, of G is the minimum number of
edges whose deletion from G results in a disconnected or
trivial graph. A complete graph, Kn, is a graph in which every

vertex is adjacent to every other vertex. -e most likely
antonym for a complete graph is a null graph,Nn, which is a
graph containing only vertices and no edges. A bipartite
graph is a graph whose vertices can be divided into two
disjoint and independent sets U and V such that every edge
in G connects a vertex in U to a vertex in V; furthermore, no
two vertices in the same set are adjacent to each other. A
graph is triangle-free if it does not contain C3 as a subgraph
and C4-free if it does not contain C4 as a subgraph. It is
important to observe from the above definitions that every
bipartite graph is triangle free, but there are some triangle-
free graphs which are not bipartite, for example, a cycle
graph with five vertices (C5). For notions not defined here,
we refer the reader to [3].

Our motivation for this paper comes from the results
published by Erdős et al. in [4] and Mukwembi in [5].

Graphs with forbidden subgraphs are a big part of graph
theory literature such as in [4–8]. All graphs in this paper
forbid cycle C3 as a subgraph. In this paper, we are con-
cerned, in part, with upper bounds on the diameter of bi-
partite and triangle-free graphs with prescribed edge
connectivity in terms of order. -e diameter is the most
common of the classical distance parameters in graph
theory, and much of the research on distances is in fact on
the diameter [9]. Several upper bounds on diameter in terms
of order and other graph parameters are known, and we list a
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few relevant results below. A well-known and easy to recall
result is 1≤ diam(G)≤ n − 1. Needless to say, this bound is
not only tight for ordinary graphs but also for the field of
vision of this paper whenever λ � 1 with the extremal graph
being any path, Pn, on n vertices. Erdős et al. [4] found out
that if G is a connected graph of order n and minimum
degree δ ≥ 2, then

diam(G)≤
3n

δ + 1
− 1, (1)

and they also constructed graphs that, apart from the ad-
ditive constant, attain the bound. -ey went further in the
same paper and investigated triangle-free and C4-free graphs
proving that if G is a connected triangle-free graph of order n

and minimum degree δ ≥ 2, then

diam(G)≤ 4⌈
n − δ − 1

2δ
⌉. (2)

-is can be rewritten as

diam(G)≤
2n

δ
+ 1. (3)

In the same paper, they asserted that if G is a connected
C4-free graph of order n and minimum degree δ ≥ 2, then

diam(G)≤
5n

δ2 − 2[δ/2] + 1
. (4)

Mukwembi [5] investigated λ-edge-connected graphs
and discovered, amongst other bounds, that if G is a λ-edge-
connected graph of order n, then

diam(G)≤
3n

λ + 1
− 1. (5)

Let x, y ∈ V be fixed vertices in G such that d(x, y) �

diam(G) � d and let Ni � v ∈ V | dG(x, v) � i􏼈 􏼉 for any
0≤ i≤d and ki � |Ni|. -e following observation by Muk-
wembi [5] is essential to this paper.

1.1. Observation. Let G be a λ-edge-connected graph,
V1, V2 ⊂ V with V1 ∩V2 � ∅. Clearly,
|E(V1, V2)|≤ |V1||V2|. If E(V1, V2) is a disconnecting set of
G, then |E(V1, V2)|≥ λ(G) so that |V1||V2|≥ λ(G). Let
v ∈ V. Note also that for i � 0, 1, . . . , ecG(v) − 1, it is clear
that E(Ni, Ni+1) is a disconnecting set of G.

-e following fact follows from the above observation.

Fact 1. kiki+1 ≥ λ for all i � 1, 2, . . . , ecG(v) − 1.
-e following useful facts follow from the well-known

AM-GM inequality ab≤ ((a + b)/2)2. -at is to say, the
geometric mean of two (positive) real numbers never ex-
ceeds their arithmetic mean.

Fact 2. For positive integers a and b, if ab≥ 2, then a + b≥ 3.

Fact 3. For positive integers a and b, if ab≥ 5, then a + b≥ 5.

It is the purpose of this paper to bound the diameter of
any triangle-free graph with respect to order and edge

connectivity. We have dealt with the case wherein λ � 1 and
we now proceed to higher values of the same.

Theorem 1. Let G be a triangle-free graph of order n and
diameter d≥ 1. If λ � 2, then

diam(G)≤
2n

3
− 1. (6)

Further, this inequality is best possible.

Proof. Note that since G is 2-edge-connected by the con-
dition of the lemma, we have kiki+1 ≥ 2 from Fact 1. From
this and Fact 2, we have ki + ki+1 ≥ 3. -us, we have two
cases.

Case 1. d is even.

n � 􏽘
d

i�0
ki � 􏽘

(d− 2)/2

i�0
k2i + k2i+1( 􏼁 + kd

≥ 􏽘

(d− 2)/2

i�0
(3) + 1 �

3d

2
+ 1,

(7)

and making d subject of the formula, we obtain
d≤ (2n/3) − (2/3).
Case 2. d is odd.

n � 􏽘
d

i�0
ki � 􏽘

(d− 1)/2

i�0
k2i + k2i+1( 􏼁

≥ 􏽘

(d− 1)/2

i�0
(3) �

3(d + 1)

2
,

(8)

and making d subject of the formula, we obtain
d≤ (2n/3) − 1, thereby completing our proof. To show
that this bound is asymptotically sharp, consider the
following graph: for positive integers π0, π1, . . . , πd,
Pd(π0, π1, . . . , πd) is the graph obtained from a path,
Pd+1, with d + 1 vertices, by replacing every vertex vi by
the null graph Nπi

, where

πi �

1, if i � 0 or d,

2, if i � 1 or d − 1,

1, if i ≡ 0mod (2),

2, if i ≡ 1mod (2),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

andmaking every vertex inNπq
adjacent to every vertex

in Nπs
whenever Nπq

and Nπs
have replaced adjacent

vertices of Pd+1. Note that Pd(π0, π1, . . . , πd) is a 2-
edge-connected triangle-free graph and that whenever
d is even, diam(Pd(π0, π1, . . . , πd)) � ((2n − 2)/3).

-e following corollary to -eorem 1 follows from the
fact that every bipartite graph is also triangle free and the
observation that the corresponding extremal graph for the
same theorem is bipartite. □
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Corollary 1. Let G be a bipartite graph of order n and di-
ameter d≥ 1. If λ � 2, then

diam(G)≤
2n

3
− 1. (10)

Further, this inequality is best possible.
Although it is not necessarily the scope of this paper, we

point out that the above bound also holds and is tight for graphs
which are not triangle free, with the same extremal graph being
applicable. Mukwembi [5] investigated graphs with edge con-
nectivity λ ∈ 3, 4{ } and came up with the following.

Theorem 2. Let G be a λ-edge-connected graph, λ ∈ 3, 4{ }, of
order n; then, diam(G)≤ ⌊(n − 1)/2⌋. Further, this inequality
is best possible with the exception of a small constant.

While this bound is for graphs which are unrestricted
with respect to subgraphs, it is also tight for both bipartite
and triangle-free graphs. To see this, consider the graph
Pd(π0, π1, . . . , πd) with all the same properties as before,
except that

πi �

1, if i � 0 or d,

λ, if i � 1 or d − 1,

λ − 1, if i � 2 or d − 2,

2, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

Let diam(Pd(π0, π1, . . . , πd)) � d. Observe that
Pd(π0, π1, . . . , πd) is bipartite and triangle free and that if
λ � 3, then d � ((n − 2)/2), and if λ � 4, then
d � ((n − 6)/2). -e case where λ � 5 is rather atypical and
requires added attention; hence, we earmark it for one of the
main results in our paper. For λ≥ 6, we have the following.

Theorem 3. Let G be a triangle-free, λ-edge-connected graph,
λ≥ 6, of order n. 3en,

diam(G)≤
2n

λ
+ 1. (12)

Further, this inequality is best possible with the excep-
tion of a small constant.

Proof. An application of the Whitney inequality, δ ≥ λ, to
equation (3) yields the desired result. Now, let p ∈ N, be a
number such that it is the least number satisfying the in-
equality λ≤p2. To show that this bound is tight, consider the
graph Pd(π0, π1, . . . , πd) with all the same properties as
before, except that

πi �

1, if i � 0 or d,

λ, if i � 1 or d − 1,

λ − 1, if i � 2 or d − 2,

p, if i ≡ 0 or 1mod (4),

λ − p, if i ≡ 2 or 3mod (4).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Observe Pd(π0, π1, . . . , πd) is a λ-edge-connected tri-
angle-free graph and that whenever d ≡ 1mod (4), then
diam(Pd(π0, π1, . . . , πd)) � (2n/λ) − 3.

-e following corollary to -eorem 3 follows from the
fact that every bipartite graph is also triangle free and the
observation that the corresponding extremal graph for the
same theorem is bipartite. □

Corollary 2. Let G be a λ-edge-connected, bipartite graph,
λ≥ 6, of order n. 3en,

diam(G)≤
2n

λ
+ 1. (14)

Further, this inequality is best possible with the excep-
tion of a small constant.

This paper also aims to bound the diameter of any bi-
partite or triangle-free graph with respect to size and edge
connectivity. It is clear that the bound diam(G)≤ (m/λ)

holds for whatever value of λ we choose. -is bound,
however, is only tight when λ ∈ 1, 2, 4{ }, with the extremal
graphs for these values of λ being the same as those offered
up for similar values of λ when we were discussing bounds
on diameter with respect to order and edge connectivity. For
λ≥ 6, the following theorem, which at first glance seems
counter intuitive, holds true.

Theorem 4. Let G be a λ-edge-connected, λ≥ 6, triangle-free
graph of size m; then, diam(G)≤ (4m/λ2) + 1. Further, this
inequality is best possible with the exception of a small
constant.

Proof. An application of the Whitney inequality, δ ≥ λ, and
the handshaking lemma, 􏽐x∈Vdeg(x) � 2m, yields the in-
equality nλ≤ 2m, and applying this to -eorem 3, we obtain
the desired result. -e extremal graph for this bound is the
same as the one for -eorem 3 and has diameter diam(G) �

(4m/λ2) − 2 whenever diam(G) ≡ 2 mod (4).
-e following corollary to -eorem 4 follows from the

fact that every bipartite graph is also triangle free and the
observation that the corresponding extremal graph for the
same theorem is bipartite. □

Corollary 3. Let G be a λ-edge-connected bipartite graph of
size m; then, diam(G)≤ (4m/λ2) + 1. Further, this inequality
is best possible with the exception of a small constant.

The cases where λ � 3 and λ � 5 need more care and as
such have been allotted space among our main results.

2. Results

2.1. 3-Edge-Connected Graphs. Let G be a 3-edge-connected
triangle-free graph of size m and diameter d> 1.

For an example of a 3-edge-connected graph, consider
the following graph: for positive integers π0, π1, . . . , πd,
Pd(π0, π1, . . . , πd) is the graph obtained from a path, Pd+1,
with d + 1 vertices, by replacing every vertex vi by the null
graph Nπi

, where

πi �
1, if i � 0 or d,

3, otherwise,
􏼨 (15)
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and making every vertex in Nπq
adjacent to every vertex in

Nπs
whenever Nπq

and Nπs
have replaced adjacent vertices

of Pd+1.
Let x, y ∈ V be fixed vertices in G such that

d(x, y) � diam(G) � d. For any 0≤ i≤d, let
Ni � v ∈ V | dG(x, v) � i􏼈 􏼉 and ki � |Ni|. For any 0≤ j, l≤ d,
where j< l, let M[j,l] � e ∈ E | e ∈ E((∪ l

i�jNi), (∪ l
i�jNi))􏽮 􏽯

and m[j,l] � |M[j,l]|. Also, let Mi be the set of edges between
vertices in the same distance layer, that is to say,
Mi � E(Ni, Ni), and let the cardinality of the same set be
given by mi � |Mi|. Further, M(j,l) � M[j,l] − (Mj ∪Ml) and
m(j,l) � |M(j,l)|.

Lemma 1. For each i ∈ 1, 2, . . . , d − 1{ }, if ki ≥ 2, then
m(i− 1,i+1) ≥ 7.

Proof. Since G is a 3-edge-connected graph, we have
that m(i− 1,i), m(i,i+1) ≥ 3 so that if Mi is nonempty, we are
immediately satisfied since m(i− 1,i+1) � m(i− 1,i) + m(i,i+1)+

mi ≥ 3 + 3 + 1 � 7. Hence, suppose that Mi is empty.
Suppose also, to the contrary, that m(i− 1,i+1) < 7. Since G

is 3-edge-connected, we see that m(i− 1,i+1) ≥m(i− 1,i)+

m(i,i+1) ≥ 3 + 3 � 6. -us, by our supposition, m(i− 1,i+1) � 6
and m(i− 1,i) � m(i,i+1) � 3. Now, choose any two vertices in
Ni, say a and b. Note that deg(a), deg(b)≥ 3 since G is 3-
edge-connected. Further a and b share no edges since Mi is
empty; thus, of the six edges in M(i− 1,i+1), we have that three
are incident with a and the other three are incident with b.

Also, since there necessarily exists a path from Ni− 1 to Ni+1
and m(i− 1,i) � m(i,i+1) � 3, we are guaranteed that a and b are
each incident with at least an edge in each of the sets M(i− 1,i)

and M(i,i+1). And since for each of a and b there are three
edges and two sets, it is necessary that one of the edges
incident with a (or b) be in a set different from the other two
edges incident with a (or b). For a, label this edge ea, and for
b, label this edge eb. Observe that G − ea, eb􏼈 􏼉 is disconnected
contradicting our supposition that G is 3-edge-connected.
-is immediately settles our lemma. □

Lemma 2. For each i ∈ 1, 2, . . . , d − 3{ }, if m(i− 1,i+1) � 6, then
m(i+1,i+3) ≥ 9.

Proof. By the condition of the current lemma and by Lemma
1, we have ki � 1. From this and again using the condition of
the current lemma combined with the fact that G is 3-edge-
connected, we see that ki− 1 � ki+1 � 3 and that
m(i− 1,i) � m(i,i+1) � 3. Note also that Mi+1 is empty since G is
triangle free and all the vertices in Ni+1 are adjacent to the
single vertex in Ni. Hence, the vertices in Ni+1 share no
edges and consequently m(i,i+1) + m(i+1,i+2) ≥ δ(ki+1) � 9
which yields m(i+1,i+2) ≥ 9 − m(i,i+1) � 6. Note that
m(i+2,i+3) ≥ 3 since G is 3-edge-connected, and hence
m(i+1,i+3) ≥m(i+1,i+2) + m(i+2,i+3) ≥ 6 + 3 � 9, thereby proving
our lemma. □

Lemma 3. For each i ∈ 3, 4, . . . , d − 1{ }, if m(i− 1,i+1) � 6, then
m(i− 3,i− 1) ≥ 9.

Proof. We can get the desired conclusion by arguing as in
the proof of Lemma 2. □

Lemma 4. For each i ∈ 2, 4, . . . , d − 2{ }, m(i− 2,i+2) ≥ 14.

Proof. Note that since λ � 3, we have that
m(i− 2,i) ≥m(i− 2,i− 1) + m(i− 1,i) ≥ 3 + 3 � 6. Also,
m(i,i+2) ≥m(i,i+1) + m(i+1,i+2) ≥ 3 + 3 � 6. Hence, we obtain
the following:

If m(i− 2,i), m(i,i+2) ≥ 7, we have m(i− 2,i+2) ≥m(i− 2,i)+

m(i,i+2) ≥ 7 + 7 � 14 and we are done.
If m(i− 2,i) � 6, then we have, by Lemma 2,
m(i− 2,i+2) ≥m(i− 2,i) + m(i,i+2) ≥ 6 + 9 � 15 and we are
done.
If m(i,i+2) � 6, then we have, by Lemma 3,
m(i− 2,i+2) ≥m(i− 2,i) + m(i,i+2) ≥ 9 + 6 � 15, thereby set-
tling our lemma.

-roughout the rest of this result we define c ∈ 0, 1, 2, 3{ }

as a number such that d ≡ c mod 4 where d � diam(G).
-e following theorem provides a tight upper bound on

the diameter of a 3-edge-connected triangle-free graph of
prescribed size. □

Theorem 5. Let G be a 3-edge-connected triangle-free graph
of size m. 3en,

diam(G)≤
2m + 3

7
. (16)

3is inequality is, apart from an additive constant, best
possible.

Proof. Note that m � m[0,d] ≥ 􏽐
(d− c− 4)/4
i�0 m(4i,4i+4) +

(m(d− c,d− c+1) +m(d− c+1,d− c+2) + m(d− c+2,d− c+3)) where m(i,i+1) �

0 whenever i≥d. Hence, there are four cases to consider.

Case 1. d ≡ 0 mod 4. If this is so, then c � 0, and we
have, by Lemma 4,

m � m[0,d] ≥ 􏽐
(d− 4)/4

i�0
m(4i,4i+4)

≥ 􏽐
(d− 4)/4

i�0
(14)�

14d

4
,

(17)

and making d subject of the formula, we obtain
d≤ (2m/7).

Case 2. d ≡ 1 mod 4. If this is so, then c � 1, and we
have the following by Lemma 4 and the fact that
m(i,i+1) ≥ λ � 3 for all i< d:
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m � m[0,d] ≥ 􏽘

(d− 5)/4

i�0
m(4i,4i+4) + m(d− 1,d)

≥ 􏽘

(d− 5)/4

i�0
(14) + 3 �

14(d − 1)

4
+ 3,

(18)

and making d subject of the formula, we obtain
d≤ ((2m + 1)/7).

Case 3. d ≡ 2 mod 4. If this is so, then c � 2, and we
have the following by Lemma 4 and the fact that
m(i,i+1) ≥ λ � 3 for all i<d:

m � m[0,d] ≥ 􏽘

(d− 6)/4

i�0
m(4i,4i+4) + m(d− 2,d− 1) + m(d− 1,d)

≥ 􏽘

(d− 6)/4

i�0
(14) + 3 + 3 �

14(d − 2)

4
+ 6,

(19)

and making d subject of the formula, we obtain
d≤ ((2m + 2)/7).
Case 4. d ≡ 3 mod 4. If this is so, then c � 3, and we
have the following by Lemma 4 and the fact that
m(i,i+1) ≥ λ � 3 for all i<d:

m � m[0,d] ≥ 􏽘

(d− 7)/4

i�0
m(4i,4i+4) + m(d− 3,d− 2) + m(d− 2,d− 1)

+ m(d− 1,d)

≥ 􏽘

(d− 7)/4

i�0
(14) + 3 + 3 + 3 �

14(d − 3)

4
+ 9,

(20)

and making d subject of the formula, we obtain
d≤ ((2m + 3)/7).

Hence, considering all four cases, we obtain d≤ ((2m +

3)/7) as desired. To show that this bound is tight, consider
the graph Pd(π0, π1, . . . , πd) with all the same properties as
before, except that

πi �

1, if i � 0 or d,

3, if i � 1 or d − 1,

2, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

m(i,i+1) �

3, if i � 0 or d − 1,

6, if i � 1 or d − 2,

3, if i is even,

4, if i is odd.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Observe that whenever d is even,
diam(Pd(π0, π1, . . . , πd)) � ((2m − 8)/7).

-e following corollary to -eorem 5 follows from the
fact that every bipartite graph is also triangle free and the
observation that the corresponding extremal graph for the
same theorem is bipartite. □

Corollary 4. Let G be a 3-edge-connected bipartite graph of
size m. 3en,

diam(G)≤
2m + 3

7
. (22)

This inequality is, apart from an additive constant, best
possible.

The following definitions and lemmas will be used in the
study of 5-edge-connected graphs.

2.2. 5-Edge-Connected Graphs. Let G be a 5-edge-connected
triangle-free graph of order n and diameter d> 1.

For an example of a 5-edge-connected graph, consider
the following graph: for positive integers π0, π1, . . . , πd,
Pd(π0, π1, . . . , πd) is the graph obtained from a path, Pd+1,
with d + 1 vertices, by replacing every vertex vi by the null
graph Nπi

, where

πi �
1, if i � 0 or d,

5, otherwise,
􏼨 (23)

and making every vertex in Nπq
adjacent to every vertex in

Nπs
whenever Nπq

and Nπs
have replaced adjacent vertices

of Pd+1.
Let x, y ∈ V be fixed vertices in G such that d(x, y) �

diam(G) � d and let Ni � v ∈ V | dG(x, v) � i􏼈 􏼉 for any
0≤ i≤ d and ki � |Ni|.

Lemma 5. For each i ∈ 0, 1, . . . , d − 1{ }, ki + ki+1 ≥ 5.

Proof. Note that since G is 5-edge-connected, we have
kiki+1 ≥ 5 by Fact 1. Because of this and as a consequence of
Fact 3, we obtain ki + ki+1 ≥ 5.

-e following two lemmas follow immediately from
Lemma 5. □

Lemma 6. For i ∈ 1, 2, . . . , d − 1{ }, if ki � 1, then
ki− 1 + ki + ki+1 ≥ 9.

Lemma 7. For i ∈ 1, 2, . . . , d − 1{ }, if ki � 2, then
ki− 1 + ki + ki+1 ≥ 8.

Lemma 8. For i ∈ 1, 2, . . . , d − 1{ }, if ki ≥ 3, then
ki− 1 + ki + ki+1 ≥ 8.

Proof. -ere are two cases to consider.

Case 1. -ere exists an edge, ab ∈ E, such that a, b ∈ Ni.
Since G is triangle free, the effect of this is that a and b

share no neighbors, that is to say, N(a) ∩N(b) � ∅.
Note that N(a) ∪N(b)⊆Ni− 1 ∪Ni ∪Ni+1 and
|N(a)|, |N(b)|≥ δ ≥ λ � 5. Hence, ki− 1 + ki + ki+1 ≥
|N(a) ∪N(b)| � |N(a)| + |N(b)| ≥ 5 + 5 � 10.
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Case 2. -ere are no adjacent vertices in Ni.
Let a ∈ Ni. Since there are no adjacent vertices in Ni,
we see that N(a)∩Ni � ∅. Also, N(a)⊆Ni− 1 ∪Ni+1
and |N(a)|≥ δ ≥ λ � 5. Hence, ki− 1 + ki +

ki+1 ≥ |Ni ∪N(a)| � |Ni| + |N(a)|≥ 3 + 5 � 8. □

Lemma 9. For each i ∈ 1, 2, . . . , d − 1{ }, ki− 1 + ki + ki+1 ≥ 8.

Proof. -ere are three cases to consider.

Case 1. ki � 1.

If this is so, then we are done by Lemma 6.
Case 2. ki � 2.

If this is so, then we are done by Lemma 7.
Case 3. ki ≥ 3.

If this is so, then we are done by Lemma 8.

-roughout the rest of this paper we define c ∈ 0, 1, 2{ } as
a number such that d − c ≡ 2 mod 3 where d � diam(G).

-e following theorem provides a tight upper bound on
the diameter of a 5-edge-connected triangle-free graph of
prescribed order. □

Theorem 6. Let G be a 5-edge-connected triangle-free graph
of order n. 3en,

diam(G)≤
3n − 3

8
. (24)

This inequality is, apart from an additive constant, best
possible.

Proof. Note that n � 􏽐
d
i�0 ki � 􏽐

(d− c− 2)/3
i�0 (k3i + k3i+1+ k3i+2)+

(kd− c+1 + kd− c+2) where ki � 0 whenever i> d. Hence, there
are three cases to consider.

Case 1. d ≡ 0mod3. If this is so, then c � 1, and we have
the following by Lemma 9 and the fact that kd ≥ 1 since
Nd is nonempty:

n � 􏽘
d

i�0
ki � 􏽘

(d− 1− 2)/3

i�0
k3i + k3i+1 + k3i+2( 􏼁 + kd

≥ 􏽘

(d− 3)/3

i�0
k3i + k3i+1 + k3i+2( 􏼁 + kd ≥ 􏽘

(d− 3)/3

i�0
(8) + 1

�
d − 3
3

+ 1􏼠 􏼡(8) + 1 �
8d

3
+ 1,

(25)

and making d subject of the formula, we obtain
d≤ ((3n − 3)/8).
Case 2. d ≡ 1 mod 3. If this is so, then c � 2, and we
have the following by Lemma 9 and Lemma 5:

n � 􏽘
d

i�0
ki � 􏽘

(d− 2− 2)/3

i�0
k3i + k3i+1 + k3i+2( 􏼁 + kd− 1 + kd( 􏼁

≥ 􏽘

(d− 4)/3

i�0
k3i + k3i+1 + k3i+2( 􏼁 + kd− 1 + kd( 􏼁

≥ 􏽘

(d− 4)/3

i�0
(8) + 5 �

d − 4
3

+ 1􏼠 􏼡(8) + 5 �
8d − 8

3
+ 5,

(26)

and making d subject of the formula, we obtain
d≤ ((3n − 7)/8).
Case 3. d ≡ 2mod3. If this is so, then c � 0, and we have
the following by Lemma 9:

n � 􏽘

d

i�0
ki � 􏽘

(d− 0− 2)/3

i�0
k3i + k3i+1 + k3i+2( 􏼁

≥ 􏽘

(d− 2)/3

i�0
k3i + k3i+1 + k3i+2( 􏼁≥ 􏽘

(d− 2)/3

i�0
(8)

�
d − 2
3

+ 1􏼠 􏼡(8) �
8d + 8

3
,

(27)

and making d subject of the formula, we obtain
d≤ (3n/8) − 1.

Hence, considering all three cases, we obtain d≤ ((3n −

3)/8) as desired. To show that this bound is tight, consider
the graph Pd(π0, π1, . . . , πd) with all the same properties as
before, except that

πi �

1, if i � 0 or d,

5, if i � 1 or d − 1,

4, if i � 2 or d − 2,

2, if i ≡ 0mod 3,

3, if i ≡ 1 or 2mod 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Observe that whenever d ≡ 2 mod 3,
diam(Pd(π0, π1, . . . , πd)) � ((3n − 20)/8).

-e following corollary to -eorem 6 follows from the
fact that every bipartite graph is also triangle free and the
observation that the corresponding extremal graph for the
same theorem is bipartite. □

Corollary 5. Let G be a 5-edge-connected bipartite graph of
order n. 3en,

diam(G)≤
3n − 3

8
. (29)

This inequality is, apart from an additive constant, best
possible.

Our final result is a tight upper bound on the diameter of
a 5-edge-connected bipartite graph with respect to its size.
To obtain the said bound, we need the following definitions
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and lemmas. Let G be a 5-edge-connected bipartite graph
of size m and diameter d> 1. Let x, y ∈ V be fixed vertices
in G such that d(x, y) � diam(G) � d and let
Ni � v ∈ V | dG(x, v) � i􏼈 􏼉 for any 0≤ i≤ d and ki � |Ni|. For
j< l, let M[j,l] � e ∈ E | e ∈ E((∪ l

i�jNi), (∪ l
i�jNi))􏽮 􏽯 for any

0≤ j≤ d − 1 and m[j,l] � |M[j,l]|. Also, let M(j,l) � M[j,l] −

(E(Nj, Nj)∪E(Nl, Nl)) and m(j,l) � |M(j,l)|. Mi is simply
the set of edges between vertices in the same distance layer,
that is to say, Mi � E(Ni, Ni), and the cardinality of the
same set is given by mi � |Mi|.

Lemma 10. For each i ∈ 0, 1, . . . , d{ }, Mi is empty.

Proof. -e desired conclusion follows from the assumption
that G is bipartite. □

Lemma 11. For each i ∈ 1, . . . , d − 1{ }, if ki+1 + ki+2 ≥ 6, then
m(i,i+3) ≥ 21.

Proof. Note that, by Lemma 10, Mi � ∅. Since
ki+1 + ki+2 ≥ 6, choose any six vertices from Ni+1 ∪Ni+2.
Label the set of vertices we have chosen from Ni+1 as Ni+1′
and the set of vertices we have chosen from Ni+2 as Ni+2′ .
Identify the edges incident to vertices in Ni+1′ and Ni+2′ as
EI(Ni+1′ ) and EI(Ni+2′ ), respectively. Note that
m(i,i+3) ≥ |EI(Ni+1′)∪EI(Ni+2′ )| �

|EI(Ni+1′ )| + |EI(Ni+2′ )| − |EI(Ni+1′ )∩EI(Ni+2′ )|. Observe
that since |Ni+1′ | + |Ni+2′ | � 6 and since δ ≥ λ≥ 5, we have, by
Lemma 10, that
|EI(Ni+1′ )| + |EI(Ni+2′ )|≥􏽐x∈Ni+1′

∪Ni+2′ deg(x)≥ 6δ � 30.
Since Ni+1′ ∩Ni+2′ � ∅ and using the AM-GM inequality, we
observe that |EI(Ni+1′ )∩EI(Ni+2′ )| � |E(Ni+1′ , Ni+2′ )|≤
|Ni+1′ ||Ni+2′ |≤ ((|Ni+1′ | + |Ni+2′ |)/2)2 � 9. Hence,
m(i,i+3) ≥ |EI(Ni+1′ )∪EI(Ni+2′ )| � |EI(Ni+1′ )| + |EI(Ni+2′ )|−

|EI(Ni+1′ )∩EI(Ni+2′ )|≥ 30 − 9 � 21, and we are done.
-e following fact stems from Lemma 5 and the ob-

servation that every bipartite graph is also triangle free. □

Fact 4. For each i ∈ 0, 1, . . . , d − 1{ }, ki + ki+1 ≥ 5.
For i ∈ 1, 2, . . . , d − 3{ }, let S be an induced subgraph of

G such that V(S) � ∪ i+3
j�iNj. We then have the following

useful definition.

Definition 1. S is a scant subgraph of G (or simply, S is scant)
if m(i,i+3) < 21.

Lemma 12. If S, where V(S) � ∪ i+3
j�iNj, is scant, then

(ki+1, ki+2) � (2, 3) or (ki+1, ki+2) � (3, 2).

Proof. By Fact 4, Lemma 11, and by the condition of the
current lemma, we have that ki+1 + ki+2 � 5. Hence,
(ki+1, ki+2) ∈ (1, 4), (2, 3), (3, 2), (4, 1){ }, and it is sufficient
to prove the current lemma if we can show that ki+1, ki+2 ≠ 1.
Suppose to the contrary that ki+1 � 1. If this is so, then
ki+2 � 4, and since Ni+1 ∩Ni+2 � ∅, we obtain
E(Ni+1, Ni+2)≤ ki+1ki+2 � 4< 5 � λ, contradicting the con-
dition that G is 5-edge-connected. -e same argument is to
be used for the case where ki+2 � 1, hence settling our
lemma.

As a consequence of Lemma 12, we further add the
following definitions. □

Definition 2. Let S, where V(S) � ∪ i+3
j�iNj, be a scant sub-

graph of G. If (ki+1, ki+2) � (2, 3), we say S is scant-left, and if
(ki+1, ki+2) � (3, 2), we say S is scant-right.

Lemma 13. If S, where V(S) � ∪ i+3
j�iNj, is scant, then

m(i,i+3) � 20.

Proof. By the condition of the current lemma and by Lemma
12, we have that (ki+1, ki+2) � (2, 3) or (ki+1, ki+2) � (3, 2).
Hence, there are two cases to consider.

Case 1. (ki+1, ki+2) � (2, 3).
Note that m(i,i+3) ≥m(i,i+1) + m(i+1,i+3). Note also that
since, by Lemma 10, Mi+2 is empty and since δ ≥ λ≥ 5,
we have that m(i+1,i+3) � 􏽐x∈Ni+2

deg(x)≥ δki+2 � 15.
Further, observe thatM(i,i+1) is a disconnecting set ofG,
and hence m(i,i+1) ≥ λ � 5. -us, we have
m(i,i+3) ≥m(i,i+1) + m(i+1,i+3) ≥ 5 + 15 � 20.
Case 2. (ki+1, ki+2) � (3, 2).
We can get the desired conclusion by arguing as in case
1. □

Lemma 14

(a) If S, where V(S) � ∪ i+3
j�iNj, is scant-left, then

m(i− 3,i) ≥ 25.
(b) If S, where V(S) � ∪ i+3

j�iNj, is scant-right, then
m(i+3,i+6) ≥ 25.

Proof. We will show that the result holds for (a) as it follows
analogously for (b).

(a) ki+2 � 3 by the condition of the lemma, and hence we
have that m(i+1,i+3) ≥􏽐x∈Ni+2

deg(x)≥ δki+2 � 15. Also,
m(i,i+3) ≤ 20, by the condition of the lemma. Hence,
m(i,i+1) ≤m(i,i+3) − m(i+1,i+3) ≤ 20 − 15 � 5. Note that by the
condition of the lemma and by Fact 4, we have ki ≥ 3. If each
vertex in Ni is adjacent to both vertices in Ni+1, then
m(i,i+1) ≥ kiki+1 ≥ 2ki ≥ 6 which contradicts our deduction
that m(i,i+1) < 6. Hence, there is at least one vertex, say a, in
Ni which is adjacent to at most one vertex in Ni+1. By
Lemma 10 and since deg(a)≥ δ ≥ λ≥ 5, we see that a has at
least four neighbors in Ni− 1, that is to say, ki− 1 ≥ 4. Note that
m(i− 3,i) ≥m(i− 3,i− 2) + m(i− 2,i). Note also that since, by Lemma
10, Mi− 1 is empty and since δ ≥ λ≥ 5, we have that
m(i− 2,i) � 􏽐x∈Ni− 1

deg(x)≥ δki− 1 ≥ 20. Further, observe that
M(i− 3,i− 2) is a disconnecting set of G, and hence
m(i− 3,i− 2) ≥ λ � 5. -us, we have
m(i− 3,i) ≥m(i− 3,i− 2) + m(i− 2,i) ≥ 5 + 20 � 25.

-roughout the remainder of this paper, we assume that
diam(G) � d ≡ cmod3, c ∈ 0, 1, 2{ }, and we define the set
I � 0, 1, . . . , ((d − c − 3)/3){ }. For p ∈ I, we define
Sp � ∪ 3p+3

j�3pNi. As a result of the previous lemma, we have
the following definition. □
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Definition 3. For p ∈ I, we say Sp is a surplus subgraph of G

(or simply, Sp is a surplus) if m(3p,3p+3) ≥ 25.

Lemma 15. m(0,d− c) ≥ 21|I|.

Proof. We have three cases to consider.

Case 1. For all p ∈ I, Sp is not scant.
If this is so, thenm(0,d− c) ≥􏽐p∈Im(3p,3p+3) ≥ 21|I| and we
are done.
In the remaining two cases, we assume that for at least
one p ∈ I, Sp is scant. Let A � pj | j ∈ 1, 2, . . . , α{ }􏽮 􏽯

and B � qj | j ∈ 1, 2, . . . , β􏼈 􏼉􏽮 􏽯 such that Sp is a left-
scant whenever p ∈ A and Sp is a right-scant whenever
p ∈ B.
Case 2. α≥ β.
If this is so, we have the following. Let
C1 � p − 1 | p ∈ A􏼈 􏼉; then, by Lemma 14, Sp is a surplus
whenever p ∈ C1 ⊂ I. Also, let D1 � I − (A∪B∪C1).
Notice that |C1| � |A| and since A, B, and C1 are
mutually exclusive sets, we have
|D1| � |I| − |A| − |B| − |C1| � |I| − 2|A| − |B|. Further,
since α≥ β, we have that 3|A| − |B|> 0. Hence, we
obtain m(0,d− c) ≥􏽐p∈Im(3p,3p+3) � 􏽐p∈D1

m(3p,3p+3) +

􏽐p∈Am(3p,3p+3) + 􏽐p∈Bm(3p,3p+3) + 􏽐p∈C1
m(3p,3p+3) ≥

20|A| + 20|B| + 25|C1| + 21|D1| � 20|A| + 20|B| +

25|A| + 21(|I| − 2|A| − |B|) � 21|I| + 3|A| − |B|≥ 21|I|

and we are done.
Case 3. α< β.
We can get the desired conclusion by arguing as in case 2.

Our final theorem below provides a tight upper bound
on the diameter of a 5-edge-connected bipartite graph of
prescribed size. □

Theorem 7. Let G be a 5-edge-connected bipartite graph of
size m. 3en,

d � diam(G)≤
m + 4
7

. (30)

This inequality is, apart from an additive constant, best
possible.

Proof. -ere are three cases to consider.

Case 1. d ≡ 0 mod 3.
If this is so, then c � 0 and

m � m(0,d) ≥ 􏽘
p∈I

m(3p,3p+3)

≥ 21|I| � 21
d − 3
3

+ 1􏼠 􏼡 � 7d.

(31)

Making d subject of the formula, we get d≤ (m/7).
Case 2. d ≡ 1 mod 3.
If this is so, then c � 1 and

m � m(0,d) ≥ 􏽘
p∈I

m(3p,3p+3) + m(d− 1,d)

≥ 21|I| + 5 � 21
d − 1 − 3

3
+ 1􏼠 􏼡 + 5 � 7d − 2.

(32)

Making d subject of the formula, we get
d≤ ((m + 2)/7).
Case 3. d ≡ 2 mod 3.
If this is so, then c � 2 and

m � m(0,d) ≥ 􏽘
p∈I

m(3p,3p+3) + m(d− 2,d− 1) + m(d− 1,d)

≥ 21|I| + 5 + 5 � 21
d − 2 − 3

3
+ 1􏼠 􏼡 + 10 � 7d − 4.

(33)

Making d subject of the formula, we get
d≤ ((m + 4)/7). To show that this bound is tight,
consider the extremal graph given in -eorem 6.
Observe that whenever d ≡ 0 mod 3,
diam(Pd(π0, π1, . . . , πd)) � (m/7). □

3. Conclusion

In this paper, we provided tight upper bounds for bipartite
graphs with respect to order and with respect to size for any
value of λ. We also provided tight upper bounds for triangle-
free graphs with respect to order for any value of λ. Also, for
triangle-free graphs, with respect to size, we provided tight
upper bounds for any value of λ where λ≠ 5. For λ � 5 with
regard to the size of triangle-free graphs, we provide the
following conjecture.

Conjecture 1. Let G be a 5-edge-connected triangle-free
graph of size m. 3en,

d � diam(G)≤
m + 4
7

. (34)

Further, if bound Conjecture 1 is correct, it would also be
asymptotically tight. -is is so since this bound almost
matches the diameter of the extremal graph in -eorem 7,
which is also 5-edge-connected and triangle free, except for a
small constant.
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