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In this paper, we obtain sufficient conditions for oscillation and nonoscillation of the solutions of the neutral delay differential
equation (y(t) − 􏽐

k
j�1pj(t)y(rj(t)))′ + q(t)G(y(g(t))) − u(t)H(y(h(t))) � f(t), where pj and rj for each j and

q, u, G, H, g, h, andf are all continuous functions and q≥ 0, u≥ 0, h(t)< t, g(t)< t, and rj(t)< t for each j. Further, each rj(t),
g(t), and h(t)⟶∞ as t⟶∞. *is paper improves and generalizes some known results.

1. Introduction

Consider the neutral delay differential equation (NDDE in
short) of the first order:

y(t) − 􏽘
k

j�1pj(t)y rj(t)􏼐 􏼑􏼒 􏼓
′ + q(t)G(y(g(t)))

− u(t)H(y(h(t))) � f(t),

(1)

where pj and rj for each j and q, u, g, h, G, H, andf are in
C(R,R) and q≥ 0, u≥ 0, g(t)< t, h(t)< t, and rj(t)< t for
each j. Further, each rj(t), g(t), and h(t)⟶∞ as
t⟶∞. We study the behavior of oscillation and non-
oscillation of solutions of neutral differential equation (1)
under the following assumptions:

xG(x)> 0, forx≠ 0. (2)

*ere exists a real-valued bounded function F(t) such
that

F′(t) � f(t). (3)

*e function F(t) in (3) satisfies

lim
t⟶∞

F(t) � 0, (4)

q(t)> 0,

􏽚
∞

t0

q(s)ds �∞,
(5)

􏽚
∞

t0

u(t)dt<∞. (6)

H is bounded and

uH(u)> 0, for u≠ 0. (7)

Study of the oscillatory and asymptotic behaviour of
neutral delay differential equations are undertaken by nu-
merous authors due to its various applications (see [1]) in the
fields of science and technology. Results concerned with
oscillation and nonoscillation of the NDDE

(y(t) − p(t)y(t − τ))′ + q(t)G(y(σ(t))) � f(t), (8)

are obtained in [2–5]. Further, the authors in [6–9] obtained
oscillation results for the NDDE:
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(y(t) − p(t)y(t − τ))′ + q(t)G(y(t − σ))

− u(t)H(y(t − α)) � f(t).
(9)

*e research papers [2–5, 7, 8] and many others while
studying nonlinear NDDEs assume the condition “G is
nondecreasing.” It is found that the authors in [3–5, 7, 8, 10]
use the lemmas [1] (Lemma 1.5.1 and 1.5.2) as the main tool
to study NDDEs (8) or (9). If lim inf t⟶∞y(t) � 0 and
limt⟶∞(y(t) − p(t)y(t − τ)) exists finitely then, these
lemmas help us to evaluate limt⟶∞y(t). Hence, the lemmas
could only be applied to study (8) or (9) where there is only
one functional delay term under the derivative but could not
be applied to study (1) because of the presence of more than
one functional delay term under the derivative. Further, “the
note [1] (notes 1.8, page 31) suggests to extend these lemmas
meant for the function with one delay to multiple delays and
apply it to the study of NDDE (1) with several delays.” But, it
seems difficult to extend these lemmas for the said purpose.
*e motivation behind this work is that no result in the
literature appears to have an answer to the qualitative be-
haviour of solutions to the NDDE:

y(t) − e
− t

+ e
− 4

􏼐 􏼑y(t − 4) − e
− t

+ e
− 5

􏼐 􏼑y(t − 5)􏼐 􏼑′

+ 2e
t+1

+ 2e
t+2

+ e
2t− 3

􏼐 􏼑y
3
(t − 1)

� 4e
− 2t+4

+ 4e
− 2t+5

+ 2e
− t

.

(10)

In this paper, we remove the condition “G is nonde-
creasing” that is assumed in [2–5, 7, 8] and study the os-
cillatory behaviour of solutions of the NDDE (1) and then
apply the results to study the NDDE:

y(t) − 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

′
+ v(t)G(y(g(t))) � f(t),

(11)

where v(t) changes sign. *e oscillatory behaviour of so-
lutions of the discrete analogue of (1) with u� 0 is obtained
in [11] by using two lemmas which are the discrete versions
of Lemmas 1 and 2.We followed themethods of Rath et al. in
some of our results and applied Lemmas 1 and 2 to answer
the open problem [1] (Problem 2.8.3, p. 57). *e oscillatory
behaviour of the solution of the NDDE (1) in some results is
proved to be different from that in [11].

“Let t1 be a fixed positive real number, and

t0 � min inf
t≥t1

r1(t), r2(t), . . . , rk(t)( 􏼁, inf
t≥t1

g(t), inf
t≥t1

h(t)􏼨 􏼩.

(12)

By a solution of (1), we mean a function y ∈
C([t0,∞),R) such that y(t) − 􏽐

k
i�1pi(t)y(ri(t)) is differ-

entiable on [t0,∞) and the neutral equation (1) is satisfied by
y(t) for all t≥ t1. It is known that (1) has a unique solution
provided that an initial function ϕ ∈ C([t0, t1],R) is given to
satisfy y(t) � ϕ(t) for all t ∈ [t0, t1]. Such a solution is said
to be nonoscillatory if it is eventually positive or eventually
negative, otherwise it is called oscillatory.”

In this work, we assume the existence of solutions of (1)
and study only their qualitative behaviour. In the sequel,
unless otherwise specified, when we write a functional in-
equality, it will be assumed to hold for all sufficiently large
values of t.

2. Oscillation Results

In this section, we present some results which prove that (5) is
sufficient for any solution of (1) to be oscillatory or tending to
zero as t⟶∞. We need the following lemmas for our work.

Lemma 1 (see [12]). “Let u(t) and v(t) be two real-valued
continuous functions defined for t≥ t0 ≥ 0. 7en,

lim inf
t⟶∞

u(t) + lim inf
t⟶∞

v(t)

≤ lim inf
t⟶∞

(u(t) + v(t))

≤ lim sup
t⟶∞

u(t) + lim inf
t⟶∞

v(t) or lim inf
t⟶∞

u(t)􏼒

+ lim sup
t⟶∞

v(t)􏼡

≤ lim sup
t⟶∞

(u(t) + v(t))

≤ lim sup
t⟶∞

u(t) + lim sup
t⟶∞

v(t),

(13)

provided that no sum is of the form ∞ − ∞.”

Lemma 2 (see [12]). “Let u(t) and v(t) be two nonnegative
real-valued continuous functions defined for t≥ t0. 7en,

lim inf
t⟶∞

u(t) × lim inf
t⟶∞

v(t)

≤ lim inf
t⟶∞

(u(t) × v(t))

≤ lim sup
t⟶∞

u(t) × lim inf
t⟶∞

v(t) orlim inf
t⟶∞

u(t)􏼒

× lim sup
t⟶∞

v(t)􏼡

≤ lim sup
t⟶∞

(u(t) × v(t))

≤ lim sup
t⟶∞

u(t) × lim sup
t⟶∞

v(t),

(14)

provided that no product is of the form 0 ×∞.”

Theorem 1. Suppose that (2)–(7) hold, assume that there
exists a positive constant p such that pj(t) for j � 1, 2, . . . ., k

satisfies the following condition:

pj(t)≥ 0, for every j � 1, 2, . . . k,

􏽘

k

j�1
lim suppj(t)<p< 1.

(15)

*en, every solution of (1) oscillates or tends to zero as
t⟶∞.
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Proof. Let y(t) be any solution of (1) for t≥ t0, where t0 is a
positive real number. If it oscillates, then there is nothing to
prove; otherwise, it leads to two distinct possibilities, either
y(t)> 0 or y(t)< 0 for t≥ t1 > t0. Consider the first one i.e.,
y(t)> 0 eventually. *ere exists positive real t2 ≥ t1 such that
for t≥ t2, we have y(t)> 0, y(g(t))> 0, y(h(t))> 0, and
y(rj(t))> 0 for each j. Let us define for t≥ t1:

c(t) � 􏽚
∞

t
u(s)H(y(h(s)))ds. (16)

Clearly, due to the assumptions (6) and (7), c(t) is well
defined and the improper integral c(t1) is convergent at∞,
say to α. *en, c(t1) � a(t) + c(t), where a(t) �

􏽒
t

t1
u(s)H(y(h(s)))ds. *en, limt⟶∞a(t) � α. Hence,

limt⟶∞c(t) � limt⟶∞(c(t1) − a(t)). *us, it follows that

c(t)⟶ 0, as t⟶∞. (17)

Further,
c′(t) � − u(t)H(y(h(t))). (18)

For t≥ t2, define

z(t) � y(t) − 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑, (19)

w(t) � z(t) + c(t) − F(t). (20)

From (1), (19), and (20), it follows due to (2) that

w′(t) � − q(t)G(y(g(t))) ≤ 0. (21)

*en, there exists t3 ≥ t2 such that w(t) is monotonic and
is of a constant sign for t≥ t3. For the sake of a contradiction,
assume that y(t) is not bounded. *en, there exists a se-
quence y(an)􏼈 􏼉 such that

an⟶∞, y an( 􏼁⟶∞ as n⟶∞, (22)

y an( 􏼁 � max y(t): t3 ≤ t≤ an􏼈 􏼉. (23)

From (4) and (17), it follows that for ϵ > 0, we can find a
positive real t4 > t3 such that, for t≥ t4, it implies |F(t)|< ϵ
and |c(t)|< ϵ. Since each rj(t)⟶∞ as t⟶∞, we may
choose n large enough so that rj(an)≥ t4 for each j. From
(15) and using (19), (20), and (23), we obtain

w an( 􏼁 � y an( 􏼁 − 􏽘
k

j�1
pj an( 􏼁y rj an( 􏼁􏼐 􏼑 + c an( 􏼁 − F an( 􏼁

≥ 1 − 􏽘
k

j�1
pj an( 􏼁⎛⎝ ⎞⎠y an( 􏼁 − 2ϵ>(1 − p)y an( 􏼁 − 2ϵ.

(24)

Taking n⟶∞, we find limt⟶∞w(t) �∞, a contra-
diction as w(t) is monotonic decreasing. Hence, y(t) is
bounded which implies w(t) and z(t) are bounded and
limw(t) exists. Further, it follows that lim inf t⟶∞y(t) and
lim supt⟶∞y(t) exists. We claim lim inf t⟶∞y(t) � 0.
Otherwise, let y(t) ≥ α> 0. Next, since y(t) is bounded
above, there exists β> 0 such that y(t)≤ β. Hence, we have

0< α≤y(t)≤ β, which will be used for bounding the G term
in (1) from below.

From the continuity of G and the assumption (2), it
follows that there exists a positive lower bound m for G on
[α, β]. Hence, there exists t5 such that G(y(g(t)))>m> 0
for t> t5. *en, integrating (21) from t � t5 to s, we obtain

w t5( 􏼁 − w(s) � 􏽚
s

t5

q(t)G(y(g(t)))dt≥m 􏽚
s

t5

q(t)dt.

(25)

In the above inequality, the left hand side is bounded,
while the right hand side approaches +∞, as s⟶∞. *us,
we have a contradiction. *is yields lim inf t⟶∞y(t) � 0.
From (4), monotonic nature of w(t), and (20), it follows that
limt⟶∞z(t) exists finitely. Let limt⟶∞z(t) � δ.

*en, lim inf t⟶∞z(t) � lim supt⟶∞z(t) � δ. Since
pj(t)≥ 0, z(t)≤y(t), and lim inf t⟶∞z(t)≤
lim inf t⟶∞y(t), it implies δ ≤ 0. *en, using Lemmas 1 and
2 we obtain

0≥ δ � lim sup
t⟶∞

z(t) � lim sup
t⟶∞

y(t) − 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≥ lim sup
t⟶∞

y(t) + lim inf
t⟶∞

− 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≥ lim sup
t⟶∞

y(t) − lim sup
t⟶∞

􏽘

k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≥ lim sup
t⟶∞

y(t) − 􏽘

k

j�1
lim sup

t⟶∞
pj(t)y rj(t)􏼐 􏼑􏼐 􏼑

≥ lim sup
t⟶∞

y(t) − 􏽘
k

j�1
lim sup

t⟶∞
pj(t) lim sup

t⟶∞
y rj(t)􏼐 􏼑

≥ lim sup
t⟶∞

y(t) 1 − 􏽘

k

j�1
lim sup

t⟶∞
pj(t)⎛⎝ ⎞⎠

≥ lim sup
t⟶∞

y(t)(1 − p)≥ 0.

(26)

Hence, lim supt⟶∞y(t) ≤ 0, by (15), which implies that
limt⟶∞y(t) � 0. If y(t)< 0 for t> t1, then we set x(t) �

− y(t) to obtain x(t)> 0 and then (1) reduces to

x(t) − 􏽘
k

j�1
pj(t)x rj(t)􏼐 􏼑⎛⎝ ⎞⎠

′
+ q(t)􏽥G(x(g(t)))

− u(t) 􏽥H(x(h(t))) � 􏽥f(t),

(27)

where

􏽥f(t) � − f(t), 􏽥G(v) � − G(− v) 􏽥H(v) � − H(− v).

(28)
Further,

􏽥F(t) � − F(t), implies 􏽥F′(t) � 􏽥f(t). (29)

In view of the above facts, it can be easily verified that 􏽥G,
􏽥H, and 􏽥F satisfy the corresponding conditions satisfied by
the functions G, H, and F in the theorem. Proceeding as in
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the proof for the case y(t)> 0, we may complete the proof of
the theorem. □

Theorem 2. Suppose that (2)–(7) hold. Assume that there
exists a positive constant p such that the functions pj(t) for
j � 1, 2, . . . ., k satisfies the condition:

pj(t)≤ 0, for every j � 1, 2, . . . k,

􏽘

k

j�1
lim infpj(t)> − p> − 1.

(30)

*en, every solution of (1) oscillates or tends to zero as
t⟶∞.

Proof. Proceeding as in the proof of *eorem 1 and setting
c(t), z(t), and w(t) as in (16), (19), and (20), respectively, we
obtain (21) and further prove y(t) is bounded with
lim inf t⟶∞y(t) � 0. From (4) and that w(t) is monotonic,
it follows that limt⟶∞w(t) � limt⟶∞z(t) � δ ∈ R. As
z(t)≥ 0 by (30), δ ≥ 0. We claim δ � 0, and if not, then δ > 0,
and this implies

δ � lim inf
t⟶∞

z(t) � lim inf
t⟶∞

y(t) − 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≤ lim inf
t⟶∞

y(t) + lim sup
t⟶∞

− 􏽘

k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≤ 􏽘
k

j�1
lim sup

t⟶∞
− pj(t)􏼐 􏼑 lim sup

t⟶∞
y rj(t)􏼐 􏼑􏼐 􏼑

� 􏽘
k

j�1
− lim inf

t⟶∞
pj(t)􏼐 􏼑 lim sup

t⟶∞
y rj(t)􏼐 􏼑􏼐 􏼑

≤p lim sup
t⟶∞

(y(t)) ≤pα.

(31)

Hence, we get

α≥
δ
p
> δ. (32)

Again

δ � lim sup
t⟶∞

z(t) � lim sup
t⟶∞

y(t) − 􏽐
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≥ lim sup
t⟶∞

y(t) + lim inf
t⟶∞

− 􏽐
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

� lim sup
t⟶∞

y(t) + lim inf
t⟶∞

􏽐
k

j�1
− pj(t)􏼐 􏼑y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≥ lim sup
t⟶∞

y(t) + 􏽐
k

j�1
lim inf
t⟶∞

− pj(t)􏼐 􏼑y rj(t)􏼐 􏼑􏼐 􏼑

≥ lim sup
t⟶∞

y(t) + 􏽐
k

j�1
lim inf
t⟶∞

− pj(t)􏼐 􏼑 lim inf
t⟶∞

y rj(t)􏼐 􏼑

� lim sup
t⟶∞

y(t) � α,

(33)
a contradiction due to the inequality (32). Hence, we con-
clude δ � 0 and from z(t)>y(t), it follows that
limt⟶∞y(t)≤ 0. Hence, limt⟶∞y(t) � 0.

*e proof for the case y(t)≤ 0 for large t is similar.
Hence, the theorem is proved. □

Theorem 3. Suppose that (2)–(7) hold. Assume that the
functions pj(t) for j � 1, 2, . . . ., k satisfies the condition:

pj(t)< 0, for every j � 1, 2, . . . k and there exists,

i ∈ 1, 2, 3, . . . , k{ } such that

lim suppi(t) − 􏽘
j≠i

lim inf pj(t)< − 1.

(34)

*en, every solution of (1) oscillates or tends to zero as
t⟶∞.

Proof. Proceeding as in the proof of *eorem 1 and setting
c(t), z(t), and w(t) as in (16), (19), and (20), respectively, we
obtain (21) and further prove y(t) is bounded with
lim inf t⟶∞y(t) � 0. From (4) and that w(t) is monotonic, it
follows that limt⟶∞w(t) � limt⟶∞z(t) � δ ∈R. As z(t)≥0,
δ≥0. We claim δ � 0. If not, then δ>0, and this implies

δ � lim inf
t⟶∞

z(t) � lim inf
t⟶∞

y(t) − 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≤ lim sup
t⟶∞

y(t) + 􏽘
j≠i

− pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

+ lim inf
t⟶∞

− pi(t)y ri(t)( 􏼁( 􏼁

≤ lim sup
t⟶∞

y(t) + lim sup
t⟶∞

􏽘
j≠i

− pj(t)y rj(t)􏼐 􏼑

+ lim sup
t⟶∞

− pi(t)( 􏼁 lim inf
t⟶∞

y ri(t)( 􏼁( 􏼁

≤ lim sup
t⟶∞

y(t) + 􏽘
j≠i

lim sup
t⟶∞

− pj(t)􏼐 􏼑 lim sup
t⟶∞

y ri(t)( 􏼁( 􏼁

≤ lim sup
t⟶∞

(y(t)) 1 − 􏽘
j≠i

lim inf
t⟶∞

pj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦.

(35)

Again, we have

δ � lim sup
t⟶∞

z(t) � lim sup
t⟶∞

y(t) − 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

≥ lim inf
t⟶∞

y(t) + lim sup
t⟶∞

− 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

� lim sup
t⟶∞

− pi(t)y ri(t)( 􏼁( 􏼁 + lim inf
t⟶∞

􏽘
j≠i

− pj(t)y rj(t)􏼐 􏼑􏼐 􏼑

≥ lim sup
t⟶∞

y ri(t)( 􏼁( 􏼁 lim inf
t⟶∞

− pi(t)( 􏼁

+ 􏽘
j≠i

lim inf
t⟶∞

− pj(t)􏼐 􏼑y rj(t)􏼐 􏼑􏼐 􏼑

≥ lim sup
t⟶∞

y(t) − lim sup
t⟶∞

pi(t)􏼠 􏼡

+ 􏽘
j≠i

lim inf
t⟶∞

− pj(t)􏼐 􏼑 lim inf
t⟶∞

y rj(t)􏼐 􏼑

≥ lim sup
t⟶∞

y(t) − lim sup
t⟶∞

pi(t)􏼠 􏼡.

(36)
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From (35) and (36), it follows that

lim sup
t⟶∞

y(t) 􏽘
j≠i

lim inf pj(t)⎛⎝ ⎞⎠ − 1 − lim suppi(t)⎛⎝ ⎞⎠≤ 0.

(37)

Using (34), we obtain limt⟶∞y(t) � 0. *us, the the-
orem is proved. □

For the next two results we assume

− bj ≤pj(t)≤ 0, j � 1, 2, . . . , k. (38)

Note that (38) is less restrictive than (34).

Theorem 4. Suppose that (2), (3), (6), and (7) hold. Assume
that (38) holds. If

lim inf
t⟶∞

F(t) � − ∞,

lim sup
t⟶∞

F(t) � +∞,
(39)

then every solution of (1) oscillates.

Proof. Let y(t) be a nonoscillatory solution of (1) for t≥ t1.
If y(t)> 0, then set c(t), z(t), and w(t) as in (16), (19), and
(20), respectively, to obtain (21) for t≥ t2 > t1. As y(t)> 0
and each pj(t)≤ 0, then z(t)≥ 0, and by (7), we have
c(t)≥ 0. From (21), it follows w(t)≥ 0 or w(t)≤ 0 for
t≥ t3 > t2. If w(t)≤ 0, then (z(t) + c(t) − F(t))≤ 0. *is
implies F(t)≥ z(t) + c(t)≥ 0. Consequently,
lim inf t⟶∞F(t)≥ 0, a contradiction. If w(t)≥ 0 for t≥ t3,
then limt⟶∞w(t) � α ∈ R. Clearly,

z(t) + c(t) � w(t) + F(t). (40)

We notice that
0≤ lim inf(z(t) + c(t))≤ lim sup

t⟶∞
w(t) + lim inf

t⟶∞
F(t)

� lim
t⟶∞

w(t) + lim inf
t⟶∞

F(t)

� − ∞,

(41)

a contradiction. Hence, y(t)< 0 for t≥ t1.*en, again setting
c(t), z(t), and w(t) as in (16), (19), and (20), respectively, we
obtain

w′(t) � − q(t)G(y(g(t)))≥ 0, for t≥ t2, (42)

As y(t) < 0 and each pj(t)≤ 0, then z(t)≤ 0, and by (7),
we have c(t)≤ 0. From (42), it follows w(t) ≥ 0 or w(t)≤ 0
for t≥ t3 > t2. If w(t)≥ 0, then (z(t) + c(t) − F(t))≥0. *is
implies F(t)≤z(t) + c(t)≤0. Consequently, limsupt⟶∞
F(t)≤0, a contradiction.

If w(t)≤ 0 for t≥ t3, then limt⟶∞w(t) � β ∈ R. From
(40), we find that

0≥ lim sup(z(t) + c(t))≥ lim inf
t⟶∞

w(t) + lim sup
t⟶∞

F(t)

� lim
t⟶∞

w(t) + lim sup
t⟶∞

F(t)

�∞,

(43)

a contradiction. Hence, y(t) is oscillatory. *us, the proof is
complete. □

Note that the above theorem is independent of any
assumption on q(t). *us, it holds even for conditions
weaker than (5). Further, the above theorem does not hold
for the homogeneous NDDE associated with (1). Next, we
present the following result which holds for the homoge-
neous NDDE associated with (1).

Theorem 5. Assume conditions (2)–(4), (6), (7), and (38) to
hold. Further, assume g(ri(t)) � ri(g(t)) for i � 1, 2, . . . , k.
Suppose that there exists a real α> 0 such that ri

′(t)≥ 1/α.
Further, suppose that there exists a real μ> 0 such that for
xi > 0, i � 1, 2, . . . , k + 1 and u> 0,

􏽘

k+1

i�1
G xi( 􏼁≥ μG 􏽘

k+1

i�1
xi

⎛⎝ ⎞⎠,

G(u)G xi( 􏼁≥G uxi( 􏼁.

(44)

Let
G(− u) � − G(u), (45)

􏽚
∞

t1

q
∗
(t) �∞, where q

∗
(t)

� min q(t), q r1(t)( 􏼁, q r2(t)( 􏼁, . . . , q rk(t)( 􏼁􏼈 􏼉.

(46)

*en, every solution of (1) oscillates or tends to zero as
t⟶∞.

Proof. Let y(t) be a nonoscillatory solution of (1) for t≥ t1.
*en, y(t)> 0 or y(t)< 0 for t> t2 ≥ t1. Let y(t)> 0 for t> t2.
Setting c(t), z(t), and w(t) as in (16), (19), and (20), re-
spectively, we obtain (21). Note that (18) and (17) also hold.
As y(t)> 0 and each pj(t)≤ 0, then z(t)≥ 0. From (21), (4),
and (17), it follows limt⟶∞w(t) � limt⟶∞z(t) � δ ≥ 0. If
δ � 0, then limt⟶∞y(t) � 0 from the fact y(t)≤ z(t). For
the sake of contradiction, let δ > 0. We choose ϵ > 0 such that
δ > ϵ, and we have δ − ϵ ≤ z(t)≤ δ + ϵ for t≥ t3 > t2. As G is
continuous and (2) holds, we have

a≤G(z(t))≤ b for t≥ t4. (47)

From (21), we have
w′(t) + q(t)G(y(g(t))) � 0. (48)

Replace t by ri(t) in (48), then we obtain, for
i � 1, 2, . . . , k,

w′ ri(t)( 􏼁 + q ri(t)( 􏼁G y g ri(t)( 􏼁( 􏼁( 􏼁 � 0. (49)

On multiplying (49) by G(− pi(g(t))) and then adding the
corresponding k equations for i � 1, 2, . . . , k to (48), we obtain

w′(t) + q(t)G(y(g(t)) + 􏽘
k

i�1
G − pi(g(t))( 􏼁w′ ri(t)( 􏼁

+ 􏽘
k

i�1
G − pi(g(t))( 􏼁q ri(t)( 􏼁G y g ri(t)( 􏼁( 􏼁( 􏼁 � 0.

(50)
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From (38), we find bj > 0 such that 0≤ − pj(t)≤ bj for
each j. *en, this implies due to continuity of G and (2) that
there exists a real d> 0 such that G(− pj(t))<d for each j.

Note that w′ < 0, and then using ri(g(t)) � g(ri(t)), (44),
(46), and (47) in (50), we obtain

0≥w′(t) + d􏽘

k

i�1
w′ ri(t)( 􏼁 + q

∗
(t) G(y(g(t))) + 􏽘

k

i�1
G − pi(g(t))( 􏼁G y g ri(t)( 􏼁( 􏼁( 􏼁⎛⎝ ⎞⎠

≥w′(t) + d􏽘
k

i�1
w′ ri(t)( 􏼁 + q

∗
(t) G(y(g(t))) + 􏽘

k

i�1
G − pi(g(t)) y g ri(t)( 􏼁( 􏼁( 􏼁(⎛⎝

≥w′(t) + d􏽘
k

i�1
w′ ri(t)( 􏼁 + μq

∗
(t)G (y(g(t))) + 􏽘

k

i�1
− pi(g(t)) y g ri(t)( 􏼁( 􏼁( 􏼁⎛⎝ ⎞⎠

≥w′(t) + d􏽘
k

i�1
w′ ri(t)( 􏼁 + μq

∗
(t)G (y(g(t))) + 􏽘

k

i�1
− pi(g(t))y g ri(t)( 􏼁( 􏼁⎛⎝ ⎞⎠

≥w′(t) + dα􏽘
k

i�1
w′ ri(t)( 􏼁ri

′(t) + μq
∗
(t)G(z(g(t)))

≥w′(t) + dα􏽘
k

i�1
w′ ri(t)( 􏼁ri

′(t) + aμq
∗
(t).

(51)

Integrating the above inequality from t5(> t4) to s, we
obtain

w t5′( 􏼁 −
aμ

1 + k dα
􏽚

s

t5

q
∗
(t)dt≥w(s), (52)

where t5′ � min ri(t5): i � 1, 2, . . . , k􏼈 􏼉. *en, taking limit
s⟶∞, we obtain w(s)⟶ − ∞, a contradiction, due to
(46). *us, limt⟶∞y(t) � 0. *e proof for the case when
y(t) is eventually negative is similar.

Note that the above result holds for f(t) ≡ 0. Further
note that condition (46) implies (5), but the converse is not
necessarily true. However, if q(t) is monotonic, then both
the conditions are equivalent.

Next, we intend to present a result where pj(t),
j � 1, 2, 3, . . . , k, satisfies the following condition:

pj(t)> 0, for every j � 1, 2, . . . k and there exists,

i ∈ 1, 2, 3, . . . , k{ } such that

lim inf pi(t) − 􏽘
j≠i

lim suppj(t)> 1.

(53)

For that purpose, we give an example which would lead
us to our next result. □

Example 1. Consider the first-order NDDE with variable
several delay:

y(t) − e
− t

+
�
e

√
􏼐 􏼑y(t − 1) − e

− t
+ e

2
􏼐 􏼑y(t − 2)􏼐 􏼑′+

ey(t − 3/2) � 0.
(54)

Note that, in the above NDDE with the several delay
term under a derivative sign, p1(t) � (e− t +

�
e

√
) and

p2(t) � (e− t + e2) satisfy (53). *is NDDE has an

unbounded solution y(t) � et tending to ∞ as t⟶∞,
unlike other results presented so far.

*e above example is the motivating point to the
statement of our next result.

Theorem 6. Suppose that (2)–(7) hold. Assume that the
functions pj(t) for j � 1, 2, . . . ., k satisfy condition (53).
7en, every bounded solution of (1) oscillates or tends to zero
as t⟶∞.

Proof. If y(t) is any positive solution of (1), then proceeding
as in the proof of*eorem 3, with the application of Lemmas
1 and 2 we obtain

δ � lim inf
t⟶∞

z(t)≤ α 1 − lim inf
t⟶∞

pi(t)􏼒 􏼓,

δ � lim sup
t⟶∞

z(t)≥ − α 􏽘
j≠i

lim sup
t⟶∞

pj(t)⎛⎝ ⎞⎠,

(55)

where α � lim supt⟶∞y(t) and δ � limt⟶∞z(t). From
these two inequalities and (53), we obtain δ � α � 0. *is
completes the proof of the theorem. □

Theorem 7. Suppose that (2) and (5)–(7) hold. Let
pj(t), j � 1, 2, . . . , k, satisfy (53). Consider the homogeneous
NDDE:

y(t) − 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

′
+ q(t)G(y(g(t))) � f(t).

(56)

*en, every bounded solution y(t) of (56) oscillates.
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Proof. Let y(t) be an eventually positive solution of (56).
*en, setting z(t) as in (19) we obtain

z′(t) � − q(t)G(y(g(t)))≤ 0, (57)

and it follows that z(t) is monotonic and of constant sign on
some interval [t1,∞). By this, we have two distinct possi-
bilities, i.e., z(t)> 0 or z(t)< 0. As pj(t), j � 1, 2, . . . , k,
satisfies (53), then let i � 1. Suppose that y(t) is bounded.
*is implies z(t) is bounded. As z(t) is monotonic also then
λ : � limt⟶∞z(t) exists as a finite number. If z(t)> 0 or
z(t)< 0, then limt⟶∞z(t) exists finitely. Integrating (57)
from t= t0 to s and taking limit s⟶∞, we obtain

􏽚
∞

t0

q(t)G(y(g(t)))dt<∞. (58)

Now, we claim that lim infy(t) � 0. Taking integration
on (57),

z(t) − λ � 􏽚
∞

t
q(s)G(y(g(s)))ds. (59)

Since z(t) is bounded, the above integral is convergent.
*is in turn, by (5), it implies that lim inf s⟶∞
G(y(g(s))) � 0. As G(x)≠ 0 for x≠ 0, lim inf s⟶∞
y(g(s)) � 0 and because limt⟶∞g(t) �∞, lim inf t⟶∞
y(t) � 0. Following the line of proof as in *eorem 6, we
find that limt⟶∞z(t) � δ � 0, which implies that z(t)> 0
because z is decreasing. Since pi(t)≥ 1, then y(t) >
􏽐

k
j�1pj(t)y(rj(t))≥y(ri(t)). Consequently, lim inf t⟶∞

y(t)≠ 0, a contradiction. Hence, the bounded solution y(t)

cannot be eventually positive. *e proof for the case when
y(t) is bounded and eventually negative solution of (56) is
similar.*us, every bounded solution y(t) oscillates, and the
theorem is proved. □

Example 2. Consider the first-order NDDE (10) with several
delays under the derivative. It satisfies all the conditions of
*eorem 1. As such the equation has a solution y(t) � e− t

which tends to zero as t⟶∞. However, no result in the
literature appears to have an answer to the qualitative be-
haviour of solutions to this NDDE.

Remark 1. In this section, we have not assumed the con-
dition that G is nondecreasing unlike the authors in
[3, 4, 10].

3. Nonoscillation Results

In this section, we show that (5) is necessary for every so-
lution of (1) to be oscillatory or tending to zero as t⟶∞.
Or equivalently 􏽒

∞
t0

q(t)dt<∞ is sufficient for (1) to have a
bounded positive solution which does not tend to zero as
t⟶∞, even if the limit exists. For this, we need the
following lemma.

Lemma 3 (Krasnoselskii’s fixed-point theorem [13]). Let X

be a Banach space and S be a bounded closed convex subset of
X. Let A andB be operators from S to X such that Ax +

By ∈ S for every pair of x, y ∈ S. If A is a contraction and B is
completely continuous, then the equation

Ax + Bx � x, (60)

has a solution in S.

Theorem 8. Assume that (3) and (6) hold. Further, assume
that one of the conditions of (15) or (30) hold. 7en, (5) is a
necessary condition for all solution of (1) to be oscillatory or
tending to zero as t⟶∞.

Proof. Suppose condition (15) holds. *e proof for the case
when (30) holds, would follow on similar lines. Assume for
the sake of contradiction, that (5) does not hold.*is implies
that there exists real t0 such that

􏽚
∞

t0

q(t)dt<∞. (61)

*us, all we need to show is the existence of a bounded
solution y(t) of (1) with lim inf t⟶∞y(t)> 0. From (3), we
find a positive constant c and a positive real t1 > t0 > 0 such
that

|F(t)| < c, for t≥ t1. (62)

Choose a positive constant L such that L≥ 5c/1 − p.
Since G ∈ C(R,R), then let

β � max |G(x)|: c≤ x≤L{ },

c � max | H(x)| : c≤x≤ L{ }.
(63)

Let

μ � max β, c􏼈 􏼉. (64)

From (6), we find t2 > t1 such that t> t2 implies

μ􏽚
∞

t
u(s)ds< c. (65)

*en by using (61), one can fix t3 > t2 such that for t≥ t3
it follows that

μ􏽚
∞

t
q(s)ds< c. (66)

Choose T1 > t3 such that

T0 � min g T1( 􏼁, h T1( 􏼁, r1 T1( 􏼁, r2 T1( 􏼁, . . . , rk T1( 􏼁􏼈 􏼉.

(67)

Let X � BC([T0,∞), R), a Banach space of real-boun-
ded, continuous functions with norm ‖x‖ �

supt≥T0
|x(t)|<∞. Define

S � y ∈ X: c≤y(t)≤ L, t≥T0􏼈 􏼉. (68)

Clearly S is a bounded closed and convex subset of X.
Define two operators A and B: S⟶ X as follows. For y ∈ S,
define
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Ay(t) �

Ay T1( 􏼁, T0 ≤ t≤T1,

􏽘

k

j�1
pj(t)y rj(t)􏼐 􏼑 + F(t) + 3c, t≥T1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

By(t) �

By T1( 􏼁, T0 ≤ t≤T1,

􏽚
∞

t
q(s)G(y(g(s)))ds − 􏽚

∞

t
u(s)H(y(h(s)))ds, t≥T1.

⎧⎪⎨

⎪⎩

(69)

First, we show that if x, y ∈ S, then Ax + By ∈ S. In fact,
x � x(t) and y � y(t) ∈ S and for t≥T1, we obtain

Ax(t) + By(t)≤ 􏽘

k

j�1
pj(t)x rj(t)􏼐 􏼑 + 3c

+ 􏽚
∞

t
q(s)|G(y(g(s)))|ds +|F(t)|

≤pL + 5c≤L.

(70)

On the other hand, for t≥T1,

Ax(t) + By(t)≥ 3c − 􏽚
∞

t
u(s)|H(y(h(s)))|ds − |F(t)|

≥ 3c − c − c≥ c.

(71)
Hence,

c≤Ax(t) + By(t)≤ L, for t≥T1. (72)

*us, we proved that Ax + By ∈ S for any x, y ∈ S. Next,
we show that A is a contraction on S. In fact for x, y ∈ S and
t≥T1 we have

‖(Ax(t) − (Ay(t)‖≤ supt≥T0
􏽘

k

j�1
pj(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 x rj(t)􏼐 − y rj(t)􏼐
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
k

j�1
supt≥T0

pj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 x rj(t) − y rj(t)􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒

≤ 􏽘
k

j�1
supt≥T0

pj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 supt≥T0
x rj(t) − y rj(t)􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤ ‖x(t) − y(t)‖ 􏽘
k

j�1
supt≥T0

pj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤p‖x − y‖.

(73)

*is implies A is a contraction because 0<p< 1. Next, by
following the arguments given in [14] (*eorem 2.2), we
show that B is completely continuous.*en, by Lemma 3, we
can find x0 in S such that Ax0 + Bx0 � x0. Clearly, x0(t) is a
bounded, positive solution of (1) with limit infimum greater
than or equal to c> 0. *us, the theorem is proved. □

Remark 2. *eorems for the case pj(t) satisfying (34) or
(53) may be proved as in the proof of the above theoremwith
the following definition of the operators A and B. For x ∈ S,
define

Ax(t) �

Ax T1( 􏼁, if t ∈ T0, T1􏼂 􏼃,

x r− 1
i (t)( 􏼁

pi r− 1
i (t)( 􏼁

−
􏽐j≠ipj r− 1

i (t)x rj r− 1
i (t)( 􏼁􏼐 􏼑􏼐 􏼑

pi r− 1
i (t)( 􏼁

+
bλ

pi r− 1
i (t)( 􏼁

−
F r− 1

i (t)( 􏼁

pi r− 1
i (t)( 􏼁

, if t≥T1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bx(t) �

Bx T1( 􏼁, if t ∈ T0, T􏼂 􏼃,

−
1

pi r− 1
i (t)( 􏼁

􏽚
∞

r− 1
i

(t)
q(s)G(x(g(s)))ds

+
1

pi r− 1
i (t)( 􏼁

􏽚
∞

r− 1
i

(t)
u(s)H(x(h(s)))ds, if t≥T1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(74)
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*e function r− 1 used in the definition of the operators A

and B is the inverse function of r(t), which exists if r(t) is
assumed to be monotonic. Further more, note that
r− 1(r(t)) � t.

Remark 3. For the results in this section, we assume none of
the conditions (4), G is nondecreasing and xG(x)> 0 unlike
the corresponding results in [3, 4].

Taking into consideration of all the results i.e., *eorems
1–3, 6, and 8 and Remark 2, we obtain the following
theorem.

Theorem 9. Suppose that (2)–(4), (6), and (7) hold. Assume
pj(t) in (1) to satisfy one of the four conditions (15), (30), (34),
and (53). 7en, (5) is both necessary and sufficient condition
for every solution of (1) to be oscillatory or tending to zero as
t⟶∞.

Remark 4. If pi(t) � p(t) and p1(t) � p2(t) � · · · �

pi− 1(t) � pi+1(t) � · · · � pk(t) � 0, then conditions (15),
(30), (34), and (53) due to the boundedness of pj(t) reduce
to the following conditions (i) 0≤p(t)≤p< 1, (ii)
− 1< − p≤p(t)≤ 0, (iii) − p1 ≤p(t)≤ − p< − 1, and (iv)
p1 ≥p(t)≥p> 1, respectively. *ese conditions are assumed
in [1, 3–5].

Remark 5. Taking the Remarks 1, 3, and 4 into consideration,
*eorem 9 generalizes and improves the results in [3, 4].

4. Application to Neutral Equations with
Oscillating Coefficients

In this section, we find sufficient conditions so that every
solution of the first-order neutral differential equation (11)
oscillates or tends to zero as t⟶∞, where v(t) is allowed
to change sign. Let v+(t) � max v(t), 0{ } and v− (t) �

max − v(t), 0{ }. *en, v(t) � v+(t) − v− (t), and equation (11)
can be written as

y(t) − 􏽘
k

j�1
pj(t)y rj(t)􏼐 􏼑⎛⎝ ⎞⎠

′
+ v

+
(t)G(y(g(t)))

− v
−

(t)G(y(g(t))) � f(t).

(75)

Now, we proceed as in the previous section by setting
q(t) � v+(t), u(t) � v− (t), and H(x) � G(x). Assumptions
(5)–(7) would become

􏽚
∞

t0

v
+
(t)dt �∞, (76)

􏽚
∞

t0

v
−

(t)dt �∞, (77)

G is bounded, (78)

respectively.
*erefore, the study of (11) reduces to the study of (1) in

results *eorems 1–3, 6, 8, 9, and Remark 2. From*eorem

9, we have the following theorem for (11) where v(t) changes
sign.

Theorem 10. Suppose that (2)–(4), (77), and (78) hold.
Assume pj(t) in (11) to satisfy one of the four conditions (15),
(30), (34), or (53). 7en, (76) is both necessary and sufficient
condition for every solution of (11) (with v(t) changing sign)
to be oscillatory or tending to zero as t⟶∞.

From*eorems 4 and 5, we have the following results for
NDDE (11) with v(t) changing sign.

Theorem 11. Suppose that (2), (3), (77), and (78) hold.
Assume that (38) and (39) hold, then every solution of (11)
(with v(t) changing sign) oscillates.

Theorem 12. Assume conditions (2)–(4), (77), (78), and (38)
to hold. Further, assume g(ri(t)) � ri(g(t)) for
i � 1, 2, . . . , k. Let there exist a real μ> 0 such that for
xi > 0, i � 1, 2, . . . , k + 1, and u> 0, (44) and (45) hold.
Suppose that (46) holds where q(t) � v+(t). Further, suppose
that there exists a real α> 0 such that ri

′(t)≥ 1/α. 7en, every
solution of (11) (with v(t) changing sign) oscillates or tends to
zero as t⟶∞.

For the results in this section, we need G to be bounded,
continuous, and to satisfy (2). *e prototype of such a
function G(y) is y2n sgn(y)/(1 + y2n). *e following exam-
ples illustrate *eorem 10.

Example 3. Consider the higher-order NDDE:

y(t) − (1/2e)y(t − 1) − 1/2e
2

􏼐 􏼑y(t − 2)􏼐 􏼑′

+ q(t)y(t − 3) � f(t),
(79)

where

q(t) �

sin(t), 2kπ≤t≤(2k +1)π, k � 0,1,2, . . .

sin(t)

t4
, (2k +1)π≤t≤(2k +2)π, k � 0,1,2, . . . ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(80)

f(t) �

sin(t)e− t+3, 2kπ≤t≤(2k +1)π, k � 0,1,2, . . . ,

sin(t)e− t+3

t4
, (2k +1)π≤t≤(2k +2)π, k � 0,1,2, . . . .

⎧⎪⎪⎨

⎪⎪⎩

(81)

Clearly,

q
+
(t) �

sin(t), 2kπ≤ t≤(2k + 1)π, k � 0,1, 2, . . .

0, (2k + 1)π≤ t≤(2k + 2)π, k � 0,1, 2, . . . ,

⎧⎪⎨

⎪⎩

(82)

q
−

(t) �

0, 2kπ≤ t≤(2k + 1)π, k � 0, 1,2, . . .

sin(t)

t4
, (2k + 1)π≤ t≤(2k + 2)π, k � 0,1,2, . . .

⎧⎪⎪⎨

⎪⎪⎩

(83)
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It may be verified that the NDDE (79) satisfies all the
conditions of *eorem 10. Hence, every solution of (79)
oscillates or tends to zero as t⟶∞. As such, it admits a
positive solution y(t) � e− t which tends to zero as t⟶∞.

Example 4. Consider the following higher-order NDDE:

y(t) − (1/2e)y(t − 1) − 1/2e
2

􏼐 􏼑y(t − 2)􏼐 􏼑′

+ q(t)G(y(t − 3)) � f(t),
(84)

where G(u) � u2 sgn(u)/(1 + u2) and q(t) as in (80) and

f(t) �

e6 e2t +e6( 􏼁
− 1 sin(t), 2kπ≤t≤(2k+1)π, k �0,1,2, . . .

e6 sin(t)

e2t +e6( )t4
, (2k+1)π≤t≤(2k+2)π, k �0,1,2, . . . ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(85)

satisfies all the conditions of *eorem 10. Hence, every
solution of (84) oscillates or tends to zero as t⟶∞. As
such, it admits a positive solution y(t) � e− t which tends to
zero as t⟶∞.

Remark 6. *e results of this article seem to be significant as
no result in literature can be applied to the NDDEs (79) and
(84).

5. Conclusion

*e open problem [1] (Problem 2.8.3, p. 57) says the
following:

Extend the following result to equations with oscillating
coefficients.

*eorem 2.3.1 in [1]: under the assumptions that v(t)≥ 0
and

lim inf
t⟶∞

􏽚
t

t− τ
v(s)ds> e

− 1
, (86)

every solution of

y′(t) + v(t)y(t − τ) � 0, t≥ t0, (87)

oscillates.
If we put f(t) � 0, G(y) � y, and k � 0 in (11), then the

following corollary follows from *eorem 10.

Corollary 1. Suppose that (76) and (77) hold. 7en, every
bounded solution of

y′(t) + v(t)y(g(t)) � 0, (88)

(with v(t) changing sign) oscillates or tends to zero as
t⟶∞.

Again, if we put f(t) � 0, k � 0 in (11), then the fol-
lowing corollary follows from *eorem 10.

Corollary 2. Suppose that (2), (76), and (77) hold. 7en,
every solution of

y′(t) + v(t)G(y(g(t))) � 0, (89)

(with v(t) changing sign) oscillates or tends to zero as
t⟶∞. Or, equivalently every unbounded solution of (89)
oscillates.

Note that (86) implies

􏽚
∞

t0

v(t)dt �∞. (90)

Further, (76) is equivalent to (90) under the assumption
(77). *us, Corollaries 1 and 2 answer the open problem [1]
(Problem 2.8.3, p.57) partially. Further, as the condition “G
is nondecreasing” is not assumed, and v(t) in NDDE (11)
has no fixed sign; therefore, by Remark 4,*eorem 10 of this
article improves and generalizes the results in [7] (*eorem
2.2, *eorem 2.4, and *eorem 2.5) because of their addi-
tional assumptions (i) σ > α or σ < α, (ii) q(t)> u(t − σ + α),
and (iii) another sublinear condition on G, while studying
the NDDE (9). Further, in this paper, *eorem 10 improves
and generalizes the results in [4] (*eorems 2.2, 2.3, 2.5, 2.6,
and Corollary 2.7) for the NDDE (8).
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