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Kenyan communities are exposed to natural disasters by an amalgamation of factors such as poverty, aridity, and settlements in
areas susceptible to natural disasters or in areas with poor infrastructure. &is is expected to increase due to the effects of climate
change. In an attempt to explain some of these variabilities, we model the extreme damages from natural disasters in Kenya by
developing a compound distribution that takes into account both the frequency and the severity of the extreme events. &e
resulting distribution is based on a threshold model and compound extreme value distribution. For frequency of events exceeding
a threshold of 150,000, we found that it follows a negative binomial distribution, while severity of exceedance follows a generalized
Pareto distribution. &is distribution fits the data well and is found to be a better model for natural disasters in Kenya than the
traditional extreme value threshold model.

1. Introduction

Kenya has continued to face an increasing vulnerability to
natural disaster risk. &e communities are exposed to nat-
ural disasters by an amalgamation of factors such as poverty,
aridity, and settlements in areas susceptible to natural di-
sasters or in areas with poor infrastructure. &ese factors
coupled with naturally occurring hazards, which are cur-
rently being propelled by climate change, pose an extreme
threat to the Kenyan society. As of 2018, a total of 113 natural
disaster events had been recorded in the last six decades,
affecting approximately 62 million people and resulting to
6,900 deaths. &e total damage from these occurrences is
estimated to be 609 million US dollars. Most of the natural
disaster events are weather-related, with almost 70% of the
landmass being affected by drought and a total of 55 flooding
events recorded in various parts of the country.

As with most parts of the world, natural disasters are
expected to increase in the future due to climate change.
World Bank projects the number of drought days in many
parts of the world to increase by more than 20% by 2080, and
the number of people exposed to drought could increase by
9 − 17% in 2030 and 50 − 90% in 2080. &e number of

people exposed to river floods could also increase by 4 − 15%
in 2030 and 12 − 29% in 2080 [1]. However, the effects would
be felt mostly in the less-developed countries like Kenya. A
study conducted by the Center of Research and Epidemi-
ology of Disasters (CRED) found that people living in the
poorer nations are six times more likely to be injured, to lose
their homes, be displaced, or require emergency assistance
than those in the wealthier nations.&ey are also seven times
more likely to die from a natural disaster than those in richer
nations. &erefore, with the increasing frequency and po-
tential damage of natural disasters in Kenya, there is an
urgent need to understand the characteristics of such events
in the country.

In modelling extremal and rare events, extreme value
theorem (EVT) emerges as a vital tool to model such risks.
&ere are two main approaches in EVT: classical EVT
(block-maxima) and excess over threshold (EOT) [2].
Several studies have been conducted on EVT and its ap-
plication to model natural disasters including Engeland et al.
[3] who used the block maxima method to model hydro-
logical floods and droughts in the USA and Jindrova and
Pacakova [4] who used EOT to model historical natural
catastrophe losses in the USA. In both studies, they found
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the EVTdistributions to be a good fit for the data. However,
such models only consider the loss severity distribution
without explicitly considering that of the frequency of oc-
currence. As a result, Tebfu and Fengshi proposed the
compound extreme value distribution (CEVD) and suc-
cessfully used it to model typhoon in South China. &ey
assume that the frequency of occurrence is Poisson dis-
tributed while that of the severity follows an extreme value
distribution. Other compound extreme value distributions
have since been developed, including Poisson–Weibull
CEVD [5], Poisson-generalized Pareto CEVD [6], and
geometric-Gumbel CEVD [7].

In this paper, we seek to model the extreme damages
from natural disasters in Kenya by developing a compound
distribution that takes into account both frequency and
severity of the extreme events. &e rest of the paper is
structured as follows: Section 2 is the methodology where we
will discusses extreme value theory and compound distri-
butions, which we will use to develop a model to model
natural disasters in Kenya. &e data analysis results and
discussion are then presented in Section 3, and the study
concludes in Section 4.

2. Methodology

2.1.ExtremeValue eory. &e cornerstone of extreme value
theory is the study of the stochastic behaviour of the
maximum (or minimum) of a sequence of random variables.
Define

Mn � max Y1, . . . , Yn􏼈 􏼉, (1)

where Y1, . . . , Yn􏼈 􏼉 is a sequence of independent random
variables with a common distribution function F and Mn

represents the maxima (minima) of the observed process
over n blocks or time units. If F is known, the distribution of
Mn is

P Mn ≤y􏼈 􏼉 � P Y1 ≤y, . . . , Yn ≤y􏼈 􏼉 � F(y)􏼈 􏼉
n
. (2)

However, F is usually unknown in practice and will have
to be estimated from the data. &is poses a problem since a
small error in the estimation of F can lead to large disparities
for Fn y􏼈 􏼉. An alternate approach is to model Fn y􏼈 􏼉 through
asymptotic theory of Mn, where we study the behaviour of
Fn y􏼈 􏼉 as n⟶∞. Since F(y)< 1 for y<ysup, where ysup is
the upper end-point of F, we have Fn y􏼈 􏼉⟶ 0 as n⟶∞.
We can remove the degeneracy problem by allowing some
linear renormalization of Mn. Consider a linear
renormalization:

􏽣Mn �
Mn − dn

cn

, (3)

where cn􏼈 􏼉 and dn􏼈 􏼉 are sequences of constants with cn > 0.
Under a suitable choice of cn and dn, the distribution of Mn

can be stabilised leading to “extremal types theorem” [2]:

Theorem 1 (extremal types theorem). For a nondegenerate
distribution function, G, if there exist sequences of constants
cn > 0􏼈 􏼉 and dn􏼈 􏼉, as n⟶∞, such that

P
Mn − dn

cn

≤y􏼠 􏼡⟶ G(y), (4)

then G belongs to one of the following families:

I Gumbel: G(y) � exp − exp −
y − d

c
􏼒 􏼓􏼢 􏼣􏼨 􏼩, − ∞<y<∞,

II Frechet: G(y) �

0, y≤ d,

exp − y− d

c
􏼐 􏼑

− κ
􏽮 􏽯, y> d,

⎧⎪⎪⎨

⎪⎪⎩

IIIWeibull: G(y) �

exp − − y− d

c
􏼐 􏼑􏽨 􏽩

κ
􏽮 􏽯, y< d,

1, y≥ d,

⎧⎪⎪⎨

⎪⎪⎩

(5)

For c> 0 and d ∈ R.

&e three classes of distributions are called extreme value
distributions, with type I (Gumbel), type II (Frechet), and
type III (Weibull), respectively. von Mises [8]and Jenkinson
[9] combined the three types of extreme value distributions
leading to the generalized extreme value distribution (GEV).

Theorem 2. If there exist sequences of constants cn and dn

such that

P
Mn − dn

cn

≤y􏼠 􏼡 �����������→n⟶∞
G(y), (6)

where G is a nondegenerate distribution function, then G is a
member of the GEVD family:

G(y) � exp − 1 + ζ y− ]
σ􏼐 􏼑􏽨 􏽩

− (1/ζ)
􏼚 􏼛, (7)

defined on y such that 1 + ζ (y − ])/σ( 􏼁( 􏼁> 0 and with
parameters: scale σ > 0, location ] ∈ R, and scale ζ ∈ R.

&eorem 2 suggests that regardless of the population
distribution of Mn, if a nondegenerate limit can be obtained
by linear renormalization, then the limit distribution will be
the GEV distribution. &is approach is, however, inefficient
in terms of data usage since only the maximum within each
time period is used for modelling. An alternative approach is
excess over threshold, where all the data above, some suf-
ficiently high threshold is used for modelling.

Theorem 3. Given a set of independent and identically
distributed random variables Z1, . . . , Zn, with a common
distribution function, F, the conditional excess distribution
function, Fv � P(Z − v | Z> v), of a random variable Z above
a high threshold v can be approximated by

Fv(z) ≈

1 − 1 + ζ(z− v)
σ􏼐 􏼑

− (1/ζ)
, for ζ ≠ 0,

1 − exp −
z − v

σ􏼒 􏼓, for ζ � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

for z> v and 1 + (ζ(z − v) /σ)( 􏼁> 0 and parameters scale
σ > 0 and shape ζ ∈ R.
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Equation (8) is the generalized Pareto distribution. So,
for Z> v, the unconditional distribution function of the
exceedance, z − v, is

G(z) � P(Z − v≤ z) � 1 − a 1 + ζ(z− v)
σ􏼐 􏼑􏼐 􏼑

− (1/ζ)
, for ζ ≠ 0,

(9)

where a � P(X> v) is treated as a parameter to be estimated.
&e density function of the exceedances can be proved to be

g(x) �
d
dx

G(x) �
a

σ 1 + ζ(x− v)
σ􏼐 􏼑

− (1+(1/ζ))
, for ζ ≠ 0.

(10)

2.2. Compound Distributions. Let X1, . . . , XN􏼈 􏼉 be a se-
quence of independent and identically distributed random
variables with a common distribution functionQ. Also, letN

be a counting random variable with probability function
Pn � P(N � n) and independent of Xi. A compound dis-
tribution is the distribution of the random sum

SN � X1 + · · · + XN � 􏽘
N

i�1
Xi. (11)

&e distribution function of SN is given by

F(x) � P SN ≤ x( 􏼁 � 􏽘
N

n�1
Q

n∗
(x)Pn, (12)

where Qn∗(x) is the n − th fold convolution power of Q.

Definition 1 (convolution). &e convolution of two density
functions QX(·) and QZ(·) on the positive real line is

QX(x)∗QZ(s) � QX+Z(s) � 􏽚

∞

− ∞

QZ(s − x)qX(x)dx,

(13)

where qX(x) � (d/dx)QX(x) and S � X + Z.

Remark 1. &e distribution function of a sum of indepen-
dent and identically distributed random variables with
common cdf Q is the n − th fold convolution power of Q:

Q X1 + X2 + · · · + Xn( 􏼁 � Q∗Q∗ · · ·∗Q � Q
∗ n

. (14)

Compound distributions are used tomodel total losses in
a portfolio or a group of insurance policies. In this context, S

denotes the total losses, N is the number of losses, and Xi is
the size of the i − th independent loss. However, in extreme
value analysis, we are interested in the tails of distributions,
i.e., the distribution of the largest losses, and how they affect
the total losses. A natural class of large loss distribution is
given by the subexponential family, which is a subclass of the
heavy-tailed distribution. By definition, heavy-tailed dis-
tributions have heavier tails than the exponential distribu-
tion, and their tails decay like a power function. All
commonly used heavy-tailed distributions are
subexponential.

Definition 2 (subexponential distribution). A distribution
function Q with Q(x) � 0 for x< 0 is called subexponential
if

lim
x⟶∞

1 − Q∗ n(x)

1 − Q(x)
� n, for n≥ 2. (15)

&is can be interpreted as for a sum of n independent
random variables, X1, . . . , Xn, with common distribution Q:

P X1 + · · · + Xn >x􏼈 􏼉 ≈ P max X1, . . . , Xn( 􏼁>x􏼈 􏼉, as x⟶∞.

(16)

Equation (16) is usually referred to as catastrophe
principle. We can also express it as

lim
x⟶∞

P Mn > x􏼈 􏼉

P Sn > x􏼈 􏼉
� 1, (17)

where Mn � max(X1, . . . , Xn) and Sn � 􏽐
n
i�1 Xi &is rela-

tion implies that the total losses are directly dependent on
the largest losses. In other words, the sum of n losses gets
large if and only if its maximum gets large.

&erefore, assuming that the underlying distribution is
subexponential (heavy-tailed), we can write the distribution
function of the compound distribution in terms of the
maximum values:

F(x) � 1 − P Sn > x( 􏼁 ≈ 1 − P Mn >x( 􏼁 � 􏽘

N

n�1
PnG

n
(x).

(18)

For n � 0, 1, 2, . . .,

F(x) � 􏽘
∞

n�0
PnG

n
(x), (19)

where G(x) is the distribution of the maxima.
Equation (19) is called a compound extreme value dis-

tribution (CEVD). Unlike EVT models, which do not
consider the distribution of the frequency of occurrence in
detail, CEVD assumes that the frequencies of extreme events
are random variables. &eorem 4 presents the CEVD as
proposed by Liu and Ma [10].

Theorem 4. Let Y and Z be random variables with cumu-
lative distribution functions G(x) and T(x), respectively. Let
N be another random variable independent of Y and Z, with
probability function

P(N � n) � Pn, n � 0, 1, 2, . . . ,

􏽘

∞

n�0
Pn � 1.

(20)

Define a random variable X as

X �
Z, N � 0,

max
1≤i≤N

Yi, N≥ 1,

⎧⎪⎨

⎪⎩
(21)

where Yi is the i-th independent observation of Y.
&en, the distribution function of X is
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F(x) � 􏽘
∞

n�0
Pn G(x)

n
􏼂 􏼃 − Po[1 − T(x)]. (22)

We can express equation (22) as

F(x) � F0(x) − ε(x), (23)

where F0(x) � 􏽐
∞
n�0 Pn G(x)􏼂 􏼃

n and ε(x) � P0[1 − T(x)].
Since we are interested in the upper limits of the dis-

tribution, we can take F0(x), ignoring ε(x), to be the value of
F(x). &e full principle of proof is discussed by Liu and Ma
[10]. It can be shown that F0(x) is monotone nondecreasing
and right continuous [6]. It satisfies F0(∞) � 1 and
F0(− ∞) � P0. It is, however, worth noting that F0(x) is not
a distribution function when P0 > 0. We can modify the
probability P0 to make F0(x)(− ∞) � P0 � 0, but since we
are interested in the upper limits of F0(x), we will not
consider the details of the modification.

As a result of the above discussion, we can formally
define CEVD as follows.

Definition 3. Given a random variable N with probability
mass function P(N � n) � Pn for n � 0, 1, . . . and a set of
independent and identically distributed random variables
Y1, . . . , YN with a common distribution function G(x) and
assumed to be independent of N, the compound extreme
value distribution comprising of N and the running max-
imum of Y, X � max1≤i≤NYi, is defined as

F0(x) � 􏽘
∞

n�0
Pn G(x)􏼂 􏼃

n
, forx ∈ R. (24)

Using Definition 3, we can now develop a distribution to
model natural disasters in Kenya. Let X1, . . . , XN􏼈 􏼉 be a
sequence of independent and identically distributed random
variables. For a sufficiently high threshold, v, the observa-
tions that exceed v, x − v, are called exceedances. Denote the
number of exceedances by Nv. Assume the distribution of
Nv is a negative-binomial distribution with parameters κ> 0
and 0< ρ< 1 such that

P Nv � n( 􏼁 � Pn �
κ + n − 1

n
􏼠 􏼡ρn

(1 − ρ)
κ
, for n � 0, 1, 2, . . . .

(25)

Replacing equation (25) into CEVD formula (24),

F(x) � 􏽘
∞

n�0

κ + n − 1

n

⎛⎝ ⎞⎠ρn
(1 − ρ)

κ
G(x)( 􏼁

n
�

1− ρ
1− ρG(x)􏼚 􏼛

κ
, x> 0,

(26)

where G(x) is the cumulative distribution function of the
exceedances given in equation (9). Equation (26) is then the
distribution function of what we will call the negative bi-
nomial-generalized Pareto compound extreme value dis-
tribution (NB-GP CEVD).

To estimate the parameters, we will use maximum
likelihood estimation (MLE). From distribution function
(26), we get the density function:

f(x) �
d
dx

F(x) �
aκρ(1 − ρ)κ

σ

· 1 − ρ 1 − a 1 + ζ(x− v)
σ􏼐 􏼑

− (1/ζ)
􏼔 􏼕􏼒 􏼓

− (κ+1)

· 1 + ζ(x− v)
σ􏼐 􏼑

− (1+(1/ζ))
.

(27)

&e log-likelihood is then

lnL � 􏽘
n

i�1
lnf xi( 􏼁. (28)

We can compute the MLE estimates 􏽢a, 􏽢κ, 􏽢ρ, 􏽢σ, and ζ by
equating (zlnL/za), (zlnL/zκ), (zlnL/zρ), (zlnL/zσ), (zlnL/
zζ) all to zero.

3. Data Analysis, Results, and Discussion

We use data for all the natural disasters recorded in Kenya
in the period 1964 − 2018 that were obtained from the
CRED database. &e severity of natural disasters is
quantified in terms of the total number of people affected
on an annual basis, which we deemed to be more reliable
than the total damage in monetary terms. Table 1 shows the
descriptive statistics for both the annual occurrence and the
impacts. In summary, the minimum number of disaster
occurrence and the resulting severity are zero, which
corresponds to those years where no natural disaster event
was recorded. On the contrary, the maximum number is 9,
and the number of people affected is 23, 331, 469. &e mean
is 2 for the number of occurrences and 1, 130, 198 for the

Table 1: Descriptive statistics of the occurrence and severity of natural disaster data.

Statistic Annual occurrence Annual severity
N 55 55
Total 112 62,160,910
Mean 2 1,130,198
Std. dev 2.26 3,494,302
Minimum 0 0
1st quantile 0 0
Median 1 15,000
3rd quantile 4 252,718
Maximum 9 23,331,469
Interquantile range 4 252,718
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severity. We can also observe that the mean is greater than
the median for both variables, indicating that the data are
right-skewed.

We will start with exploratory analysis of the natural
disaster data. &e scatterplots in Figure 1 show that there are
no serious violations of the independence assumptions
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Figure 1: Scatter plots to check for independence. (a) Annual occurrence against the corresponding years. (b) Annual severity against the
corresponding years. (c) Annual occurrence against annual severity.
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Figure 2: Exponential Q-Q plot.
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among the two variables. &e exponential Q-Q plot in
Figure 2 displays a convex departure from the straight line,
indicating that the theoretical quantiles grow slower than the
empirical quantiles. &is suggests that the severity data are
heavy-tailed.

3.1.  reshold Selection. We use three graphical tools to
select an appropriate threshold. First, we plot the mean
excesses for each value of 200 different thresholds across the
whole dataset, against their corresponding thresholds, with a
significance level of 5%. Figure 3(a) shows that the graph
becomes linear right from the beginning, until around
8, 000, 000. &is suggests a threshold of 0.

Next, we plot the maximum likelihood estimates of the
GPD parameters at 80 different thresholds against their
corresponding thresholds, together with 95% confidence

intervals. Figure 3(b) shows that the scale parameters be-
come stable at around 50, 000, while the reparametrized
shape parameter becomes constant right from the start. &e
threshold is then 0 and 50, 000.

Finally, we plot a Gertensgarbe plot, which involves
plotting the series of differences Δr � z(r) − z(r+1),

r � 2, 3, . . . , n, of the order statistics, z(1) ≤ z(2) ≤ · · · ≤ z(n),
from the start to end and from the end to start. &e cross
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Figure 3:&reshold selection tools. (a) Mean residual life plot. (b) Parameter stability plot. (c) Gertensgarbe plot. Up and Ur are the series of
differences from start to end and end to start, respectively, and k is the observation number in the order statistics.

Table 2: Mann–Kendall test results.

Statistic Value
k0 19
p value 0.00014
&reshold 150000
Tail index 0.48507
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point of the two series (Figure 3(c)) is at the observation
numbered k � 19, which corresponds to a threshold of
150, 000. We also carry out the sequential version of
Mann–Kendall test to contrast whether this point is the
starting point of the extreme region.&e results are indicated
in Table 2. &e null hypothesis that there is no change in the
series of differences is rejected with a p value less than 0.001.

We will now investigate the goodness of fit of the GPD in
each of the three threshold values. Figure 4 shows that GPD
fits the data best at the 50,000 and 150,000 thresholds. To
avoid violating the asymptotic arguments underlying the
GPD, we choose the threshold to be 150,000.

3.2. Fitting the Negative Binomial-Generalized Pareto Com-
pound Extreme Value Distribution. Given a threshold of
150, 000, we will first investigate the fit of the negative

binomial distribution to the number of exceedances and the
GPD to the exceedances. Tables 3 and 4 show that the p value
is greater than 0.01 in both cases, indicating that the dis-
tributions are a good fit to their respective variables.

We can then fit the NB-GP CEVD to the data of natural
disasters in Kenya. Table 5 shows the parameter estimates,
and Table 6 shows the fit of the distribution.

&e maximized value of the log-likelihood function is
found to be − 192.0693.

As observed in Table 6, the p values in both tests are
greater than 0.01. &us, we fail to reject the null hypothesis
that natural disasters in Kenya follow a NB-GP CEVD at 1%
level of significance. We can therefore conclude that the
proposed distribution is a good fit for the data.

To assess the improvement achieved by using NB-GP
CEVD instead of GPD, we investigate the quality of the
proposed model relative to that of the GPD. &is is done
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Figure 4: Q-Q plot of GPD at different thresholds. (a) &reshold� 0. (b) &reshold� 50,000. (c) &reshold� 150,000.

International Journal of Mathematics and Mathematical Sciences 7



using Bayesian information criterion (BIC) and alkaline
information criterion (AIC).

Table 7 shows that both measures are smaller for the NB-
GP CEVD as compared to those of GPD, suggesting that the
former is a better model for natural disasters in Kenya.

4. Conclusion

A compound distribution is developed to model the extreme
damages from natural disasters in Kenya. Unlike the tra-
ditional extreme value theory models that only consider the
severity of extreme events, the distribution proposed here
captures both frequency and severity. &e distribution is
based on a threshold model and compound extreme value
distribution, where the frequency of events exceeding a
threshold of 150,000 is found to follow a negative binomial
distribution, while the severity of the exceedance follows a
generalized Pareto distribution. &e exceedances are as-
sumed to be independent, and the number of exceedances is
also assumed to be independent of the severity. &e dis-
tribution is shown to fit the data well and is found to be a

better model for natural disasters in Kenya than the tradi-
tional extreme value threshold model.

&e proposed distribution can be an important tool to
understand the risks associated with natural disasters in
Kenya. &is can be particularly useful to the country’s di-
saster management bodies and other stakeholders to im-
prove the existing disaster preparedness strategies, which
will in turn reduce the negative economic and social impacts
of such events.

Data Availability

&e data used in this study is open source and available at
https://www.emdat.be/emdat_db/.
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Table 5: Maximum likelihood estimates.

Parameter Estimate Standard error
􏽢κ 9,000,000 —
􏽢ρ 0.0000035 0.000006
􏽢σ 786.42 —
􏽢ζ 2.1567 0.010162
􏽢a 0.3455 0.018874

Table 6: Goodness-of-fit test results.

Test Statistic p value
Kolmogorov–Smirnov 0.2387 0.2300
Anderson–Darling 2.3430 0.0607

Table 3: Goodness of fit of negative binomial to the distribution of
the number of exceedances.

Name Value
Chi-squared statistic 0.52
Degree of freedom 2.00
Chi-squared p value 0.77

Table 4: Goodness of fit of GPD to the exceedances.

Hypothesis p value R-statistic
H0: X has a GPD 0.2142 0.9652

Table 7: Comparison of the quality of models.

Distribution BIC AIC
Negative binomial-generalized Pareto 398.86 395.87
Generalized Pareto 574.53 572.75

8 International Journal of Mathematics and Mathematical Sciences

https://www.emdat.be/emdat_db/

