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(is article presents a detailed discussion of the shape of the trajectory traced by a projectile under the forces of gravity and air
resistance. In particular, our results confirm the insight of the English scientist (omas Harriot into the motion of a projectile
before the development of Newtonian classical mechanics. Our approach is based on the fact that the flight path of a resisted
projectile is implemented by a strictly concave function for which the derivative is also strictly concave.

1. Historical Background and the
English Galileo

(e remarkable similarities between the scientific pursuits of
Galileo Galilei (1564–1642) and his English contemporary,
the mathematician and philosopher (omas Harriot
(1560–1621), led to the latter being dubbed “the English
Galileo.” Indeed, on the opening page of his monograph of
that title, Schemmel [1] writes:

Harriot and Galileo were in fact occupied with very
similar problems concerning astronomy, mechanics,
optics, hydrodynamics, magnetism, and other fields of
natural philosophy.

(ough Galileo documented his work prolifically,
Harriot published none of his results except for a small book
on “the new found land of Virginia.” (us, while Galileo
occupies a central position in the history of scientific de-
velopments, the name and the accomplishments of Harriot
are far less established, and a systematic investigation of his
nachlass comprising thousands of folio sheets has come into
focus only recently. In addition to the extensive account [1]
of Harriot and his work on projectile motion, the articles

[2, 3] also fill this historical gap by shedding light on the
discoveries of the English Galileo.

Notable among their many and varied common un-
dertakings is Galileo’s and Harriot’s study of an airborne
projectile. In remarkable contrast to Galileo’s idealized
version in which gravity is the only active force, Harriot
followed the practitioners’ knowledge on projectile trajec-
tories and tried to develop models that account for the effect
of air resistance. Based on the practical experience of en-
gineers and gunners at his time, Harriot envisioned that all
realistic trajectories share an asymmetry that results from the
air’s influence, as depicted in Figure 1.

(e curves shown in Figure 1 are based on the nu-
merical solution of the differential equations resulting
from Newton’s law for projectile motion under air re-
sistance quadratic in speed, as will be detailed in the last
section. Although the modern approach is certainly far
beyond the theoretical and computational tools available
to preclassical mechanics, in his more advanced models,
Harriot was able to construct ballistic trajectories that are
astonishingly similar to those shown in Figure 1, see the
folios shown in Figures 8 and 9 of [2], Figure 58 of [1], and
Figures 4 and 5 of [3]. One of the specific aspects of the
practitioners’ knowledge that Harriot tried to address in
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his models was the asymmetry of the trajectory in the
following form.

(e projectile’s path from the muzzle of the gun to the
culmination point of the trajectory is longer and flatter
than the path from the culmination point down to the
ground ([1], page 28).

(e goal of this article is to confirm this observation by
itemizing several comparisons between the ascending and
the descending segments of a projectile’s resisted flight
trajectory. With this, we continue the line of inquiry that was
recently developed in [4] for the special case of air resistance
that is linear in speed. In this particular case, explicit for-
mulas for the solutions of the relevant differential equations
are available which allow the use of basic calculus to settle the
issues at hand. Moreover, while no explicit solution formulas
are known for the classical case of drag that is quadratic in
speed, Hayen [5] was able to find a representation of the
solutions in terms of certain quadratures that allowed him to
obtain information about slope and arc length exactly as
specified in assertions (i) and (vi) of our main result. We are
indebted to one of the referees for providing us with ref-
erence [5].

(ere are, however, many other possibilities for air re-
sistance, for instance, drag that is proportional to some
power of the speed or drag that is dependent on the altitude
of the projectile during flight. (is means that a new ap-
proach is needed to handle the case of arbitrary air
resistance.

In the next section, we frame the problem in an ab-
stract, yet elementary setting that is quite apart from any
specific application. It turns out that the strict concavity of
a real-valued function together with that of its derivative
determines certain geometric and analytic aspects of the
graph of the function that are at the core of Harriot’s
vision.

In the final section, we return to the motivating ballistic
application by describing a general framework for projectile
motion in a plane under the influence of gravity and an
opposing force of air resistance. Our comprehensive ap-
proach includes the cases of linear and quadratic drag,
among many other models.

2. Concave Functions and Main Result

We recall that a real-valued function g on an interval J is said
to be strictly concave provided that the estimate

tg(u) +(1 − t)g(v) <g(tu +(1 − t)v), (1)

holds for all distinct points u, v ∈ J and all t ∈ (0, 1). It is well
known that a differentiable function g on J is strictly concave
precisely when g′ is strictly decreasing on J, see, for instance,
(eorem B of Section 1.12 of [6]. In particular, if g is twice
differentiable on J and satisfies g″(x)< 0 for all x ∈ J, then g

is strictly concave.
(roughout this section, we consider a continuously

differentiable function f on a closed bounded interval [a, b]

for which f(a) � f(b) � 0 and suppose that both f and f′
are strictly concave. By the extreme value theorem, f attains
its maximum m at some point c ∈ [a, b], and the strict
concavity of f guarantees that this maximum point c is
unique and satisfies a< c< b and f(c) � m> 0. Moreover, by
the standard characterization of strict concavity mentioned
above, f′ is strictly decreasing on [a, b]. Since Fermat’s
theorem ensures that f′(c) � 0, we conclude that f′ > 0 on
[a, c) and f′ < 0 on (c, b]. In particular, f is strictly in-
creasing on [0, c] and strictly decreasing on [c, b]. Conse-
quently, for each h ∈ [0, m], there exist unique points
u ∈ [a, c] and v ∈ [c, b] for which f(u) � h � f(v), namely,
u � f−1

1 (h) and v � f−1
2 (h), where f1 and f2 denote the

restrictions of f to [a, c] and [c, b], respectively.
As will be seen in the last section, for an arbitrary

projectile that is shot from the ground level to the ground
level and is subject to gravity and any kind of air resistance,
the trajectory is implemented by a function f for which both
f and f′ are strictly concave. (e concavity of this function
and its derivative, together with the theorem proved in this
section, implies that Figure 2 displays the typical shape of the
trajectory traced by a projectile under air resistance and
illustrates Harriot’s vision.

We will verify, for instance, that the ascending branch is
indeed strictly longer than the descending branch by
establishing the inequality

􏽚
c

a

���������

1 + f′(x)2
􏽱

dx> 􏽚
b

c

���������

1 + f′(x)2
􏽱

dx. (2)

In the same vein, the area of the region under the as-
cending branch will be shown to be strictly larger than the
corresponding area under the descending branch. As for
flatness, we will establish Harriot’s vision in amacroscopic or
global sense by proving that the average value of the slope
f′(x) on the ascending branch is strictly smaller than the
average value of −f′(x) on the descending branch. More-
over, we will address a microscopic or pointwise version of
Harriot’s observation by showing that, in the setting of
Figure 2, we have f′(u)< − f′(v) whenever a≤ u< c< v≤ b

and f(u) � f(v). All this is contained in the following main
result of this article.

Theorem 1. Suppose that both f and f′ are strictly concave
on [a, b], and consider the setting of Figure 2. *en, for
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Figure 1: Flight trajectories under air resistance.
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arbitrary points u and v for which a≤ u< c< v≤ b and f(u) �

f(v) � h for some h ∈ [0, m), the following assertions hold:

(i) f′(u)< − f′(v) and, in particular, f′(a)< −f′(b);
(ii) (u + v)/2< c and, in particular, (a + b)/2< c;
(iii) *e average slopes satisfy

1
c − u

􏽚
c

u
f′(x)dx< −

1
v − c

􏽚
v

c
f′(x)dx; (3)

(iv) *e x-coordinate d of the point of intersection of the
tangent lines to f at the points (u, f(u)) and
(v, f(v)) satisfies (u + v)/2<d;

(v) *e areas are related by

􏽚
u

a
f(x)dx> 􏽚

b

v
f(x)dx,

􏽚
c

u
(f(x) − h)dx> 􏽚

v

c
(f(x) − h)dx;

(4)

in particular, we have

􏽚
c

a
f(x)dx > 􏽚

b

c
f(x)dx; (5)

(vi) *e arc lengths satisfy the estimates

􏽚
u

a

���������

1 + f′(x)2
􏽱

dx> 􏽚
b

v

���������

1 + f′(x)2
􏽱

dx,

􏽚
c

u

���������

1 + f′(x)2
􏽱

dx> 􏽚
v

c

���������

1 + f′(x)2
􏽱

dx;

(6)

in particular, we have

􏽚
c

a

���������

1 + f′(x)2
􏽱

dx> 􏽚
b

c

���������

1 + f′(x)2
􏽱

dx. (7)

Proof.
(i) By the strict concavity of f′, we have

tf′(u) +(1 − t)f′(v)<f′(tu +(1 − t)v), (8)

for all t ∈ (0, 1) and therefore

􏽚
1

0
tf′(u) +(1 − t)f′(v)􏼂 􏼃dt< 􏽚

1

0
f′(tu +(1 − t)v)dt.

(9)

On the left-hand side, it is trivial to perform the in-
tegration, while the integral on the right-hand side may
be handled with the substitution x � tu + (1 − t)v. It
follows that

f′(u) + f′(v)

2
<

1
u − v

􏽚
u

v
f′(x)dx �

f(u) − f(v)

u − v
. (10)

Hence, the conditionf(u) � f(v) entails the desired
estimate f′(u)< − f′(v).

(ii) We know that the two restrictions f1 � f|[a, c] and
f2 � f|[c, b] are injective with range [0, m]. More-
over, we have f1′ > 0 on [a, c) and f2′ < 0 on (c, b].
(is ensures that the inverses of f1 and f2 are
differentiable on [0, m) and satisfy

f
−1
1􏼐 􏼑′(y) �

1
f′ f−1

1 (y)( 􏼁
> 0,

f
−1
2􏼐 􏼑′(y) �

1
f′ f−1

2 (y)( 􏼁
< 0,

(11)

for all y ∈ [0, m). Since assertion (i) guarantees that
f′(f−1

1 (y))< − f′(f−1
2 (y)), we obtain

f
−1
1􏼐 􏼑′(y) �

1
f′ f−1

1 (y)( 􏼁
> −

1
f′ f−1

2 (y)( 􏼁
� − f

−1
2􏼐 􏼑′(y),

(12)

and therefore (f−1
1 )′(y) + (f−1

2 )′(y)> 0 for all
y ∈[0, m).
Now, given arbitrary points α and β with 0≤ α< β<m,
integration leads to

􏽚
β

α
f

−1
1􏼐 􏼑′(y) + f

−1
2􏼐 􏼑′(y)􏼐 􏼑dy> 0, (13)

and hence f−1
1 (α) + f−1

2 (α)<f−1
1 (β) + f−1

2 (β). (is
shows that the function f−1

1 + f−1
2 is strictly in-

creasing on [0, m) and, since this function is con-
tinuous, also on [0, m]. In particular, we obtain
f−1
1 (α) + f−1

2 (α)<f−1
1 (m) + f−1

2 (m) � 2c when-
ever 0≤ α<m. (e choice α � h � f(u) � f(v)

then yields u + v< 2c, the desired estimate.
(iii) Because h � f(u) � f(v), the stipulated estimate

for the average values is equivalent to

cua

m

h
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Figure 2: A strictly concave function with strictly concave
derivative.
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f(c) − h

c − u
< −

h − f(c)

v − c
. (14)

But this means precisely that (u + v)/2< cwhich was
established in part (ii).

(iv) Since f is strictly concave, we know that f′ is strictly
decreasing. (us, f′(u)>f′(v) and therefore
f′(u) − f′(v)> 0. (is ensures that the two tangent
lines in question have a unique point of intersection.
Indeed, since these lines are given by the formulas

ℓu(x) � f(u) + f′(u)(x − u),

ℓv(x) � f(v) + f′(v)(x − v),
(15)

for all x ∈ R, the equation ℓu(d) � ℓv(d) has the unique
solution:

d �
f(v) − f(u) + uf′(u) − vf′(v)

f′(u) − f′(v)
. (16)

Simple algebra then reveals that the inequality (u +

v)/2< d may be rewritten in the following form:

f′(u) + f′(v)

2
<

f(u) − f(v)

u − v
, (17)

and thus holds by the strict concavity of f′, as shown
in the proof of assertion (i). Note that the condition
f(u) � f(v) is not essential here and that the pre-
ceding estimate for arbitrary distinct points u, v in
[a, b] actually characterizes the strict concavity of f′
on [a, b], see Corollary 1 of [7].

(v) To establish the first inequality, we recall from the
proof of part (ii) that

f
−1
1􏼐 􏼑′(y)> − f

−1
2􏼐 􏼑′(y), for ally ∈ [0, m). (18)

Hence, the substitutions x � f−1
1 (y) and x � f−1

2 (y)

lead to

􏽚
u

a
f(x)dx � 􏽚

h

0
y f

−1
1􏼐 􏼑′(y)dy

> − 􏽚
h

0
y f

−1
2􏼐 􏼑′(y)dy � 􏽚

0

h
y f

−1
2􏼐 􏼑′(y)dy � 􏽚

b

v
f(x)dx,

(19)

which settles the first claim. For the proof of the second
inequality, we observe that, for arbitrary y ∈ [0, m), the
estimate f−1

1 (y) + f−1
2 (y)< 2c from the proof of as-

sertion (ii) may be rewritten in the form
c − f−1

1 (y)>f−1
2 (y) − c. Switching to integration with

horizontal cross-sections, we then obtain

􏽚
c

u
(f(x) − h)dx � 􏽚

m

h
c − f

−1
1 (y)􏼐 􏼑dy> 􏽚

m

h
f

−1
2 (y) − c􏼐 􏼑dy

� 􏽚
v

c
(f(x) − h)dx,

(20)

as desired. Moreover, since we know from part (ii) that
(u + v)/2< c and hence h(c − u)> h(v − c), we also
arrive at the estimate

􏽚
c

u
f(x)dx> 􏽚

v

c
f(x)dx. (21)

(e final claim is immediate from this and the first
inequality. Alternatively, the final claim follows
from the second inequality in the special case h � 0.

(vi) To establish the first claim, we define the function φ
by φ(z) � f−1

2 (f1(z)), where, as above, f1 and f2
stand for the restrictions of f to [a, c] and [c, b],
respectively. Obviously, φ(a) � b, φ(u) � v, and φ
maps [a, u] onto [v, b]. Moreover, because
φ � f−1

2 ∘f1 on the interval [a, u], the chain rule
confirms that φ is differentiable on [a, u]. Noting
thatf(φ(z)) � f2(φ(z)) � f1(z) � f(z), we arrive
at f′(φ(z))φ′(z) � f′(z) and therefore

φ′(z) �
f′(z)

f′(φ(z))
< 0, (22)

for all z ∈ [a, u]. Since assertion (i) ensures that
f(z)< − f′(φ(z)), we conclude that |φ′(z)|< 1 for all
z ∈ [a, u]. We now employ the substitution x � φ(z) to
obtain

􏽚
b

v

���������

1 + f′(x)2
􏽱

dx � 􏽚
a

u

������������

1 + f′(φ(z))2
􏽱

φ′(z)dz

� 􏽚
u

a

������������

1 + f′(φ(z))2
􏽱

φ′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dz

� 􏽚
u

a

���������������������

φ′(z)2 + f′(φ(z))2φ′(z)2
􏽱

dz

� 􏽚
u

a

�������������

φ′(z)2 + f′(z)2
􏽱

dz,

(23)

where we again used the fact that f′(φ(z))φ′(z) � f′(z).
Because |φ′(z)|< 1 for all z ∈ [a, u], we arrive at

􏽚
b

v

���������

1 + f′(x)2
􏽱

dx< 􏽚
u

a

���������

1 + f′(z)2
􏽱

dz, (24)

which establishes the first claim. Taking the limit as h ap-
proaches m, both u and v tend to c, which results in

􏽚
b

c

���������

1 + f′(x)2
􏽱

dx≤ 􏽚
c

a

���������

1 + f′(z)2
􏽱

dz. (25)
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Since this holds for an arbitrary base interval [a, b], it
also holds for every subinterval [u, v] for which
f(u) � f(v). Hence,

􏽚
v

c

���������

1 + f′(x)2
􏽱

dx≤ 􏽚
c

u

���������

1 + f′(z)2
􏽱

dz. (26)

Together with (24) we obtain, in fact, the strict
inequality:

􏽚
b

c

���������

1 + f′(x)2
􏽱

dx< 􏽚
c

a

���������

1 + f′(z)2
􏽱

dz. (27)

Here, again, we may replace the interval [a, b] by any
subinterval [u, v] for which f(u) � f(v). (is establishes
the remaining claim. □

3. Connection to Ballistics

In this section, we consider the typical motion of a projectile
in the xy-plane. We suppose that the projectile is launched
at time t � 0 from the origin with muzzle speed s> 0 and
angle of inclination θ ∈ (−π/2, π/2) relative to the positive
x-axis. (e position vector of the projectile at time t≥ 0 is
denoted by r(t) � 〈x(t), y(t)〉.

As usual, we suppose that the motion of the projectile is
governed by two forces. One of these forces is gravity in the
direction of the negative y-axis which results in acceleration
of a given magnitude g> 0. (e other force is air resistance
whose direction is opposite to the velocity vector r′(t) �

〈x′(t), y′(t)〉 of the projectile and whose magnitude is
proportional to the mass m of the projectile. Specifically, as
in [7], the retarding force is supposed to be represented by

−mW t, x(t), x′(t), y(t), y′(t)( 􏼁〈x′(t), y′(t)〉, (28)

where W is a given non-negative continuous function of five
variables, defined on a suitable domain in R5. In addition to
the case W � 0 of no air resistance, this model covers the
important case where the drag is proportional to some
power of the speed

r′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

������������

x′(t)2 + y′(t)2
􏽱

, (29)

of the projectile, see Chapter 3 of [8].
By Newton’s law, the projectile motion is now described

by the initial value problem:

x″(t) � −W t, x(t), x′(t), y(t), y′(t)( 􏼁x′(t),

y″(t) � −g − W t, x(t), x′(t), y(t), y′(t)( 􏼁y′(t),

x(0) � 0,

y(0) � 0,

x′(0) � s cos(θ),

y′(0) � s sin(θ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

As in [7], we assume that the drag function W is ad-
missible in the sense that, for every choice of s> 0 and
−π/2< θ< π/2, the initial value problem (30) has a unique
solution (x(t), y(t)) that is defined for all t≥ 0. In practice,

admissibility is guaranteed by existence and uniqueness
results of the Picard–Lindelöf type under mild Lipschitz
conditions on the function W with respect to the last four
variables, see, for instance, [9].

(e graphics in Figure 1 displays the numerical solution
of (30) generated by the NDSOLVE command of Mathematica
for the particular choices

W t, x(t), x′(t), y(t), y′(t)( 􏼁 � 0.002
������������

x′(t)2 + y(t)2
􏽱

,

(31)

g � 9.81m/sec2, s � 200m/sec, and the five canonical values
of the launch angle θ � 15°, 30°, 45°, 60°, and 75°.

In general, explicit formulas for the solution (x(t), y(t))

of (30) are not available. In fact, even in the special case of
drag quadratic in speed, no such formulas are known, see
[8, 10], and [11]. Nevertheless, as shown in Section 4 of [7], it
is possible to obtain geometric insight into the shape of the
trajectory traced by the projectile. First, it turns out that the
function x is strictly increasing on [0,∞) and that its range
is an interval of the form [0, x∞) where 0<x∞ ≤∞. Fur-
thermore, by (eorem 12 of [7], we have

Theorem 2. Suppose that W is a strictly positive admissible
drag function, and let (x(t), y(t)) for t≥ 0 denote the solution
of the corresponding initial value problem (30). *en, this
solution is implemented by the function f � y∘x− 1 on the
range [0, x∞) of x in the sense that f(x(t)) � y(t) for all
t≥ 0. Moreover, f is three times differentiable, and both f

and f′ are strictly concave on [0, x∞).

Indeed, the elementary proof boils down to the fact that

f″(x(t)) � −
g

x′(t)2
< 0,

f
‴

(x(t)) �
2gx″(t)

x′(t)4

� −
2gW t, x(t), x′(t), y(t), y′(t)( 􏼁

x′(t)3
< 0,

(32)

for all t≥ 0. Harriot’s vision is now established in remarkable
generality by (eorems 1 and 2.
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