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Let Gr(k, n) be the complex Grassmannmanifold of k-linear subspaces inCn. We compute rational relative Gottlieb groups of the
embedding i: Gr(k, n)⟶ Gr(k, n + r) and show that the G-sequence is exact if r≥ k(n − k).

1. Introduction

Wework in the category of spaces having the homotopy type
of simply connected CW complexes of finite type.We denote
by h: X⟶ XQ the rationalization of X [1, 2]. Let
f: (X, x0)⟶ (Y, y0) be a pointed continuous mapping
and map(X, Y; f) be the component of f in the space of all
continuous maps g: X⟶ Y. Consider the evaluation map
ev: map(X, Y; f)⟶ Y at the base point x0, that is,
ev(g) � g(x0). +e nth evaluation subgroup of f,
Gn(Y, X; f), is the image of πn(ev) in πn(Y) [3]. In the
special case where X � Y and f � 1X, one obtains the
Gottlieb group Gn(X) of X [4]. Gottlieb groups play an
important role in topology. For instance, if Gn(X) � 0, then
any fibration X⟶ E⟶ Sn+1 admits a section (Corollary
2–7 in [4]).

In [2], Lee andWoo introduce relative evaluation groups
Grel

n (Y, X; f) and obtain a long sequence,

· · ·⟶ G
rel
n+1(Y, X; f)⟶ Gn(X)⟶ Gn(Y, X; f)

⟶ G
rel
n (Y, X; f)⟶ · · · ,

(1)

called G-sequence [5]. +is sequence is exact in some cases,
for instance, if f is a homotopy monomorphism [6].

2. Rational Relative Gottlieb Groups

+e rationalization h: Y⟶ YQ induces a rationalization
h∗: map(X, Y; f)⟶ map(X, Y; h ∘f) [7]. +erefore,

ev∗ π∗(map(X,Y;f))⊗Q( 􏼁 � ev∗ π∗ map X,YQ;h∘f( 􏼁( 􏼁( 􏼁.

(2)

In this paper, we study the G-sequence of the natural
inclusion Gr(k, n)⟶ Gr(k, n + r) using models of func-
tion spaces in rational homotopy [8, 9]. In particular, we
show that the G-sequence is exact if r≥ k(n − k). We work
with algebraic models in rational homotopy theory intro-
duced by Sullivan and Quillen [10, 11]. In this section, we
give relevant definitions and fix notation. Details can be
found in [1]. All vector spaces and algebras are over the field
of rational numbers Q.

Let (A, d) be a cochain algebra. +e degree of an ho-
mogeneous element a ∈ Ap is written |a|. We assume that
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(A, d) is 1-connected, that is, H0(A, d) � Q and
H1(A, d) � 0. +e algebra A is called commutative if ab �

(− 1)||a||b|ba for homogeneous elements a, b ∈ A.

Definition 1. A commutative differential graded algebra
(cdga, for short) (A, d) is called a Sullivan algebra if
A � S(Veven)⊗E(Vodd), where V � ⊕k≥2Vk. It will be
denoted by (∧V, d).

Moreover, a Sullivan algebra (∧V, d) is called minimal
if dV ⊂ ∧≥2V. A Sullivan model of (A, d) is given by a
Sullivan algebra (∧V, d) together with a quasi-isomor-
phism f: (∧V, d)⟶ (A, d). It is unique up to
isomorphism.

Definition 2. If X is a simply connected space of finite type,
then the (minimal) Sullivan model of X is the (minimal)
Sullivan model of cdga APL(X) of polynomial differential
forms on X [1, 5]. A simply connected topological space X is
called formal if there exists a quasi-isomorphism
(∧V, d)⟶ H∗(X,Q), where (∧V, d) is a Sullivan model of
X. Formal spaces include homogeneous spaces G/H, where
G and H have the same rank.

+e complex Grassmann manifold Gr(k, n) is the space
of k-dimensional subspaces of Cn. Moreover,
G(k, n)≃U(n)/(U(k) × U(n − k)), where U(n) is the unitary
group. Hence, G(k, n) is formal (see also [11, 12]). As
G(k, n) � G(n − k, n), we will assume that k≤ n/2. As G(k, n)

is a formal, its Sullivan model can be computed from its
cohomology algebra. Precisely,

H
∗
(Gr(k, n)) �

∧ x2, x4, . . . , x2k( 􏼁

hn− k+1, . . . , hn− 1, hn( 􏼁
, (3)

where hj is the polynomial of degree 2j in the Taylor ex-
pansion of the expression 1/(1 + x2 + · · · + x2k) [13]. A
Sullivan model is given by

∧ x2, . . . , x2k, x2n− 2k+1, . . . , x2n− 1( 􏼁, d( 􏼁, (4)

where dx2i � 0 and dx2n− 2k+2i− 1 � hn− k+i, i � 1, . . . , k.
Moreover, this model is minimal.

Let

(∧V, d) � ∧ x2, . . . , x2k, x2n+2r− 2k+1, . . . , x2n+2r− 1( 􏼁, d( 􏼁,

(∧W, d) � ∧ y2, . . . , y2k, y2n− 2k+1, . . . , y2n− 1( 􏼁, d( 􏼁,

(5)

be respective minimal Sullivan models of Gr(k, n + r) and
Gr(k, n). A Sullivan model of the inclusion
i: Gr(k, n)⟶ Gr(k, n + r) is then

ϕ: (∧V, d)⟶ (∧W, d), (6)

which is defined by

ϕ x2( 􏼁 � y2, . . . ,ϕ x2k( 􏼁 � y2k,

ϕ x2n+2r− 2k+2i+1( 􏼁 � 􏽘
k− 1

j�0
pijy2n− 2k+2j+1,

(7)

where pij is a polynomial of degree 2(r + i − j) in
y2, . . . , y2k, for i, j � 0, 1, 2, . . . , k − 1, provided that
r + i − j≥ 0.

+e polynomials pij encode the relationships between
hi’s. +ey can be explicitly expressed from the equality:

1 + x2 + · · · + x2k( 􏼁 1 + h1 + h2 + · · ·( 􏼁 � 1. (8)

For instance, for k � 2,

h1 � − x2,

h2 � x
2
2 − x4,

h3 � − x
3
2 + 2x2x4,

h4 � x
4
2 − 3x

2
2x4 + x

2
4,

h5 � − x2h4 − x4h3,

h6 � x
2
2 − x4􏼐 􏼑h4 + x2x4h3,

h7 � h4h3 + − x
2
2x4 + x

2
4􏼐 􏼑h3.

(9)

Example 1. +e inclusion Gr(2, 4)⟶ Gr(2, 7) has a Sul-
livan model:

ϕ: ∧ x2, x4, x11, x13( 􏼁, d( 􏼁⟶ ∧ y2, y4, y5, y7( 􏼁, d( 􏼁,

(10)

where

dx2 � dx4 � 0,

dx11 � x
2
2 − x4􏼐 􏼑h4 + x2x4h3,

dx13 � h4h3 + − x
2
2x4 + x

2
4􏼐 􏼑h3,

dy2 � dy4 � 0,

dy5 � − y
3
2 + 2y2y4,

dy7 � y
4
2 − 3y

2
2y4 + y

2
4,

ϕ x2( 􏼁 � y2,

ϕ x4( 􏼁 � y4,

ϕ x11( 􏼁 � y2y4y5 + y
2
2 − y4􏼐 􏼑y7,

ϕ x13( 􏼁 � − y
2
2y4 + y

2
4􏼐 􏼑y5 + − y

3
2 + 2y2y4􏼐 􏼑y7.

(11)

We note that − y2
2y4 + y2

4 � d(y2y5 + y7); therefore,

ϕ x13( 􏼁 � d y2y5 + y7( 􏼁y5 + d y5( 􏼁y7. (12)

Recall that if ϕ: (A, dA)⟶ (B, dB) is a map of chain
complexes; the mapping cone of ϕ, denoted by Rel(ϕ), is
defined by

Rel(ϕ)∗ � sA∗− 1⊕B∗, D( 􏼁, (13)

where the differential is defined by
D(sa, b) � (− sdA(a), ϕ(a) + dBb) [9] or p. 46 in [14]. Define
chain maps J: Bn⟶ Reln(ϕ) and P: Reln(ϕ)⟶ An− 1 by
J(b) � (0, b) and P(sa, b) � a. +ere is an exact sequence of
chain complexes:
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0⟶ B∗ ⟶
J

Rel∗(ϕ)⟶P A∗− 1⟶ 0, (14) which induces a long exact sequence:

⟶ Hn(B)����→
Hn(J)

Hn(Rel(ϕ))����→
Hn(P)

Hn− 1(A)������→
Hn− 1(ϕ)

Hn− 1(B)⟶ , (15)

(see Proposition 4.3 in [14]).

Definition 3. Let ϕ: (A, d)⟶ (B, d) be a morphism of
cdga’s. A ϕ-derivation of degree k is a linear mapping
θ: An⟶ Bn− k such that
θ(ab) � θ(a)ϕ(b) + (− 1)k|a|ϕ(a)θ(b). We denote by
Dern(A, B;ϕ) the vector space of ϕ-derivations of degree n

and by Der(A, B; ϕ) � ⊕nDern(A, B;ϕ) the Z-graded vector
space of all ϕ-derivations. +e differential on Der(A, B;ϕ) is
defined by δθ � dθ − (− 1)kθ d. We will restrict to deriva-
tions of positive degree; however, in degree one, we only
consider those derivations which are cycles.

If ϕ: A⟶ A is the identity mapping, we simply write
DerA for Der(A, A; 1A). Moreover, if A � ∧V, where
v1, v2, . . .􏼈 􏼉 is a basis of V and ϕ: (∧V, d)⟶ (B, d) is a
morphism of cdga’s, we denote by (vi, b) the unique
ϕ-derivation θ such that θ(vi) � b and zero on other ele-
ments of the basis.

Define the Gottlieb group of (∧V, d):

Gn(∧V) � [θ] ∈ Hn(Der∧V, δ): θ(v) � 1, v ∈ V
n

􏼈 􏼉. (16)

Hence, G∗(∧V) � imH∗(ϵ∗), where
ϵ∗: Der∧V⟶ Der(∧V,Q; ϵ) is the postcomposition with
the augmentation map ϵ: ∧V⟶ Q. If X is simply con-
nected and (∧V, d) is the minimal Sullivan model of X, then
Gn(∧V) � Gn(XQ), where h: X⟶ XQ is the ration-
alization (Propostion 29.8 in[1]).

Similarly, if ϕ: (∧V, d)⟶ (∧W, d) is a map between
Sullivan algebras, then the Gottlieb group G∗(∧V,∧W;ϕ) is
defined as H∗(ϵ∗), where
ϵ∗: Der(∧V,∧W;ϕ)⟶ Der(∧V,Q; ϵ) is the post-
composition with ϵ: (∧W, d)⟶ Q. Moreover, if ϕ is a
Sullivan model of a map f: X⟶ Y, where Y is finite, then
G∗(∧V,∧W;ϕ) � Gn(YQ, X; h ∘f), where h: Y⟶ YQ is
the rationalization map.

Let ϕ: (∧V, d)⟶ (∧W, d) be a Sullivan model of a
map f: X⟶ Y between simply connected spaces. It in-
duces a chain map ϕ∗: Der(∧W)⟶ Der(∧V,∧W; ϕ) by
precomposition by ϕ. We get the following commutative
diagram:

Der∧W ����→
ϕ∗ Der(∧V,∧W;ϕ) ����→

J Rel ϕ∗( 􏼁

↓ϵ∗ ↓ϵ∗ ↓ ϵ∗; ϵ∗( 􏼁

Der(∧W,Q; ϵ) ����→
ϕ∗􏽢 Der(∧V,Q; ϵ) ����→

J􏽢 Rel 􏽢ϕ∗􏼒 􏼓

. (17)

+en, rational evaluation subgroups are corresponding
images in the lower ladder induced in homology by vertical
maps. +erefore, there is a long sequence:

· · ·⟶ Gn(∧W) �����→
H ϕ∗􏽢( 􏼁

Gn(∧V,∧W; ϕ) �����→
H J( )􏽢

G
rel
n (∧V,∧W; ϕ)�����→

H P( )􏽢
· · · . (18)

We will use the following result for our computations
(+eorem 2.1 in [9] or Corollary 1 in [15]).

Theorem 1 (see [9]). Let f: X⟶ Y be a map between
simply connected CW complexes, where X is of finite type and
ϕ: (∧V, d)⟶ (∧W, d) its Sullivan model. /e long exact
sequence induced by the map
f∗: map(X, X; 1X)⟶ map(X, Y; f) on rational homotopy
groups is equivalent to the long exact sequence of

ϕ∗: Der(∧W, d)⟶ Der(∧V,∧W; ϕ). (19)

We consider the particular case, where f is the inclusion
i: Gr(k, n)⟶ Gr(k, n + r), where r≥ 1 and its Sullivan
model ϕ: (∧V, d)⟶ (∧W, d) as given in equation (6).

Theorem 2. Let ϕ: (∧V, d)⟶ (∧W, d) be a Sullivan
model of the inclusion i: Gr(k, n)⟶ Gr(k, n + r), where
r≥ k(n − k):

(1) G∗(∧V,∧W; ϕ) � V#, the dual of V

(2) Grel
∗ (∧V,∧W; ϕ) � sG∗(∧W)⊕G∗(∧V,∧W;ϕ) �

sG∗(∧W)⊕V#
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Proof

(1) Recall that ∧V � ∧(x2, . . . , x2k, x2n+2r− 2k+1, . . . ,

x2n+2r− 1), ∧W � ∧(y2, . . . , y2k, y2n− 2k+1, . . . , y2n− 1),
and ϕ: (∧V, d)⟶ (∧W, d) are defined by ϕ(x2)

� y2, . . . , ϕ(x2k) � y2k, ϕ(x2n+2r− 2k+2i− 1) � 􏽐
k
j�1 pij

y2n− 2k+2j− 1, and pij is a polynomial of degree 2(r +

i − j) in y2, . . . , y2k and i ∈ 1, . . . , k{ }.
We consider the composition φ: (∧V,

d)⟶ϕ (∧W, d)⟶p H∗(∧W, d). As p is a quasi-
isomorphism, then theG-sequence of the inclusion is
computed from the long exact sequence induced by
the cone of the map:

ϕ∗: Der ∧W, H
∗
(∧W); p( 􏼁⟶ Der ∧V, H

∗
(∧W);φ( 􏼁.

(20)

Each of the derivations x∗2n+2r− 2k+2i+1 �

(x2n+2r− 2k+2i− 1, 1) ∈ Der(∧V, H∗(∧W);φ) is a cycle
of degree at least 2k + 2r + 2i − 1> 2k + 2r and
cannot be boundary as all even degree derivations in
Der(∧V, H∗(∧W), φ) are of degree at most 2k.
Hence, [x∗2n+2r− 2k+2i+1] is nonzero in
G∗(∧V, H∗(∧W);φ)

Consider the derivations x∗2i � (x2i, 1) ∈
Der(∧V, H∗(∧W, d),φ), for i � 1, . . . , k. +en,

δx
∗
2i( 􏼁 x2n+2r− 2k+2j− 1􏼐 􏼑 ∈ H

2(n+r− k+j− i)
(∧W, d). (21)

Moreover, as 1≤ 1, j≤ k, then j − i≥ − k + 1.
+erefore,

2(n + r − k + j − i)≥ 2(n + r − k − k + 1)

≥ 2(r + 1), as n≥ 2k.
(22)

+erefore, (δx∗2i)(x2n+2r− 2k+2j− 1) ∈ H≥2k(n− k)+2 � 0.
Hence, x∗2i is a cycle for i � 1, . . . , k. Moreover, x∗2i

cannot be a boundary as all odd degree derivations
are of degree at least
2n + 2r − 2k + 1 − 2k(n − k)> 2(n − k) + 1≥ 2k + 1.
+erefore, x∗2n+2r− 2k+2i− 1 are cycles which cannot be
boundaries for degree reasons. Hence,
G∗(∧V, H∗(∧W, d), φ) � V#.

(2) First, we note that
Heven(Der(∧W,∧H∗(∧W, d); p)) � 0, and conse-
quently, Geven(∧W,∧H∗(∧W, d); p) � 0 [1, 16].
Moreover, a straightforward calculation shows that

Godd ∧W,∧H∗(∧W, d), p( 􏼁 � 〈y∗2n− 2k+1, . . . , y
∗
2n− 1〉.

(23)

We consider the vector space:

Rel ϕ∗( 􏼁 � sDer ∧W, H
∗
(∧W); p( 􏼁⊕Der(∧V,∧W; φ),

(24)

where the differential is defined by
D(sα, β) � (− sδα, ϕ∗(α) + δβ). Consider
W#

1 � 〈y∗2n− 2k+1, . . . , y∗2n− 1〉 in Der(∧W, H∗(∧W); p). For
degree reasons, ϕ∗(W#

1 ) � 0. +erefore, D(sy∗, 0) � 0, for
y∗ ∈W#

1 . Hence, sy∗2n− 2k+1, . . . , sy∗2n− 1 represent nonzero
homology classes in Grel

∗ (∧V, H∗(∧W);φ). We conclude
that
Grel
∗ (∧V, H∗(∧W);φ)-

� sG∗(∧W, H∗(∧W); p)⊕G∗(∧V, H∗(∧W);φ). □

Corollary 1. If r≥ k(n − k), then the rational G-sequence of
the inclusion i: Gr(k, n)⟶ Gr(k, n + r) is exact.

Proof. It comes from the previous lemma that the G-se-
quence is

0⟶ G∗ ∧V, H
∗
(∧W);φ( 􏼁⟶ G∗ ∧V, H

∗
(∧W);φ( 􏼁⊕sG∗ ∧W, H

∗
(∧W); p( 􏼁

⟶ G∗ ∧W, H
∗
(∧W); p( 􏼁⟶ 0,

(25)

which is exact. □

3. Inclusion Gr(k, n)⟶ Gr(k, n+ 1)

In the range 1≤ r< k(n − k), the G-sequence of the inclusion
Gr(k, n)⟶ Gr(k, n + r) is more challenging to charac-
terize, as shown in the following example.

Example 2. Consider the inclusion Gr(2, 4)⟶ Gr(2, 7) of
which a Sullivan model is given by
ϕ: A � ∧ x2,x4,x11,x13( 􏼁,d( 􏼁⟶ ∧ y2,y4,y5,y7( 􏼁,d( 􏼁 � B,

(26)

where ϕ is defined in Example 1. We compose with the
quasi-isomorphism p: (B, d)⟶ (H∗(B), 0) and consider
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ϕ∗: Der(B, H∗(B); p)⟶ Der(A, H∗(B);φ), where
φ � p ∘ϕ. Moreover, G∗(B, H∗(B); p) � 〈[y∗5 ], [y∗7 ]〉,
where y∗5 � (y5, 1) and similarly y∗7 � (y7, 1). Furthermore,
δx∗2 � 0; hence, [x∗2 ] represents a nonzero homology class in
Der(A, H∗(B);φ). A simple calculation shows that
δx∗4 � (x11,ω/2), where ω � [x4

2]. Hence,

G∗ A, H
∗
(B);φ( 􏼁 � 〈 x

∗
2􏼂 􏼃, x

∗
11􏼂 􏼃, x

∗
13􏼂 􏼃〉. (27)

Consider

Rel∗ ϕ∗( 􏼁 � sDer B, H
∗
(B); p( 􏼁⊕Der A, H

∗
(B);φ( 􏼁, D( 􏼁.

(28)

+en,

D sy
∗
5 , 0( 􏼁 � 0, α5( 􏼁,

D sy
∗
7 , 0( 􏼁 � 0, α7( 􏼁,

(29)

where α5 � (x11, [y2y4]) and α7 � (x11, [y2
2 − y4]). +ere-

fore, the image of

H∗(P): G
rel
∗ A, H

∗
(B), φ( 􏼁⟶ G∗− 1 B, H

∗
(B); p( 􏼁, (30)

is zero. Hence, the sequence

G
rel
6 A, H

∗
(B);φ( 􏼁 �����→

H∗ P( )
G5 B, H

∗
(B); p( 􏼁 �����→

H5 ϕ∗( )
G5 A, H

∗
(B);φ( 􏼁, (31)

reduces to

0⟶〈 y
∗
5􏼂 􏼃〉⟶ 0, (32)

which is not exact.
In the same way,

G
rel
8 A, H

∗
(B);φ( 􏼁 �����→

H∗ P( )
G7 B, H

∗
(B); p( 􏼁 �����→

H7 ϕ∗( )
G5 A, H

∗
(B);φ( 􏼁 (33)

is not exact. Moreover,
H∗(J): G∗(A, H∗(B);φ)⟶ Grel

∗ (A, H∗(B);φ) is an
isomorphism.

Although the G-sequence of the inclusion
Gr(k, n)⟶ Gr(k, n + r) might not be exact for some values
of 1≤ r< k(n − k), we have the following result for r � 1.

Theorem 3. Let ϕ: (∧V, d)⟶ (∧W, d) be a Sullivan
model of the inclusion Gr(k, n)⟶ Gr(k, n + 1):

(1) Grel
∗ (∧V,∧W;ϕ) has dimension 1

(2) /e G-sequence of the inclusion
Gr(k, n)⟶ Gr(k, n + 1) is not exact

Proof. Recall from Section 2 that the minimal Sullivan
model of Gr(k, n) is (∧W, d), where

W �〈y2, y4, . . . , y2k, y2(n− k)+1, . . . , y2n− 1〉,

dy2 � · · · � dy2k � 0,

dy2(n− k+i)− 1 � hn− k+i, for i � 1, . . . , k.

(34)

Similarly, a model of G(k, n + 1) is (∧V, d), where

V �〈x2, . . . , x2k, x2(n− k)+3, . . . , x2n+1〉,

dx2 � · · · � dx2k � 0,

dx2(n− k+i)+1 � hn− k+i+1, for i � 1, . . . , k.

(35)

Moreover, a model of the inclusion
i: Gr(k, n)⟶ Gr(k, n + 1) is given by
ϕ: (∧V, d)⟶ (∧W, d) and defined by

ϕ x2i( 􏼁 � y2i,

ϕ x2(n− k)+3􏼐 􏼑 � y2(n− k)+3, . . . , ϕ x2n− 1( 􏼁 � y2n− 1,

ϕ x2n+1( 􏼁 � − y2y2n− 1 − y4y2n− 3 − · · · − y2ky2(n− k)+1.

(36)

We consider the quasi-isomorphism

p: (∧W, d)⟶ H
∗
(∧W, d) �

∧ y2, . . . , y2k( 􏼁

dy2(n− k)+1, . . . , dy2n− 1􏼐 􏼑
,

(37)

and set φ � p ∘ ϕ. Consider

ϕ∗: Der ∧W, H
∗
(∧W, d); p( 􏼁⟶ Der ∧V, H

∗
(∧W);φ( 􏼁.

(38)

We have the following relations:
ϕ∗ y
∗
2i( 􏼁 � x

∗
2i, for i � 1, . . . , n

ϕ∗ y
∗
2n− 1( 􏼁 � x

∗
2n− 1 − x2n+1, y2( 􏼁

ϕ∗ y
∗
2n− 3( 􏼁 � x

∗
2n− 3 − x2n+1, y4( 􏼁,

. . .

ϕ∗ y
∗
2(n− k)+3􏼐 􏼑 � x

∗
2(n− k)+3 − x2n+1, y2k− 2( 􏼁

ϕ∗ y
∗
2(n− k)+1􏼐 􏼑 � − x2n+1, y2k( 􏼁.

(39)
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As a result, in

Rel ϕ∗( 􏼁 � sDer ∧W,H
∗
(∧W,d);p( 􏼁⊕Der ∧V,H

∗
(∧W);φ( 􏼁,

(40)

we have the following relations:

D 0, x
∗
2(n− k)+2i+1􏼐 􏼑 � 0, for i � 1, . . . , k

D sy
∗
2n− 1, 0( 􏼁 � 0, x

∗
2n− 1 − x2n+1, y2( 􏼁( 􏼁

D sy
∗
2n− 3, 0( 􏼁 � 0, x

∗
2n− 3 − x2n+1, y4( 􏼁( 􏼁

. . .

D sy
∗
2n− 2k+3, 0( 􏼁 � 0, x

∗
2n− 2k+3 − x2n+1, y2k− 2( 􏼁( 􏼁

D sy
∗
2n− 2k+1, 0( 􏼁 � 0, − x2n+1, y2k( 􏼁( 􏼁.

(41)

We consider the commutative diagram:

Der ∧W, H
∗
(∧W); p( 􏼁 ����→

ϕ∗ Der ∧V, H
∗
(∧W);φ( 􏼁

↓ϵ∗ ↓ϵ∗

Der(∧W,Q; ϵ) ����→
ϕ∗􏽢 Der(∧V,Q; ϵ)

. (42)

Let 􏽣y∗i � ϵ∗(y∗i ) and 􏽢x∗j � ϵ∗(x∗j ). Consider

Rel􏽢ϕ∗ � (sDer(∧W,Q; ϵ)⊕Der(∧V,Q; ϵ), 􏽢D). (43)

+en,
􏽢D s􏽢y
∗
2n− 2k+1, 0( 􏼁 � (0, 0)

􏽢D s􏽢y
∗
2n− 2k+3, 0( 􏼁 � 0, 􏽢x

∗
2n− 2k+3( 􏼁

. . .

􏽢D s􏽢y
∗
2n− 1, 0( 􏼁 � 0, 􏽢x

∗
2n− 1( 􏼁.

(44)

Hence,

H∗ Rel􏽢ϕ
∗

􏼐 􏼑 �〈 s􏽢y
∗
2n− 2k+1, 0( 􏼁􏼂 􏼃, 0, 􏽢x

∗
2n+1( 􏼁􏼂 􏼃〉. (45)

Moreover, the image of
H∗(ϵ∗, ϵ∗): H∗(Relϕ

∗)⟶ H∗(Rel􏽢ϕ
∗
) is 〈[(0, 􏽢x∗2n+1)]〉.

+erefore,

G
rel
∗ ∧V, H

∗
(∧W);φ( 􏼁 �〈 0, 􏽢x

∗
2n+1( 􏼁􏼂 􏼃〉. (46)

+is shows the first part of the theorem and corrects
+eorem 3 in [17] and +eorem 3 [18].

Moreover,

H(􏽢P): G
rel
∗ ∧V, H

∗
(∧W, d); φ( 􏼁⟶ G∗− 1 ∧W, H

∗
(∧W, d); p( 􏼁

(47)

is the zero map. +e G-sequence then reduces to exact
portions

G2n− 2k+2i+1 ∧W, H
∗
(∧W); p( 􏼁 ⟶

H 􏽢ϕ
∗

􏼐 􏼑

≃
G2n− 2k+2i+1 ∧V, H

∗
(∧W); φ( 􏼁,

(48)

for i � 1, . . . , k − 1, and

G2n+1 ∧V, H
∗
(∧W); p( 􏼁⟶

H(􏽢J)

≃
G
rel
2n+1 ∧V, H

∗
(∧W);φ( 􏼁,

(49)

and a nonexact part,

0⟶ G2n− 2k+1 ∧W, H
∗
(∧W); p( 􏼁⟶ 0. (50)

□

Example 3. We consider a model of the inclusion
Gr(2, 4)⟶ Gr(2, 5) which is of the form

ϕ: (∧V,d) � ∧ x2,x4,x7,x9( 􏼁,d( 􏼁⟶ ∧ y2,y4,y5,y7( 􏼁,d( 􏼁

�(∧W,d),

(51)

where dx2 � dx4 � 0, dx7 � x4
2 − 3x2

2x4 + x2
4,

dx9 � − x2(x4
2 − 3x2

2x4 + y2
4) − x4(− x3

2 + 2x2x4), dy2 �

dy4 � 0, dy5 � − y3
2 + 2y2y4, dy7 � y4

2 − 3y2
2y4 + y2

4,
ϕ(x2) � y2, ϕ(x4) � y4, ϕ(x7) � y7, and
ϕ(x9) � − y2y7 − y4y5.

We compose which the quasi-isomorphism
p: (∧W, d)⟶ H∗(∧W, d) to get φ: (∧V, d)⟶
H∗(∧W, d). In

Rel(ϕ)∗ � sDer ∧W, H
∗
(∧W, d); p( 􏼁⊕Der ∧V, H

∗
(∧W, d),φ( 􏼁,

(52)

we have the following relations:
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D sy
∗
5 , 0( 􏼁( 􏼁 � 0, x9, − y4( 􏼁( 􏼁,

D sy
∗
7 , 0( 􏼁( 􏼁 � 0, x

∗
7 + x9, − y2( 􏼁( 􏼁.

(53)

Consider

Rel 􏽢ϕ∗ � (sDer(∧W,Q; ϵ)⊕Der(∧V,Q, ϵ), D) � sW
#⊕V#

, D􏼒 􏼓,

(54)

where

D s􏽢y
∗
5 , 0( 􏼁 � (0, 0),

D s􏽢y
∗
7 , 0( 􏼁 � 0, 􏽢x

∗
7( 􏼁,

D 0, 􏽢x
∗
7( 􏼁 � D 0, 􏽢x9( 􏼁 � (0, 0).

(55)

Hence,

H∗ Rel 􏽢ϕ∗􏼒 􏼓 � 〈 s􏽢y
∗
5 , 0( 􏼁􏼂 􏼃, 0, 􏽢x

∗
9( 􏼁􏼂 􏼃〉. (56)

However, imH(ϵ∗, ϵ∗) � 〈[(0, 􏽢x∗9 )]〉. +erefore,
Grel
∗ (∧V, H∗(∧W, d);φ) � 〈[(0, 􏽢x∗9 )]〉. As

G∗(∧V, H∗(∧W, d);φ) � 〈[􏽢x∗7 ], [􏽢x∗9 ]〉 and
G∗(∧W, H∗(∧W, d), p) � 〈[􏽢y∗5 ], [􏽢y∗7 ]〉, then the G-se-
quence reduces to exact nonzero fragments:

0⟶ G9 ∧V, H
∗
(∧W, d);φ( 􏼁⟶

�
G
rel
9 ∧V, H

∗
(∧W, d);φ( 􏼁⟶ 0, 0⟶ G7 ∧W, H

∗
(∧W, d); p( 􏼁⟶

�
G7 ∧V, H

∗
(∧W, d); φ( 􏼁⟶ 0,

(57)

and a nonexact sequence,

0⟶ G5 ∧W, H
∗
(∧W, d); p( 􏼁⟶ 0. (58)
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