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Copyright © 2021 Fagueye Ndiaye and Idrissa Ly. 'is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In this paper, we are interested in the inverse problem of the determination of the unknown part zΩ, Γ0 of the boundary of a
uniformly Lipschitzian domain Ω included in RN from the measurement of the normal derivative znv on suitable part Γ0 of its
boundary, where v is the solution of the wave equation zttv(x, t) − Δv(x, t) + p(x)v(x) � 0 in Ω × (0, T) and given Dirichlet
boundary data. We use shape optimization tools to retrieve the boundary part Γ of zΩ. From necessary conditions, we estimate a
Lagrange multiplier k(Ω) which appears by derivation with respect to the domain. By maximum principle theory for hyperbolic
equations and under geometrical assumptions, we prove a uniqueness result of our inverse problem. 'e Lipschitz stability is
established by increasing of the energy of the system. Some numerical simulations are made to illustrate the optimal shape.

1. Introduction and Main Result

'e inverse problem in this paper means the problem of
reconstructing object from observation data. We restrict
ourselves to the case when the observation data are given as a
boundary of the Cauchy data of a solution of a wave equation
and the unknown object is a boundary. Let N ∈ N, T> 0 and
let Ω ⊂ RN be a bounded domain with smooth boundary
zΩ. Moreover, let us consider a partition of this boundary
zΩ � Γ0 ∪Γ, Γ0 ∩Γ � ∅, where Γ0 is the accessible regular
part, for example, C2, and it satisfies the interior sphere
condition (see [1]) and Γ � zΩ/Γ0 is the unknown part of
boundary. 'roughout this paper, let us take the functional
v � v(x, t) with x ∈ Ω, t ∈ (0, T). We use the following
notations:

znv �
zv

zn
, zttv(x, t) �

z
2
v

zt
2 . (1)

We consider the following wave equation:

z
2
v

zt
2 + p(x)v − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T),

v(x, 0) � v0(x)inΩ,

z

zt
v(x, 0) � v1(x)inΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

First of all, assume that p ∈ L∞(Ω), v0 ∈ H1(Ω) , and
v1 ∈ L2(Ω) are given and verified the compatibility condi-
tion v0(x) � 0 for all x ∈ zΩ. 'e Cauchy problem (2) is
known to be well posed and one can also prove the solution
v ∈ C([0, T]; H1

0(Ω))∩C1([0, T]; L2(Ω)); this result can be
found in [2].

Our inverse problem consists of determining Γ � zΩ, Γ0,
the unknown part of boundary from Cauchy data (v0|zΩ, h)

of a weak solution v of the following problem (3) with a given
potential p(x).
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z
2
v

zt
2 + pv − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T),

v(x, 0) � v0(x)inΩ,

z

zt
v(x, 0) � v1(x) inΩ,

zv

zn
(x, t) � h(x)on Γ0 ×(0, T),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where h is a given function, and the corresponding Neu-
mann data measured on Γ0 and n is outer normal vector unit.
In this case, Ω and v are unknowns and we assume that the
normal derivatives of function v can be measured by h.

In Section 1, we present the inverse problem which
consists of finding a formula reconstructing the part of
boundary Γ from the Cauchy data. 'e remainder of the
paper is organized as follows.

In Section 2, we establish the shape optimization
problem and prove the existence results. In Section 3, we
study the derivation with respect to the domain and we
prove the necessary conditions of optimality, that is, the
existence of a Lagrange multiplier. Section 4 is devoted to
auxiliary lemmas based on maximum principle theory for
hyperbolic equations; see [3]. In Section 5, we give by a
monotonicity result and under geometrical assumptions a
uniqueness result of our inverse problem.

'e questions for the wave equation have all already
received positive answers since the uniqueness result for the
linear inverse problem has been proved by Klibanov (see [4])
and Lipschitz stability results (for both linear and nonlinear
inverse problems) of Yamamoto (see [5]). Many results, to
which we can refer concerning the wave equation, are related
to the same type of inverse problem of determining a po-
tential p(x). Some of them can be found in [6], for example.
'ese references are all based upon local Carleman estimates
for the wave operator (see [5]) or global Carleman estimates
for Schrödinger equation (see [7]) to prove uniqueness and
stability estimate solution. Nevertheless, in our approach, for
a given potential, the reconstruction of Γ from the Cauchy
data is one of our aims and the estimation of the Lagrange
multiplier which appears by derivation with respect to the
domain of the energy of system in an admissible set of
domains is another interesting one.

In [8], Isakov and Friedman studied the inverse spectral
problems. 'is domain problem was formulated already by
Sir A. Shuster who in 1882 introduced spectroscopy as a way
to find a shape of a bell by means of the sounds which it is
capable of sending out. More rigorously, it has been posed by
Bochner in the 1950s and then in the well-known lecture of
Kac (see [9]) “Can one hear the shape of a drum?” in 1966.
He also studied inverse problem of gravimetry, inverse
conductivity problem, tomography, and the inverse seismic
problem and indicated their applications.

In [10], using conformal mapping technique, Kress
studied mathematical modelling of electrostatic or thermal
imaging methods in nondestructive testing and evaluation.
In these applications, an unknown inclusion within a
conducting host medium with constant conductivity is
assessed from overdetermined Cauchy data on the accessible
exterior boundary of the medium.

2. Study of the Shape Optimization Problem

2.1. Auxiliary Results. We describe some fundamental
properties which will be useful in the following. We consider
a fixed and bounded domain D in RN which contains all
open subsets we used.

Definition 1. Let K1 and K2 be two compact subsets of D.
Let

d x, K1( 􏼁 � miny∈K1
d(x, y),

d x, K2( 􏼁 � miny∈K2
d(x, y).

(4)

Note that

ρ K1, K2( 􏼁 � maxx∈K2
d x, K1( 􏼁,

ρ K2, K1( 􏼁 � minx∈K1
d x, K2( 􏼁.

(5)

Let

dH K1, K2( 􏼁 � max ρ K1, K2( 􏼁, ρ K2, K1( 􏼁􏼂 􏼃, (6)

and we call Hausdorff distance of K1 and K2, the following
positive number, denoted by dH(K1, K2).

Let (Ωn) be a sequence of open subsets of D and letΩ be
an open subset of D. We say that the sequence (Ωn) con-
verges on Ω in the Hausdorff sense and we denote it by
Ωn⟶

H Ω if lim
n⟶+∞

dH(D\Ωn, D\Ω) � 0.
Let (Ωn) be a sequence of open sets ofRN and letΩ be an

open set ofRN. We say that the sequence (Ωn) converges on
Ω in the sense of Lp, 1≤p<∞ if χΩn

converges on χΩ in
L

p

loc(R
N), χΩ being the characteristic functions of Ω.

Remark 1. Let Kn􏼈 􏼉 be a sequence of compact sets included
in a fixed and bounded set D of IRN; then there are a
compact set K and nk such that Knk

converges on K in the
sense of Hausdorff.

We have the following lemmas.

Lemma 1. Let (Ωn)n∈IN be a sequence of open set in IRN having
the ϵ-cône property with Ωn ⊂ F ⊂ D, with F being a compact
set.3en there exists an open setΩ includingF which satisfies the
ϵ/2-cône property and a subsequence Ωnk such that

χΩnk

⟶L
1

χΩ,Ωnk
⟶H Ω, zΩnk

⟶H zΩ,Ωnk
⟶H Ω. (7)

For detailed proof, see [11].

Lemma 2. Let (Ωn)n∈N be a sequence of open sets having the
ϵ− cône property and converging to Ω in the sense of
Hausdorff.
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If vΩn
is the solution of problem 2 in Ωn for all n ∈ N and

vΩ is the solution of this problem in Ω, then vΩn
converges to

v � vΩ.
For detailed proof, see [11].

Lemma 3. Let Ω be a Lipschitz domain with v in W1,p(RN);
if v � 0 a.e in Ωc, then v in W

1,p
0 (Ω).

For detailed proof, see [11].
For all v(x, t) solution of

z
2
v

zt
2 + pv − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T),

v(x, 0) � v0(x) inΩ,

z

zt
v(x, 0) � v1(x) inΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

at time t, the energy of v is defined by

E(v, t) �
1
2

􏽚

Ω

zv

zt
(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx +
1
2

􏽚
Ω

|∇v(x, t)|
2dx, (9)

and it verifies

E(v, 0) − E(v, t) �
1
2

􏽚
Ω

p|v(x, t)|
2dx −

1
2

􏽚
Ω

p v0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dx.

(10)

Let J be the functional defined by

J vw, w( 􏼁 �
1
2

􏽚

w

zvw

zt
(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
dx +

1
2

􏽚
w
∇vw(x, t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx +

1
2

􏽚
w

p vw(x, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dx, t ∈ [0, T], (11)

where vw(x, t) is the solution:

z
2
v

zt
2 + pv − Δv � 0 inw ×(0, T),

v(x, t) � 0 on zw ×(0, T),

v(x, 0) � v0(x) inw,

z

zt
v(x, 0) � v1(x) inw.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

We study the existence of the result of the following op-
timization problem: inf J(w), w ∈ O{ }, where the class of
admissible domains is defined by

O � ω ⊂ RN
,ω domain uniformly Lipschizian included inD, 􏽚

ω
dx � Vo􏼚 􏼛, (13)

where D is a bounded domain ofRN containing allΩ and V0
is positive real.

Remark 2. Remark that ω being uniformly Lipschitz means
ω satisfies the ϵ-cone property; for details, see [11].

2.2. Existence of Solution of Shape Optimization Problem.
We study the existence result of the following shape opti-
mization problem.

Proposition 1. “Find ω belonging to O such that J(ω) �

min J(w), w ∈ O{ } has a solution.”

Proof 1. For the proof, we take the following:

J(w): � E(vw, t) + 1/2􏽒
w

p|vw(x, t)|2dx

J(w)> 0, which implies inf J(w), w ∈ O{ }> − ∞

Let α � inf J(w), w ∈ O{ }. 'erefore, there is a mini-
mizing sequence (Ωn)n∈N ∈ O such that J(Ωn) converges to
α.

'e fact that sequence (Ωn)n∈N ∈ O is bounded ensures
the existence of a subsequence (Ωnk

)nk∈N ∈ O and a domain
Ω ∈ O such that (Ωnk

)nk
converges to Ω in the sense of

Hausdorff according to Lemma 1.
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'erefore, we consider (vΩn
, t) � 􏽥vn and

􏽥p �
p, x ∈ Ωn,

0, x ∈ Rn
\Ωn,

􏼨 .

Sequence (􏽥vn)n∈N is bounded in
C([0, T]; H1(D))∩C1([0, T]; L2(D)). If not, J(Ωn) con-
verges to +∞, which is a contradiction.

Space H1(D)∩ L2(D) is reflexive; then there is a sub-
sequence (􏽥vnk

)k∈N et v∗ such that vnk
converges weakly to v∗

in C([0, T]; H1
0(D))∩C1([0, T]; L2(D)) and always

according to Lemma 3.

􏽚
Ω

zv∗

zt
(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx + p v
∗
(x, t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx + ∇v∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼠 􏼡< liminf􏽚
Ωnk

z􏽥vnk

zt
(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx + 􏽥p 􏽥vnk
(x, t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx + ∇􏽥vnk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎛⎝ ⎞⎠, (14)

∀t ∈ [0, T].
'us, we obtain J(Ω)≤ liminfJ(Ωnk

). 'erefore,
J(Ω)≤ inf J(w), w ∈ O{ }; then

J(Ω) � min J(w), w ∈ O{ }. (15)

□
Remark 3. It is easy to verify that v∗ equals vΩ according to
Lemma 1 and satisfies problem (12). On the other hand, we
have a regularity of vΩ solution to problem (12) (see [12, 13]).

3. Derivation with respect to the Domain

'ese results would allow us to assume regularity C2 on Ω
solution of the shape optimization problem to proceed with
the derivation with respect to the domain and to show the
result of monotony.

Let E: O⟶ X, with O being the set of domains having
the ϵ− cône property and X being a normal vector space.

Let us consider θ⟶ ξ(θ) � E(I + θ)(Ω), where θ varies
around 0 in a normalized vector space Θ of applications from
RN to RN. We can introduce the differentiability in the classic
sense of Frechet for the application θ ∈ Θ⟶ ξ(θ) ∈ X.'is is
efficient in proving the regularity properties of the shape
functional, in using the derivation calculations, and in clearly
identifying the derivatives structures so-called “of shape”.

We will use a numerical variable to be comfortable in the
calculations.

Let us choose function ϕ: y↦I + yθ with θ being a
regular vector field from RN to RN; y⟶ ϕ(y) ∈ Θ. We
analyse the derivative of ϕ(y) and the expression of
y ∈ [0, Y[⟶ E(Ωy), where Ωy � ϕ(y)(Ω).

Let us consider vy � vΩy
.'e question is, how canwe derive

the function y↦vy ∈ H1(Ωy) where Ωy is a variable domain?

(1) We know that vy is extended by 0 because
vy ∈ H1

0(Ωy)

(2) We know that function uy � vy°ϕ(y) is always de-
fined on the fixed domain Ω; it belongs to space
H1(Ω)

To derive function vy, it suffices to “transport” it by ϕy,
because y↦uy has more regularity than y↦vy. 'erefore, it
is more strategic to study this problem.

We fixΩ ⊂ RN as measurable. It is easy to verify thatΩy

is measurable and that if Ω is open, then Ωy is also
measurable.

3.1. Notations. Let W1,∞(RN,RN) denote the bounded
space, and Lipschitzian applications from RN in itself
provide with the norm

∀θ ∈W
1,∞

, ‖θ‖1,∞ � sup
y,􏽢y∈RN,y≠􏽢y

|θ(y)| +
|θ(y) − θ(􏽢y)|

|y − 􏽢y|
􏼨 􏼩,

(16)

where RN is provided with the Euclidean norm ‖. Let I

denote the identity of RN.
We recall that this space is identified with the subspace of

L∞(RN), whose partial derivatives in the sense of distri-
butions are functions of L∞(RN). In addition, the functions
of W1,∞ are a.e. differentiable, and we have

∀θ ∈W
1,∞

, ‖θ‖1,∞ � ‖θ‖∞ + esssup
y∈RN

Dyθ(y)
�����

�����, (17)

where the norms of differential are understood as linear
operators of RN. However, the consideration of W1,∞ is
interesting for deformations of the Lipschitzian domain.

If ‖θ‖1,∞ < 1, by the theorem of fixed point, 1 + θ is
inversible such that (1 + θ)− 1 ∈W1,∞ and we have (see [11])

(I + θ)
− 1

− I
����

����1,∞ ≤ ‖θ‖1,∞ I − ‖θ‖1,∞􏼐 􏼑
− 1

,

(I + θ)
− 1

− I + θ
����

����∞ ≤ ‖θ‖1,∞ I − (I + θ)
− 1����

����∞.

⎧⎪⎨

⎪⎩
(18)

'us,

θ ∈W1,∞⟶ (I + θ)− 1 ∈W1,∞ is continuous in 0
θ ∈W1,∞⟶ (I + θ)− 1 ∈ L∞ is differentiable in 0,
and its differentiability is the opposite of identity

Let us consider ϕ: y ∈ [0; Y[⟶W1,∞(RN) derivable
in 0 with

ϕ(0) � I, ϕ′(0) � V. (19)

Because ϕ(y) is close to the identity in W1,∞(RN) for y

close to 0, it is inversible and even if it decreases Y according
to 7.

t ∈ [0; Y[⟶ ϕ(y)
− 1 ∈W

1,∞ is continuous in 0,

t ∈ [0; Y[⟶ ϕ(y)
− 1 ∈ L

∞ is derivable in 0, with derivative − V.

⎧⎨

⎩

(20)

Wewrite independently ϕ(y)(x) or ϕ(y, x) (same for all
other functions). Let J(y, x) � det(Dxϕ(y)(x)) be the
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Jacobian of ϕ(y) in x (which is, therefore, a.e. defined in
x ∈ RN).

For all y ∈ [0; Y[, we take f(y, .) ∈ L1(Ωy) and consi-
der y ∈ [0; Y[⟶ I(y) � 􏽒Ωy

f(y, x)dx � 􏽒Ωf(y, ϕ(y, x))

J(y, x)dx.
Subsequently, we note 􏽒Ωy

f(y) � 􏽒Ωf(y, ϕ(y))J(y).

3.2. Derivation Formula. To calculate derivation, we use the
following theorem.

Theorem 3.1. Let us consider ϕ verifying (19). We suppose
that

y ∈ [0; Y[⟶ f(y) ∈ L
1
R

N
􏼐 􏼑 is derivable in 0, of derivativef′(0),

f(0) ∈W
1,1

R
N

􏼐 􏼑.
(21)

3en, t⟶ I(y) � 􏽒Ωy
f(y) is derivable in 0, and we

have

I′(0) � 􏽚
Ω

f′(0) + div[f(0)V]. (22)

If, in addition, Ω is a Lipschitzian domain, then

I′(0) � 􏽚
Ω

f′(0) + 􏽚
zΩ

f(0)n.V. (23)

For detailed proof, see [11].

3.3. Optimality Conditions of the Problem. Again, y↦ϕ(y)

verifying (19) , Ω ⊂ RN is open bounded Lipschitzian do-
main, andΩy � ϕ(y)(Ω). If y is close to 0, vy is a solution of
the problem defined by its variational formulation (3). As in
(11), we are interested in the following functional:

J vy,Ωy􏼐 􏼑 �
1
2

􏽚

Ωy

zvy

zt
(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx +
1
2

􏽚
Ωy

∇vy(x, t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dx +

1
2

􏽚
Ω

p|v(x, t)|
2dx. (24)

We set

(i) Ωy � (Id + yθ)Ω with θ ∈W1,∞(Rd,Rd), a vector
field with compact support and y sufficiently small
such that Id + yθ defines a diffeomorphism

(ii) I(y) � J(Ωy) � J(vΩy
,Ωy)

We look for the derivative of J with respect to domainΩ
in direction θ, that is, I′(0).

As regards derivative of J, for a choice of θ, as mentioned
above, we deform only the boundary part zΩ\Γ0 that we will
denote by Γ.

To calculate the derivative y↦I(y), it is useful to derive
y↦vy in the appropriate direction vy ∈ H1

0(Ωy).
For the functional derivative, we have

I′(0) �< dJ vΩ,Ω( 􏼁, θ>� 􏽚
Ω

zv

zt
.
zv′
zt

dx + 􏽚
Ω
∇v.∇v′dx + 􏽚

Ω
pv.v′dx,

+
1
2

􏽚

zΩ

zv

zt
(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

(θ.n)dσ +
1
2

􏽚
zΩ

|∇v(x, t)|
2
(θ.n)dσ +

1
2

􏽚
zΩ

p|v(x, t)|
2
(θ.n)dσ.

(25)

'is gives, according to Hadamard and the boundary
conditions,

I′(0) �< dJ vΩ,Ω( 􏼁, θ>� −
1
2

􏽚
zΩ

zv

zn
􏼠 􏼡

2

(θ.n)dσ +
1
2

􏽚
Ω

z
2

zt
2vv′dx + 􏽚

Ω
v′

z
2
v

zt
2 dx + 􏽚

Ω
∇v.∇v′dx + 􏽚

Ω
pv.v′dx,

+
1
2

􏽚

zΩ

zv

zt
(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

(θ.n)dx +
1
2

􏽚
zΩ

|∇v(x, t)|
2
(θ.n)dx +

1
2

􏽚
zΩ

p|v(x, t)|
2
(θ.n)dx.

(26)

International Journal of Mathematics and Mathematical Sciences 5



'erefore,

I′(0) �< dJ vΩ,Ω( 􏼁, θ>� − 􏽚
Γ
|∇v|

2
(θ.n). (27)

We suppose that it is possible to estimate the normal
derivative of vΩ(x, t) on Γ0; that is, there exists
h: RN⟶ R∗− such that x↦zv(x)/zn � h(x) on Γ0, where n

is the exterior normal unit vector defined on Γ0. We have the
following necessary conditions of optimality.

Proposition 2. If Ω is the solution of the shape optimization
problemmin J(w), w ∈ O{ }, there exists a Lagrange multiplier
k(Ω)< 0 not depending on t such that
|∇v| � − zvΩ/zn � (− k(Ω))1/2 on Γ.

Proof 2. As J(Ω) � inf J(ω),ω ∈ O{ }, using the derivative
with respect to domain, in the direction of vector field,
we show that there exists k(Ω) Lagrange multiplier such
that

dJ(Ω, θ) � k(Ω)dJ1(Ω, θ), (28)

where J1(Ω) � 􏽒Ωdx − V0. Note that we perturb Ω only on
zΩ\Γ0 � Γ, Γ0 is fixed.

dJ(Ω, θ) � k(Ω)dJ1(Ω, θ) � k(Ω)􏽚
Γ
θ.n

� − 􏽚
Γ
|∇v|

2
(θ.n)⇔ ∇vΩ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� − k(Ω) on Γ.
(29)

'is gives us the following relationship according to (27):

k(Ω) � − |∇v|
2
. (30)

For more details on the expression in (29), see [14].
Let us take vΩ � v. To estimate k(Ω), it suffices to

recognize Ω and if we suppose that zΩ\Γ0 � Γ is of class C2,
since v � 0 on Γ, then we have

|∇v| � −
zv

zn
, on Γ, (31)

where n is the outer normal vector. Note that
|∇v| � (− k(Ω))1/2 is an optimality condition and if we
situate Γ, we will be able to estimate |∇v| on Γ. 'erefore,
we deduce an approximation of Lagrange multiplier
k(Ω). □

4. Auxiliary Lemmas

In this section, we sum up some fundamental lemmas for the
algorithm which we will present in the next sections. 'ese
lemmas are based only on maximum principle theory in
wave equation in high dimension. We assume also that
ui ∈ C2(Ω)∩C(Ω\Γi), i � 1, 2.

In sequel, we need some hypothesis for the operator and
the initial value problem in order to apply maximum
principle for hyperbolic problem to obtain additional in-
formation about functions which satisfy

(H)

z
2
v

zt
2 + pv − Δv≥ 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T) � Γ0 ×(0, T),

v(x, 0) � v0(x)≤ 0 inΩ,

z

zt
v(x, 0) � v1(x)≤ 0 inΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

If the hypothesis (H) holds, then the solution v satisfies
v≤ 0, for all t> 0; see [3], page 234.

Lemma 4. Let Ω,Ω′ ⊂ IRN be two open sets such that
Ω′ ⊂ Ω and Γ0 ⊂ zΩ∩ zΩ′. We consider (H) and

z
2
v

zt
2 + pv − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T) � Γ0 ×(0, T),

v(x, 0) � v0(x)inΩ,

z

zt
v(x, 0) � v1(x) inΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
2
v′

zt
2 + pv′ − Δv′ � 0 inΩ′ ×(0, T),

v′(x, t) � 0 on zΩ′ ×(0, T) � Γ0 ×(0, T),

v′(x, 0) � v0′(x) inΩ′,

z

zt
v′(x, 0) � v1′(x) inΩ′,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where

Γ0 ∪ Γ � zΩ,

Γ0 ∩ Γ � ∅,

Γ0 ∪ Γ′ � zΩ′,

Γ0 ∩Γ′ � ∅.

(34)

3en

zv

zn
(s)>

zv′
zn

(s) for all s ∈ Γ0. (35)

Proof 3. Considering v − v′, we have
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z
2

v − v′( 􏼁

zt
2 + p v − v′( 􏼁 − Δ v − v′( 􏼁 � 0 inΩ′ ×(0, T),

v − v′(x, t) � 0 on zΩ ×(0, T) � Γ0 ×(0, T),

v − v′(x, 0) � v0 − v0′(x) inΩ′,

z

zt
v − v′( 􏼁(x, 0) � v1 − v1′(x) inΩ′.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

By maximum principle (see [3]), v≤ 0 in Ω′.
'en, using again the maximum principle (see [3]), (v −

v′)(x)≤ 0 for all x ∈ Ω′. Let x0 ∈ Γ0, and x � x0 − nτ ∈ Ω
where n is exterior normal on Γ0 and τ > 0. We suppose that
(v − v′)(x)< (v − v′)(x0) � 0; in this case, by the Hopf
lemma, we have

zv

zn
x0( 􏼁>

zv′
zn

x0( 􏼁. (37)
□

Lemma 5. If (H) is satisfied and (Ω, v) and (Ω′, v′) are two
solutions of the free boundary problem

z
2
v

zt
2 + pv − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T),

v(x, 0) � v0(x) inΩ,

z

zt
v(x, 0) � v1(x) inΩ,

zv

zn
(x, t) � k(Ω) on Γ0 ×(0, T),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

such that

k(Ω) is the Lagrangian multiplier
Ω′ ⊂ Ω
(zΩ′ ∩ zΩ)\Γ0 ≠∅

3en k(Ω′)< k(Ω).

Proof 4. We have

z
2

v − v′( 􏼁

zt
2 + p v − v′( 􏼁 − Δ v − v′( 􏼁 � 0 inΩ′ ×(0, T),

v − v′(x, t) � 0 on zΩ′ ∩ zΩ ×(0, T) � Γ0 ×(0, T),

v − v′(x, 0) � v0 − v0′(x) inΩ′,

z

zt
v − v′( 􏼁(x, 0) � v1 − v1′(x) inΩ′.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

'anks to maximum principle (see [3]), v≤ 0 on Ω′ and
v − v′ ≤ 0 on Ω′. Let x0 ∈ zΩ′ ∩ zΩ; then (v − v′)(x0) � 0
and x � x0 − nτ ∈ Ω′ where n is exterior normal on Γ0 and
τ > 0. We suppose that (v − v′)(x)< (v − v′)(x0) � 0; in this
case, by the Hopf lemma, we have

zv

zn
x0( 􏼁>

zv′
zn

x0( 􏼁 this implies that k(Ω)> k Ω′( 􏼁. (40)
□

5. Uniqueness and Convergence Result

In this section, using results established in Section 4, we
show the uniqueness of the domain Ω under some hy-
pothesis, by following the methods of I. Ly et al. (see [15]).
Most of the time, in the inverse problems, it is a great
challenge to get uniqueness results. Now we are not able to
produce a uniqueness result in the case where the unknown
domain Ω is supposed to be star-shaped with respect to a
fixed point x0, ∈ Ω. We think that it would be interesting to
investigate this question. Our uniqueness result is obtained
for any domains belonging to Bh, a class of geometrical sets
in the Beurling sense of admissible domains satisfying an
inequality constraint on the accessible boundary Γ0 (see
[11, 16]). Another important hypothesis for our uniqueness
result is the inclusion property in the following sense: one
assumes that there are two domains in class Bh and one of
the two domains is included in the other. 'is is an inter-
esting problem to weaken the inclusion property’s hy-
pothesis. 'e uniqueness result is started in Proposition 3.

Using results in Section 4, we show, under geometrical
assumptions, that the domain Ω is unique. We have already
assumed that one is able to estimate the normal derivative of
vΩ on Γ0, i.e.,, there exists

h: IR
N⟶ IR

∗
− such that

zvΩ
zn

� h on Γ0, (41)

where n is the exterior unit normal vector field defined on Γ0.
Let us define a class of geometrical sets in the Beurling

sense (see, e.g., [15–17]).
LetΩ be a bounded domain which is uniformly Lipschitz

and let Γ0 be a subset of IRN− 1C2 that is regular. Let us take

Bh � Ω ⊂ IR
N

, Γ0 ⊂ zΩ,
zvΩ
zn
≤ h on Γ0􏼨 􏼩, (42)

and vΩ is solution to the following problem:

z
2
v

zt
2 + pv − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T),

v(x, 0) � v0(x) inΩ,

z

zt
v(x, 0) � v1(x) inΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

By construction, Bh is a nonempty set. In fact, this is
because of Proposition 1 and measure assumption. We use
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set Bh in the proof of Proposition 3. At first, we get the
following lemma.

Lemma 6. If (H) is satisfied, let Ω,Ω′ ∈ Bh; then
Ω∩Ω′ ∈ Bh.

Proof 5. Let w be solution of

z
2
w

zt
2 + pw − Δw � 0 inΩ∩Ω′ ×(0, T),

w(x, t) � 0 on zΩ∩Ω′ ×(0, T),

w(x, 0) � v0(x) inΩ∩Ω′,

z

zt
w(x, 0) � v1(x) inΩ∩Ω′.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

We have

z
2

v − v′( 􏼁

zt
2 + p v − v′( 􏼁 − Δ v − v′( 􏼁 � 0 inΩ∩Ω′ ×(0, T),

v − v′(x, t) � 0 on zΩ ×(0, T) � Γ0 ×(0, T),

v − v′(x, 0) � v0 − v0′(x) inΩ∩Ω′,

z

zt
v − v′( 􏼁(x, 0) � v1 − v1′(x) inΩ∩Ω′.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

By the maximum principle (see [3]), we show that

v≤ 0 and v − w≤ 0. (46)

Let x0 ∈ Γ0, and we get

v x0 − nτ( 􏼁 − v x0( 􏼁

τ
≤

(v − w) x0 − nτ( 􏼁 − (v − w) x0( 􏼁

τ
, passing to the limit we get limτ⟶0

v x0 − nh( 􏼁 − v x0( 􏼁

τ

≤ limτ⟶0
(v − w) x0 − nτ( 􏼁 − (v − w) x0( 􏼁

τ
, this implies that

−
zv

zn
≤ −

z(v − w)

zn
.

(47)

'en,

z(v − w)

zn
x0( 􏼁≤

zv

zn
x0( 􏼁≤ h for allx0 ∈ Γ0. (48)

'en we get Ω∩Ω′ ∈ Bh. □

Proposition 3. Let Ω be a bounded domain and let Γ0, h, Γ
be defined as in the Introduction. Consider the following
Cauchy problem:

z
2
v

zt
2 + pv − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T),

v(x, 0) � v0(x)inΩ,

z

zt
v(x, 0) � v1(x) inΩ,

zv

zn
(x, t) � h(x) on Γ0 ×(0, T).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

Assume also that there are two domains
Ω andΩ′, such thatΩ′ ⊂ Ω for which (49) is verified. 3en,
we have Ω � Ω′.

Proof 6. Consider Ω,Ω′ such that

z
2
v

zt
2 + pv − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T) � Γ0 ×(0, T),

v(x, 0) � v0(x) inΩ,

z

zt
v(x, 0) � v1(x) inΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
2
v′

zt
2 + pv′ − Δv′ � 0 inΩ′ ×(0, T),

v′(x, t) � 0 on zΩ′ ×(0, T) � Γ0 ×(0, T),

v′(x, 0) � v0′(x) inΩ′,

z

zt
v′(x, 0) � v1′(x) inΩ′.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

As Ω andΩ′ ∈ Bh, we obtain Ω∩Ω′ ∈ Bh.
Since Ω′ ⊂ Ω, we have Ω3 � Ω∩Ω′ � Ω′, and, by

Lemma 6, we have zv′/zn≤ h on Γ0.
Consider the following problem:
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z
2

v − v′( 􏼁

zt
2 + p v − v′( 􏼁 − Δ v − v′( 􏼁 � 0 inΩ∩Ω′ ×(0, T),

v − v′(x, t) � 0 on zΩ ×(0, T) � Γ0 ×(0, T),

v − v′(x, 0) � v0 − v0′(x) inΩ∩Ω′,

z

zt
v − v′( 􏼁(x, 0) � v1 − v1′(x) inΩ∩Ω′.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

We have (see [3])

v≤ 0 and v − v′ ≤ 0. (52)

As Γ0 satisfies the interior sphere condition, supposing
that v − v′ < 0, by the Hopf lemma, we get

zv

zn
>

zv′
zn

on Γ0 i.e h(x)> h(x)∀x ∈ Γ0, (53)

which is false; then Ω � Ω′. □

6. Stability of the Inverse Problem

In this section, we establish the stability of solution Ω under
some hypothesis too. 'e stability issue for this inverse
problem seems important and difficult to be ignored. Recall
the following lemma solving the Cauchy problem for the
usual wave equation and giving energy and trace estimates of
the solution.

Lemma 7. Let Ω be uniformly Lipschitzian included in RN,
and a final time T> 0.

(v0, v1) ∈ H1
0(Ω) × L2(Ω) is given. Let

v ∈ C([0, T]; H1
0(Ω))∩C1([0, T]; L2(Ω)) be the unique

weak solution of the wave equation

z
2
v

zt
2 + pv − Δv � 0 inΩ ×(0, T),

v(x, t) � 0 on zΩ ×(0, T) � Γ0 ×(0, T),

v(x, 0) � v0(x) inΩ,

z

zt
v(x, 0) � v1(x) inΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)

3en there exists a constant C(Ω, T)> 0 (which depends
only on Ω and T) such that, for all t ∈ [0, T],

􏽚

Ω

zv

zt
(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dx + 􏽚
Ω

|∇v(x, t)|
2dx

≤C 􏽚
Ω

v1(x)
2dx + 􏽚

Ω
∇v0(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓.

(55)

3e normal derivative zv/zn belongs to
L2([0, T]; L2(zΩ)) and verifies

zv

zn

�������

�������L2 [0,T]];L2(zΩ)( )

≤C v0
����

����H1
0(Ω)

+ v1
����

����H1
0(Ω)

􏼒 􏼓. (56)

3is result is very classical; estimate (20) can be formally
deduced from the multiplication of (19) by zv/zt and then by
part integrations of this equality on [0, T] ×Ω. Concerning
estimate (56), we refer to [18]. 3is is a hidden regularity
result that can be proved using the method of multipliers.

Proposition 4. Let Ω be a bounded uniformly Lipschitz
domain and let Γ0, Γ0′ be subsets of IRN− 1C2 that is regular
such that

Γ0 ∪ Γ � zΩ,

Γ0 ∩ Γ � ∅,

Γ0′ ∪ Γ′ � zΩ,

Γ0′ ∩ Γ′ � ∅.

(57)

Assume that (49) is verified. 3en

there is η> 0 such thatdH zΩ\Γ, zΩ\Γ′( 􏼁

< η
zv

zn
|Γ′ −

zv

zn
|Γ

�������

�������L2 [0,T];L2(zΩ)( )

.

(58)

3is inequality (58) describes the Lipschitz stability of the
inverse problem.

Proof. From (56), ‖zv/zn‖L2([0,T];L2(zΩ)) is bounded; then
there exists η> 0 such that

‖zv/zn‖L2([0,T];L2(zΩ)) ≥ η. 'en we have

zv

zn
|Γ′ −

zv

zn
|Γ

�������

�������L2 [0,T];L2(zΩ)( ) ≥ | χΓ′
zv

zn

�������

�������L2 [0,T];L2(zΩ)( )

− χΓ
zv

zn

�������

�������L2 [0,T];L2(zΩ)( )|,

≥ η Γ′△Γ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ ηdH zΩ\Γ′, zΩ\Γ( 􏼁.

(59)

□
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7. Numerical Simulations

In this part, we solve our inverse problem numerically using
polar coordinates. Let h be a function as defined in the

Introduction; we seek to determine Γ of class C2 under the
constraints given. We choose function h defined by

h(r, θ) � 􏽘
N

n�0
e

−
�
n

√
+

��
λn

√
t
(sin(θ) cos(nr sin(θ))ch(nr cos(θ)) + cos(θ)sin(nr sin(θ))sh(nr cos(θ))), (60)

with N ∈ N, λn ∈ R+, ch the hyperbolic cosine function and
sh the hyperbolic sine function. 'e integer n takes values
from 0 to N and λn is a multiple for r depending on n. We
consider that h is the normal derivative of a function u

unique solution of problem 1 in a domain Ω of which a
part Γ of the boundary is unknown. We seek to determine

its optimal shape of Γ. With Matlab, by varying the pa-
rameters N, λn, θ and t, we determine Γ of class C2 which
we describe as a trajectory. 'us, we choose arbitrary
values for r and λn and a maximum value for time t. By
varying the angle θ andN, we obtain the geometrical optimal
shapes of Γ in the below figures. For each given unit of time,

0
0

1

2

3

4

5

6

0.5 1 1.5 2 2.5
t

Moving along Gamma

r (
t)

3 3.5 4 4.5 5

Figure 1: T� 5, N � 300, and theta� pi/28.

0
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5
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15
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r (
t)

6 7 8

Figure 2: T� 8, N � 300, and theta� pi/18.
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we vary N and θ. 'us, for each fixed time, we obtain an
optimal shape when N � 300 and θ is equal to the value
indicated in the legend.

In Figure 1 where the observation time is 5 seconds for a
maximum angle equal to 300 × π/28, the length of Γ is equal
to 5.43 kilometers.

In Figure 2 where the observation time is 8 seconds for a
maximum angle equal to 300 × π/18, the length of Γ is equal
to 23.79 kilometers.

In Figure 3 where the observation time is 10 seconds for a
maximum angle equal to 10π, the length of Γ is equal to
195.15 kilometers.

We notice that if the observation time is small, then the
optimal shape of Γ looks like an arc of circle. But if it is larger,
the optimal shape of Γ is a part of a hyperbola.

8. Conclusion

In this paper, we prove the existence result of the solution for
our inverse problem by determining the optimal shape in
Section 2 and we prove the existence of a Lagrange multi-
plier, which appears in the optimality condition of the
problem. By maximum principle for hyperbolic equations,
we prove the uniqueness and the Lipschitz stability of the
solution for our inverse problem. We make some numerical
simulations with Matlab to illustrate the theoretical results
and then identify the optimal shape of Γ . It would be in-
teresting to study the problem with nonsmooth boundaries;
topological optimization is the technique to use in future
researches.
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