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The mechanical motion of a system consisting of simple springs is investigated from the viewpoint of two inertial observers with a
relativistic relative velocity. It is shown that the final displacement of the springs is not measured the same by the observers.
Indeed, it is demonstrated that there is an incompatibility between kinematics and dynamics in Einstein’s relativity regarding the

force transformation.

1. Introduction

This article represents an advanced version of the author’s
spring paradox [1] in which it was shown that the final
displacement of two relatively moving springs is measured
differently from the standpoint of different observers as soon
as the springs meet each other. Here, we try to make the
possible effect of the signal delay due to the constancy of
light speed of little or no consequence as a cornerstone in
resolving the paradox.

Similar to our previous works on the subject [1, 2], we
insist here, too, that the relativistic dynamics are not easily
reconcilable to the relativistic kinematics since there are
fundamental deficiencies with the Lorentz transformation
for force. Moreover, it is worthwhile to note that some other
works show paradoxes of special relativity regarding rotating
reference systems for only kinematic effects [3], which is
related to the subject of this article.

Although the analysis demonstrated in the article is
based on the well-known dynamics of special relativity, other
dynamics have been introduced in some references of the
literature. For instance, it has been shown that different
dynamics can be derived for the kinematics of special rel-
ativity [4], and thus, our multispring system paradox
analysis can be performed under other dynamics too. It is
interesting whether the shown paradox holds for all possible
dynamics.

In addition, the studies in [5, 6] develop new mathe-
matical formalisms on special relativity, and hence, some
theoretical research may investigate the application of these
formalisms to the analysis of paradoxes such as the paradox
discussed in this article.

On the other hand, there are alternative theories for
special relativity [7, 8], and the continuation of the research
presented in this article may concern checking whether the
multispring system paradox also applies to these theories.

2. The Multispring System Paradox

Too many very thin identical springs, each with a similar constant
of k 1;,’ are attached at one end to the circumference of a thin solid
cylindrical plate, all being perpendicular to the plane that passes
through the plate, and in the other end, the springs touch the
floor. Since these springs are fused to the thin plate, we denote
them by P. Another spring S with a greater spring constant of K
attaches the center of the plate to the ceiling of the compartment

in which the experiment is carried out (see Figure 1).
The distance between the floor and ceiling, as well as the

free lengths of the springs, is dy. On the other hand, it is
assumed that the constants of the springs have the following
relation:

K
kll; = 7, (1)
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FIGURE 1: A multispring system as viewed in the lab frame of
reference. The P springs are set in parallel to each other and in
series with S. The rotating plate makes the P springs rotate along
with it at u'.

where ' is the number of thin P springs. In that the thin
springs are set in parallel to each other, their net constant is
simply calculated to be

KI
ky =n'k) =n'=3 = K}, (2)
n

In other words, the net constant of the P springs is equal to
that of S, and thus, it is anticipated that the upward forces of the
P springs and the downward force of S are balanced, so that,
from the viewpoint of the lab observer M, the thin plate re-
mains motionless at a distance d/2 from the ceiling as well as
the floor level (see Figure 2(a)). Now, suppose that the plate
starts to rotate about its axis of symmetry (z') along with the
thin springs P fused to its perimeter. The surface of the floor is
considered to be frictionless so that the other ends of the thin
springs can easily slide over it, and the springs are not bent or
deformed (see Figure 2(b)). If the tangential velocity u" of the
cylinder’s perimeter—to which the thin springs are
attached—is a significant portion of light speed, the constant of
each thin spring is reduced by the reciprocal of the Lorentz
factor a, [1, 9]. Therefore, we can write (see Appendix A)

!

K
kp =0y kp = a5, G)

where kj is the reduced constant for each of the rotating thin
springs measured by the lab observer M and

o, = 1 - u"/c2. Moreover, it is worthwhile to mention
that kp is the constant for each of the P springs measured
either in its rest frame before the rotation, or in the frame
momentarily at rest relative to the spring in the process of
rotation. The net constant for the rotating springs is thus
calculated as follows:

!

/—IS = Ocu/Ké. (4)

S A
kp=nkp=na,

Indeed, the rotating springs are weakened due to the
relativistic effects, and, as long as the springs P are assembled
in series with S, the plate finds its equilibrium state at a
distance smaller than d,/2 from the floor. If we denote by
Az the final displacement of S, the final displacement of the
thin springs would then be d, — Azg. When the upward force
Fp of the plate springs (P) equals the downward force F of S,
the forces are in equilibrium and we have

F{=Fpy — K{Azg = kp(dg - AzY). (5)
Substituting Equation (4) implies
K,
Azg=—"—d,.
T a0 (6)

Now, we are interested in seeing if an observer N, who
approaches the lab observer M at v along x', would measure
Az the same as obtained in Equation (6) (Azg = Azg);
otherwise, relativity encounters a fatal paradox. Indeed,
since the lengths in the transverse directions to the velocity v
are left unchanged according to the relativistic kinematics, it
is expected that the measurements made by M and N be the
same regarding the final displacement of the springs.

However, observer N asserts that each thin spring travels in
a trochoid curve though the resultant velocity w of each P
spring is always perpendicular to the spring’s alignment. In-
deed, N observes that S approaches him at v, while each of the
P springs, according to their angular position in the plate,
approaches or recedes from him at w so that we can write

w = wi + wi, (7)

where w, andw,, are the components of the resultant ve-
locity w both complying with the relativistic velocity ad-
dition formula. Therefore, if M measures the velocity u’ of a
specific P spring at an angular position of ' to have the
components of u, =u'sin6 and u)ﬁ =u'cos®  (see
Figure 3(a)), the relativistic velocity addition suggests that N
measures the corresponding velocities as follows [10] (see
Figure 3(b)):

’
u,+v

w, = ———, (8)
* lvulvicd
au;
w, = % )
+u,vlc

Inserting Equations (8) and (9) into Equation (7), we
obtain
- u +v +2uv - vzulz/c
w = . (10)
(1 +ugvlc )

Since all springs’ alignments are perpendicular to the
velocities of vand w, their constants would be reduced by
their corresponding reciprocal Lorentz factor. In other
words, the constant of S is reduced by «, and the constants of
the P springs are decreased by a,, as seen by N. Now, if, for
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FIGURE 2: The multispring system as viewed in plane x'z'. (a) Before the rotation of the plate, the plate is balanced at the midpoint between
the ceiling and the floor since k= Kg. (b) In the process of rotation of the plate, the P springs are weakened (kp < K§), and thus, the plate
finds its equilibrium state somewhere below the previous location. In this case, the final displacement of the P springs is supposed to be
dy — Azg where Az is the displacement of the spring S. Recall that the middle spring of the rotating plate is shown thinner in size due to
maximum speed and maximum Lorentz contraction along the x'-axis.
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FIGURE 3: (a) The angular position of the i" P spring is shown as P; on the plate being observed by the lab observer M in plane x' y'. Because
the tangential velocity of the plate’s perimeter is u’, the velocity of P; is decomposed to u/, and ug, (b) The angular position of the spring as
viewed by the moving observer N. The plate is Lorentz contracted due to its relative velocity of v. Indeed, N asserts that the velocity w of the
ith spring has two components of w, and w,, complying with the relativistic velocity addition formula.

simplicity, the number of the P springs ' tends to infinity,
observer N can easily use integration to calculate the re-
sultant upward force of the P springs as follows:

dFp = dky (dy - Azg) = a,dkp (dg — Azg), (11)
where dk, is the infinitesimally small constant of each of the

infinite number of the P springs measured either in the spring’s
rest frame before the rotation of the plate, or in the frame

momentarily at rest with respect to the spring during the
rotation. Moreover, dk, is the infinitesimally small constant of
that specific P spring as measured by N, and, as stated earlier,
Azg is the final displacement of S measured by N. Remember
that the displacement of the P springs would then be d — Azg.

On the other hand, the number of the P springs can be
calculated by dividing the length of the plate’s perimeter by
the infinitesimal width of each spring:
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r 2ma, v’ _2may
Cr'dg’  de'’

where 7' is the radius of the plate measured by M. Recall that
the plate’s perimeter is Lorentz contracted by «,, during the
rotation. Inserting Equation (12) into Equation (1), the
differential form of each of the P springs constant is
obtained:

(12)

K

dk n —
P 2may,

dae'. (13)

Substituting Equation (13) into Equation (11), we get

K!
F, =(d,-A S 46, 14
dFp = (d, Zs)“wzﬂ“ de (14)

u/
for which the integration implies
Ks
2o

2oy
Fp = (d} - Azg) J ! 0, de. (15)

0 w

Remember that it is rational to use 27, instead of 2w
for the upper bound of the integrations over §' (see Ap-
pendix B). In that spring S has a velocity v from the
viewpoint of N, its constant would reduce to Ky = «, K. The
corresponding spring force would thus be

Fy = K¢Azg = a,KgAzg. (16)

Observer N claims that the upward force of Fp should
balance the downward force of Fg in order for the plate to
remain in a static situation. Using Equations (15) and (16),
we have

!

K
Fp=Fs — (dé—Azs)znof, J
u

2ma 1
u ! !
a,d0 = a,KAzg —

0

(1 (2nay)) _[(Z)M“' a,do’
’ a, + (1/ (2na,)) fgﬂa“' a,do' v

(17)
where a,, = V1 — w?/c?. On the other hand, using Equation
(10), &, can be simplified to

av“u,

o, =—".
v 1+u,év/c2 (18)

See Appendix C for the proof. Substituting u, = ' sin 6’
together with Equation (18) into Equation (17) yields

2na

(1 @) [ (1+(u'vsin@')/c?) "' do/

2= 2ma 1.l =1 44
1+(1/2m) [ (1+(u'vsin 6')/c*) " df

do.  (19)

As stated earlier, Azg which is measured by N must equal
Azg measured by M; otherwise, relativity results in a par-
adox. Comparing Equation (19) with Equation (6), if
Azg = Az, we indeed get

1 Jz d¢’

— =a,. 20
2o 1+ @Wvsin @) " 20

Unfortunately, the above formula is not always valid for
all arbitrary values of u' and v, and thus, it seems that rel-
ativity includes a null result, at least, in this example. To
prove, it suffices to substitute v = 0.6cand u’ = 0.8¢ and do
the calculations numerically. In this case, the left-hand side
of Equation (20) equals 0.506, whereas the right-hand side
equals 0.600, which are not equal to each other. This
counterexample shows a deficit in special relativity. How-
ever, one also can take the integral analytically to show that
Equation (20) is not valid for all arbitrary values of u’ and v.

An important point with this problem is that if the forces
are transmitted via some sort of signaling from the P springs
towards the center of rotation of the plate to which one end
of S is attached, the arrival of the signals to the center is
simultaneous from the viewpoint of both M and N. This
simultaneity makes the spring S react to all of the signals sent
by the P springs instantly as viewed by both of the observers;
otherwise, it is expected that the plate is deformed in shape
due to the signal delays.

3. Important Notes regarding This Paradox

To reduce the reader’s confusion, we gather some important
remarks concerning this problem and the possible
resolutions:

(1) Remember that this problem is not connected to
some aspects of the Ehrenfest paradox [11] according
to which a fast-rotating disc cannot approach the
light speed since the centrifugal pressure exceeds the
shear modulus of the material of which the plate is
made. In our problem, indeed, it is not necessary for
the tangential velocity u’ of the plate to have a value
close to ¢ in order to encounter a paradox. That is, if
u' is much smaller than the speed of light, the
paradox is still valid though the difference in
Azand Az’ is very small.

(2) The centrifugal force exerted on the P springs due to
the rotation of the plate may bend the springs slightly
outward the center of rotation; however, this phe-
nomenon can be neglected by assuming that the said
force is not great, or the springs’ stiffness is great so
that they are not easily bent out of shape.

(3) The uniform distribution of the P springs as seen by
M is no longer uniform from the viewpoint of N (see
Figure 4). Remember that this phenomenon has
already been discussed in the literature [12]; how-
ever, it is unlikely that this nonuniformity can cause
the plate’s normal to incline relative to the z di-
rection as viewed by N. In fact, one can claim that the
resultant force of the upper springs would certainly
balance that of the lower ones measured by M (see
Figure 4(a)) such that the plate remains parallel to
the floor level, whereas N may claim that, due to the
nonuniform distribution of the P springs, the
mentioned forces are not balanced, which makes the
plate become oblique (see Figure 4(b)). Recall that if
the plate is inclined in the rest frame of N, in that it is
not measured inclined in that of M, this can bring
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(a)

(b)

FIGURE 4: (a) The distribution of the P springs looks uniform from the viewpoint of the lab observer M. (b) The distribution is no longer
uniform as viewed by the moving observer N. The density of the P springs’ distribution, as well as the mass density of the plate, is higher
where the tangential velocity of the plate (w) is greater, and vice versa.
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F1GURE 5: The spring P is attached to a thin, frictionless rod, which
has pierced the upper plate of a parallel-plate capacitor. Since the
spring force of Fy cancels out the field force of F ', the tiny charge
q", which is attached to the lower end of the rod, is suspended
statically from the standpoint of the lab observer O. Both the rod
and the pillar are made of nonconductive materials. On the other
hand, because the spring is supposed to be located far outside the
capacitor, no EM field affects it. Observer M moves at u' along —x"
as viewed by O.

about another paradox besides the main paradox
discussed earlier. However, the author guesses that
the increase in the density of the springs takes place
for those having greater tangential speeds from N’s
point of view, and thus, the spring constants would
have smaller values. On the other hand, the lesser the
springs’ density, the slower they move and the
greater their constants. Therefore, it is possible that
the increase in springs’ density compensates for the

decrease in their constants, and vice versa, so that the
upper and lower resultant forces would finally bal-
ance each other, which prohibits the plate from
additional rotation. It is also possible that this in-
clination is somehow related to the disputatious
arguments about Mansuripur’s article where a
similar nonuniformity in the distribution of some
point-like electrical charges causes the moving ob-
server to detect a possible forque on a current-car-
rying loop of wire, whereas the lab observer does not,
due to the uniform distribution of the charges
[13-16]. A comprehensive discussion is beyond the
scope of this article.

(4) Itis not mandatory to consider an infinite number of
the P springs. One can repeat the calculations using
any finite number of springs.

(5) Instead of involving the viewpoint of the observer in
the rest frame of the P springs, one can directly apply
the Lorentz transformation for force between
MandN to finally reach Equation (20) (see Ap-
pendix D).

(6) Remember that this article does not question the rel-
ativistic version of Hook’s law, but rather the relativistic
transformation for force in its general form. Hence, one
can replace the springs with electromagnetic fields and
electrical charges in a way similar to [2] in order to
rewrite the paradox (see Appendix D).

4. Conclusion

As a complementary to the author’s previous works re-
garding the relativistic force transformation, this article
shows, too, an inconsistency between the kinematics and
dynamics in relativity.

Appendix

A. Derivation of Equation (3)

We give here an explicit derivation of Equation (3). Assume
that a thin nonconductive rod has pierced the positively
charged plate of a parallel-plate capacitor inside which there
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is a uniform electric field of E,» = —E". The rod is attached
to a spring (P) with a constant of kp, in one end, and in the
other end, it is attached to a point-like, positively charged
object (gq"). It is assumed that the rod is frictionless and can
thus easily move up and down along z". Both the spring and
the charged object are considered massless, and the ex-
periment is carried out away from any gravitational field.
The spring in turn is attached to the ceiling of the lab in the
upper end (see Figure 5).

If the spring is in its free length position (E,» = 0), it is
supposed that the tiny charge q" is located very close to the
positively charged plate of the capacitor. Therefore, when the
capacitor is charged, the spring is stretched with a dis-
placement of Az" until the electrical force of the field (Fy )
cancels out the spring force of Fp. In fact, when the os-
cillations damp out, g" finds its equilibrium state at Az"
from the upper plate as seen by the lab observer, which, this
time, we denote by O. We thus can write the following:

|Fer | =|Fp| — E"q" = kyAz". (A1)

We are now interested to find the spring constant of kj
from the standpoint of the moving observer M relative to
which observer O, as well as the system of spring-capacitor,
indeed, moves along +x' at u'. Using the Lorentz trans-
formation for EM fields, observer M, however, detects a
magnetic field of B;:: V! (B;r/ —u'E}r /c*) besides an elec-

tric field of E» =y, (EJ» —u'B}») ([10] p.166). Inasmuch as
B;n =0 and E)» = -E", we have

B;; = u'yurE"/cz, (A.2)

E = _Yu’E”'

z

(A.3)

Equation (A.2) infers t}ae corresponding Lorentz force of
Fy =q"u'B, =y,E"q"u""/c*, which is exerted on q" along
+z', and Equation (A.3) implies an electric force of
Fp =q"E, =-y,E"q", which is exerted on q" along -z’
The resultant force of Fy_p due to the EM fields is calculated
as follows:

Fy_p =Fy+Fp = <VM'E"q”u’2/c2> +(-ywE"q") —
F%’,E’ _ —ocu'E"q".
(A.4)

On the other hand, observer M calculates the spring
force to be

FL = KAz (A.5)
Because M, as well as O, admits the static situation of q",
the above forces shall cancel out each other, and hence, we have
o /EH ql/
— kp = :
P AZI
(A.6)

|Fy_p| =|Fp| — aE"q" = kpAZ'

Moreover, the traditional Lorentz transformation asserts
that the lengths perpendicular to the motion direction are

left unchanged, otherwise paradoxes arise. Therefore, we
have

Az = AZ". (A.7)
Substituting Equation (A.1) together with Equation (A.7)
into Equation (A.6) yields

K = oy k. (A.8)

Equation (3) is thus proved explicitly.

B. Regarding the Upper Bound of
the Integrations

It is evident that the number of springs must remain the
same before and during the rotation (n" = n'). That is to say,
the number of springs is independent of whether or not the
Lorentz contraction occurs. Before the rotation, observer M
calculates this number to be

w22 (B.1)
rldell de!l

Now, if we equate Equation (B.1) with Equation (12), we
get

n' =n —do = o, de". (B.2)
The integration implies
0 =a,0"+C, (B.3)

where C is the integration constant. This constant can be
chosen to be zero inasmuch as for 6' = 0, we set 6" = 0.
Therefore, we have
0 =a,0". (B.4)
It is evident that a complete period occurs on the interval
(0,27) for 8" as measured by M before the rotation. To find
the upper bound of all integrations over &', it suffices to
insert 6" = 27 into Equation (B.4):
0 =a, 2m (B.5)
On the other hand, in the last appendix, we have in-
troduced an alternative approach to this paradox, which
does not involve using spring constants or the Lorentz
contraction directly. There, another method is demonstrated

for proving the use of 27, instead of 27 as the upper bound
of the said integrations (see Appendix D).

C. Derivation of Equation (18)

Equation (18) is proved in this appendix. Using Equation
(10), we can write
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3]
I

12 2 ' 22,2
> 5 U +v +2uv-vu,lc
»=\1-w/c = \|1- 5

(1 + u,ﬁv/cz) c

2 2,2 22,2
(1+u;v/c2) ¢ oWV r2ulv—v uylc

(1 + u;v/cz)zc2

(1 + ujﬁv/cz)zc2

1 2\2 2 2 9 2 12,2
=5 X 1+u;v/c ) c —<u' + v +2u;v—v uy/c) (C.1)
(1+uxv/c )c
) 2.2
1 Y 2 u,v
= x [+ S+ 2uy—u =V - 2uv+
(1+uxv/c )c c c

b Ne—uts
- (1 + u;v/cz)c

« _,»

Recall that the cross sign “x” indicates the usual mul-
tiplication rather than the vector product. Considering the
fact that u”" = u? +u, we continue

2 2
a :;\/cz—u'2+u Y -2
v (1 + u;v/cz)c ¢

1 12 12 2 2

R SN P T

1+ u):v/c2 ¢ ¢

B 1 ] u'z Vv ] u/z

1+ u,:v/c2 \ e e e (C.2)

B 1 ) u” ) v

1+ulvic* \ & c

12 2
1 %

= 2
1+uvlc c c

which finally yields

o, = _ A (C.3)
Y1+ u,év/c2 )

Therefore, Equation (18) is proved.

D. Eliminating the Use of Spring Constants

Here, not only we directly use the Lorentz transformation
for force to relate the viewpoints of MandN, but we
eliminate the use of spring constants. Assume that we
replace the spring S shown in Figure 1 with a cylinder
inside which there is a uniform electric field. It is supposed

that an electrically charged object acts as a piston inside
this cylinder. (In Figure 5, if we eliminate the spring P, the
remaining capacitor is similar to a cylinder inside which
the charged object (q") and the rod behave as a piston,
which very well depicts our purpose.)

Indeed, we have produced some sort of spring, which can
exert a constant force regardless of the displacement of the
charged piston. If the P springs, in the article’s main problem
(see Figure 1), are also replaced by some similar cylinders,
though each being very thinner in size and having an in-
finitesimally small charged piston, the spring S and each of
the P springs, respectively, exert the forces of F¢ and dF,
from the standpoint of observer M. Now, if M claims that
the system is balanced and thus the forces cancel out each
other, we can write

Fl= JdF};. (D.1)
The Lorentz transformation for force asserts that N

calculates the corresponding forces as follows ([10]
p. 147):

Fy = a,Fl, (D.2)

a,dF;
dF,=—""%2_ D.3
P v ulvid -

If relativity excludes any null result, N would also claim
that the forces would balance each other; otherwise, the plate
would accelerate upward or downward along z. Therefore,
the static situation implies

F = Jdpp. (D.4)

Substituting Equations (D.2) and (D.3) into Equation
(D.4), we obtain
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a,dF,
a,F¢= Ji" T
1+u.wvlc

. . !
Inasmuch as dF, is independent of vandu,, we can
write

(D.5)

Fi=—2 | 4F}
OCV N f 2 P
1+uvic

Finally, inserting Equation (D.1) into Equation (D.6)
yields

(D.6)

[24
v ! _
——Fs— 1=

!
(vaS =
1+uwlc

1+uvic® (D.7)

Since Equation (D.7), similar to Equation (20), has two
unacceptable solutions of v=0 or u, =0—u' =0, it
shows that observer N, contrary to M, believes that the plate
would accelerate along z. Remember that if we first insert
u, =u'sin6 into Equation (D.7) and then integrate both
sides of Equation (D.7) with respect to 8’ from 0 to 27, we
reach exactly Equation (20).

Remember that these calculations are also applicable to the
original problem including springs provided the difference of the
final displacements of the springs measured by M and N are
small so that the related forces remain nearly unchanged. On the
other hand, we are not worried about how the electromagnetic
fields change as viewed by N in this later example because
whatsoever they are, they must produce the resultant forces
complying with the Lorentz transformation for force.

Therefore, it is also possible to use, instead of springs, a
cylinder filled with an ideal gas along with a moveable piston
regardless of the type of the thermodynamic process
according to which the piston compresses/decompresses the
gas contained within the cylinder and regardless of how the
thermodynamic parameters such as temperature and pres-
sure are defined relativistically. It is because the calculations
done in this appendix are general for all forces, which can be
applied to any problem regardless of the agent(s) of the
involved force(s).
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