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(is article deals with Wishart process which is defined as matrix generalization of a squared Bessel process. We consider a single
risky asset pricing model whose volatility is described byWishart affine diffusion processes.(emultifactor volatility specification
enables this model to be flexible enough to describe the market prices for short or long maturities. (e aim of the study is to derive
the log-asset returns dynamic under the doubleWishart stochastic volatility model.(e corrected Euler–Maruyama discretization
technique is applied in order to obtain the numerical solution of the log-asset return dynamic under Bi-Wishart processes. (e
numerical examples show the effect of the model parameters on the asset returns under the double Wishart volatility model.

1. Introduction

(e introduction of the Heston stochastic volatility model
was due to the Black and Scholes [1] model limitation of
not accommodating the observable phenomenon that
implied volatility of derivative products depending on
strike and maturity. (e Heston [2] model has been
popular and widely applied in financial markets due to its
flexibility, financial interpretation of parameters, and
analytical tractability property since it belongs to the class
of affine processes (see Filipovic and Mayerhofer [3]). (e
affine property allows the model to form a closed form
solution of the characteristic function of the log-price, to
obtain European call option price by Fourier transform
inversion.

However, despite the Heston model popularity, Da
Fonseca et al. [4], Christoffersen et al. [5], Ahdida and
Alfonsi and Alfonsi [6], Kang et al. [7], and Gouriéroux [8]
have clearly stated that the biggest weakness of the model is
that it does not generate the realistic term structure of the
volatility smiles. Hence, the Heston model provides too flat
implied volatility surface to attain reality, yet generally
implied volatility has steep curve and convexity in short

maturity and tends to be linear for long maturity. (is
indicates that themodel is not flexible enough to describe the
market prices. (is problem can be handled through gen-
eralizing the Heston model into a multifactor form. Using
two approaches, the first is by adding jump in the stock
dynamic or volatility and secondly by investigating the
multifactor nature of implied volatility as in the study by
Benabid et al. [9], Da Fonseca et al. [4], and Kang and Kang
[10].

It is well accepted that the multifactor approach is the
best one to solve the pricing problem of derivative products
and volatility smile. (is shows that among the multifactor
models, the Wishart multidimensional stochastic volatility
model (that is a matrix defined stochastic volatility model) is
one of the most flexible model; this is because the term
structure of the realized volatilities in this model is described
by a positive semidefinite matrix-valued stochastic process.
(e Wishart process is defined in Bru [11] as a matrix
generalization of a squared Bessel process. Da Fonseca et al.
[12], Alfonsi [13], Da Fonseca et al. [4], and Benabid et al. [9]
defined Wishart process as a stochastic process which is a
positive semidefinite matrix-valued generalization of the
square root process. (e Wishart multidimensional
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stochastic volatility model found its application in finance by
Gouriéroux and Sufana [14].

(e aim of this study is to derive the log-asset returns
dynamic under double Wishart diffusion processes, through
generalization of the Heston model into multifactor nature
for a single asset pricing model. (at is, the asset dynamic
depends on two Wishart volatility diffusion processes, with
two dependence matrices describing the correlations be-
tween the asset dynamic andWishart processes.(is enables
the model to be flexible enough to describe the market prices
or to match the term structure of implied volatilities. (is
study will be of importance to investors to analyze and
predict the behavior of the asset price or asset return over a
period of time. (e numerical solution of the log-price asset
returns dynamic under the double Wishart model is ob-
tained through the application of the corrected
Euler–Maruyama discretization technique. (e numerical
examples demonstrate the effect of model parameters on the
asset return behavior under the double Wishart volatility
model.

(e paper is organized as follows. In Section 2, we give
definition of Wishart process, uniqueness and existence of
solution, change of probability measure, and Wishart vol-
atility model with one dependence matrix. In Section 3, we
present the double Wishart stochastic volatility model,
correlation structure, log-asset returns dynamic, infinitesi-
mal generator, and Euler–Maruyama discretization scheme
for the double Wishart volatility model. In Section 4, we give
the numerical illustrations for log-asset returns. In Section 5,
we provide conclusion and recommendation for further
research work.

2. The Wishart Process

Definition 1. Let Wt, t≥ 0 be a n × n matrix-valued Brow-
nian motion under the probability measure Q. (e Wishart
process ct satisfies the equation

dct � βQQ
T

+ Mct + ctM
T

􏼐 􏼑dt +
��
ct

√
dWtQ + Q

TdW
T
t

��
ct

√
,

(1)

where Q ∈ GLn(R) is the invertible matrix, M ∈Mn is the
nonpositive matrix, c0 ∈ S+

n is the nonnegative symmetric
matrix, and β is a real parameter.(e condition β> (n − 1) is
taken to ensure existence and uniqueness of the ct ∈ S+

n

solution for equation (1), and eigen values of the solution are
nonnegative for all t≥ 0 a.s ct ∈ S+

n . Following Benabid et al.
[9], the probability measure Q corresponds to a risk-neutral
measure.

(e infinitesimal generator of Wishart process ct has
been already studied in Bru [11], formulated as follows:

Lc � Tr βQ
T
Q + Mc + cM

T
􏼐 􏼑D + 2c DQ

T
Q D􏽨 􏽩, (2)

where the matrix differential operator D is Di,j � (z/zci,j).

2.1. $e Uniqueness and Existence of the Solution of Wishart
Process. (e Wishart processes are affine processes defined

on S+
n (R). Following Bru [11], La Bua and Marazzina [15],

and Alfonsi [13], the results on weak and strong solution of
the Wishart differential equation (1) can be shown.

Lemma 1. Let Xt be affine process with continuous trajec-
tories defined in S+

n (R), with stochastic differential equation
as follows:

Xt � X0 + 􏽚
t

0
α + D Xs( 􏼁( 􏼁ds + 􏽚

t

0

���
Xs

􏽰
dWsQ + Q

T dWs( 􏼁
T ���

Xs

􏽰
􏼐 􏼑,

(3)

where X0, α ∈ S+
n (R), Q ∈Mn(R), and D: S+

n(R)⟶ S+
n

(R) is a linear transformation. $e process admits a unique
weak solution inS+

n (R) if

(i) α − (n − 1)QQT ∈ S+
n(R).

(ii) For all X1, X2 ∈ S+
n (R) such that Tr[(X1)X2] �

0⇒Tr[D(X1)X2]≥ 0, where Tr[.] is a trace of a
square matrix. So, X0 contains in a set of real pos-
itive-definite matrices S+

n (R), with condition (i) is
replaced by a stronger requirement.

(iii) α − (n + 1)QQT ∈ S+
n(R). $en, there exists a unique

strong solution for equation (1) in S+
n (R). By ob-

servation α � ΩΩT and D[X0] � MX0 + X0M
T and

when we assume restrictive parametrization for the
deterministic part of the drift, ΩΩT � βQQT. Con-
ditions (i) and (iii) are satisfied as long as β≥ n − 1
and β≥ n + 1, respectively; with direct comparison,
we get Wishart SDE (1) from (3). $e real positive
parameter β also plays a role in Feller’s condition in
the univariate case.

Lemma 2. Let (Ft)t≥ 0 represent the filtration generated by
Wt, t≥ 0. We consider continuous (Ft)-adapted processes
(at)t≥ 0, (bt)t≥ 0, and (ct)t≥ 0, respectively, valued in
Mn(R), Mn(R), and Sn(R) and a process (Mt)t≥ 0 that
admits the following semimartingale decomposition:

dMt � ctdt + btdWtat + a
T
t dW

T
t b

T
t . (4)

For i, j, m, n ∈ 1, . . . , n, the quadratic covariation of
(Mt)i,j and (Mt)m,n is given as

〈d Mt( 􏼁i,j, d Mt( 􏼁m,n〉 � btb
T
t􏼐 􏼑

i,m
a

T
t at􏼐 􏼑

j,n
+ btb

T
t􏼐 􏼑

i,n
a

T
t at􏼐 􏼑

j,m
􏼔 􏼓

+ btb
T
t􏼐 􏼑

j,m
a

T
t at􏼐 􏼑

i,n
+ btb

T
t􏼐 􏼑

j,n
a

T
t at􏼐 􏼑

i,m
􏼕dt.

(5)

Proof. Clearly, we can see that the quadratic covariation (4)
depends on at and bt only through the matrices aT

t and bT
t as

follows:

dMt � ctdt + btdWtat + a
T
t dW

T
t b

T
t

� ctdt + 􏽘
n

k,l�1
bt( 􏼁i,k at( 􏼁l,j + bt( 􏼁j,k at( 􏼁l,i􏼐 􏼑 dWt( 􏼁k,l.

(6)
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(e quadratic covariation is calculated as follows:

〈d Mt( 􏼁i,j, d Mt( 􏼁m,n〉 � 􏽘
n

k,l�1
bt( 􏼁i,k at( 􏼁l,j + bt( 􏼁j,k at( 􏼁l,i􏼐 􏼑 bt( 􏼁m,k at( 􏼁l,n + bt( 􏼁n,k at( 􏼁l,im􏼐 􏼑dt

� 􏽘
n

k,l�1
bt( 􏼁i,k bt( 􏼁m,k at( 􏼁l,n at( 􏼁l,j + 􏽘

n

k,l�1
bt( 􏼁i,k bt( 􏼁n,k at( 􏼁l,m at( 􏼁l,j

+ 􏽘
n

k,l�1
bt( 􏼁j,k bt( 􏼁m,k at( 􏼁l,n at( 􏼁l,i + 􏽘

n

k,l�1
bt( 􏼁j,k bt( 􏼁n,k at( 􏼁l,m at( 􏼁l,i

� btb
T
t􏼐 􏼑

i,m
a

T
t a

T
t􏼐 􏼑

n,j
+ btb

T
t􏼐 􏼑

i,n
a

T
t a

T
t􏼐 􏼑

m,j

+ btb
T
t􏼐 􏼑

j,m
a

T
t a

T
t􏼐 􏼑

n,i
+ btb

T
t􏼐 􏼑

j,n
a

T
t a

T
t􏼐 􏼑

m,i
.

(7)

Particularly Mt can be written in form of trace as follows:

dTr Mt( 􏼁 � Tr ct( 􏼁dt + 2Tr a
T
t btdWt􏼐 􏼑. (8)

□

2.2. Link betweenWishart Processes and Ornstein–Uhlenbeck
Processes. (e best way to generate a Wishart process is to
substitute the Gaussian vector Xi in the definition of a
Wishart distribution with Ornstein–Uhlenbeck processes
Xi,t; this implies that β is an integer. Considering β-inde-
pendent n-dimensional Ornstein–Uhlenbeck processes,
dXk,t � MXk,tdt + QTdWk,t and ct: � 􏽐

β
k�1 Xk,tX

T
k,t (see

Benabid et al. [9]).
Here, dc(t) � c(t + dt) − c(t); then, the process ct is a

Wishart process with the following stochastic differential
equation:

dct � βQQ
T

+ Mct + ctM
T

􏼐 􏼑dt +
��
ct

√
dWtQ + Q

TdW
T
t

��
ct

√
,

(9)

where W a matrix-valued Brownian motion, obtained by

��
ct

√
dWt � 􏽘

β

k�1
Xk,tdW

T
k,t, (10)

where the matrix M is taken as the mean reversion pa-
rameter of the Wishart process and Q is the volatility
parameter.

2.3. Change of the Probability Measure. From the mathe-
matics point of view, it is necessary to describe the change of
the probability measure to allow a change of the drift in the
dynamics process. In financial application, especially in the
practical aspects, Wishart process has to be simulated in its
general form with β≥ n + 1, such that β ∈ R. (e function
permits to write K � β + 2λ with β � K≥ n + 1 and λ real
number with 0≤ λ≤ 1/2.

(e goal is to find a change of probability measure in
order to change the generalized Wishart diffusion process
into the simple one, where β is an integer.(erefore, the new
probability measure P, following Benabid and Bjork can be
expressed as follows.

Theorem 1. Let q � β + λ − n − 1. If hT(Q,P) � dQ/dP
defines the Radon–Nikodym derivative ofQ with respect to P,
then

hT(Q,P) �
det cT( 􏼁

det c0( 􏼁
􏼠 􏼡

λ/2

exp(− λTTr(M))exp
− λ
2

q 􏽚
T

0
Tr c

− 1
s Q

T
Q􏼐 􏼑ds􏼢 􏼣. (11)

Proof. (e probability measure P can be specified through
an exponential martingale.

dQ
dP

� exp λ􏽚
T

0
Tr

���

c
− 1
s

􏽱

dWsQ􏼔 􏼕 −
λ2

2
􏽚

T

0
Tr c

− 1
s Q

T
Q􏼐 􏼑ds􏼨 􏼩.

(12)

We define the new process as follows:

Wt � 􏽦Wt + λ􏽚
t

0

���

c
− 1
s

􏽱

Q
Tds. (13)

We check using Girsanov theorem that W is a matrix-
valued Brownian motion under the probability measure P

while the dynamics of Wishart diffusion process under the
probability measure P is as follows:

dct � βQQ
T

+ Mct + ctM
T

􏼐 􏼑dt +
��
ct

√
dWtQ + Q

TdW
T
t

��
ct

√
,

(14)
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where

Wt � 􏽦Wt + λ􏽚
t

0

���

c
− 1
s

􏽱

Q
Tds,

dWt � d􏽦Wt + λ
���

c
− 1
t

􏽱

Q
Tdt.

(15)

Substituting Wt above in the Wishart process (14),

dct � βQQ
T

+ Mct + ctM
T

􏼐 􏼑dt +
��
ct

√
d􏽦Wt + λ

���

c
− 1
t

􏽱

Q
Tdt􏼒 􏼓Q + Q

T d􏽦Wt + λ
���

c− 1
t

􏽱

Q
Tdt􏼒 􏼓

T ��
ct

√
. (16)

(en,

dct � (β + 2λ)QQ
T

+ Mct + ctM
T

􏼐 􏼑dt +
��
ct

√
d􏽦WtQ + Q

Td 􏽥W
T

t

��
ct

√
. (17)

(e Radon–Nikodym derivative is computed using the
determinant dynamics.

􏽚
T

0
d log detcs( 􏼁 􏽚

T

0
(β − n − 1)Tr c

− 1
s Q

T
Q􏼐 􏼑 + 2Tr(M)􏽨 􏽩ds + 2􏽚

T

0
Tr

���

c
− 1
s

􏽱

dWsQ􏼔 􏼕

log
detcT

detc0
􏼠 􏼡 � 2TTr(M) + 􏽚

T

0
(β − n − 1)Tr c

− 1
s Q

T
Q􏼐 􏼑ds + 2􏽚

T

0
Tr

���

c
− 1
s

􏽱

dWsQ􏼔 􏼕

log
detcT

detc0
􏼠 􏼡

λ/2

� λTTr(M) +
λ
2

􏽚
T

0
(β − n − 1)Tr c

− 1
s Q

T
Q􏼐 􏼑ds + λ􏽚

T

0
Tr

���

c
− 1
s

􏽱

dWsQ􏼔 􏼕,

exp λ􏽚
T

0
Tr

���

c
− 1
s

􏽱

dWsQ􏼔 􏼕􏼨 􏼩 �
detcT

detc0
􏼠 􏼡

λ/2

exp − λTTr(M){ }exp −
λ
2

􏽚
T

0
(β − n − 1)Tr c

− 1
s Q

T
Q􏼐 􏼑ds􏼨 􏼩.

(18)

From equation (12), the new measure with 􏽥W is given by

dQ
dP

� exp λ􏽚
T

0
Tr c

− 1
s d 􏽥WsQ􏽨 􏽩􏼨 􏼩exp −

λ2

2
􏽚

T

0
Tr c

− 1
s Q

T
Q􏼐 􏼑ds􏼨 􏼩

. exp −
λ
2

􏽚
T

0
(β + 2λ − n − 1)Tr c

− 1
s Q

T
Q􏼐 􏼑ds􏼨 􏼩exp −

λ2

2
􏽚

T

0
Tr c

− 1
s Q

T
Q􏼐 􏼑ds􏼨 􏼩

�
detcT

detc0
􏼠 􏼡

λ/2

exp − λTTr(M){ }exp −
λ
2

(β + 2λ − n − 1) −
λ2

2
􏼢 􏼣 􏽚

T

0
Tr c

− 1
s Q

T
Q􏼐 􏼑ds􏼨 􏼩

�
detcT

detc0
􏼠 􏼡

λ/2

exp − λTTr(M){ }exp −
λ
2

(β + λ − n − 1) 􏽚
T

0
Tr c

− 1
s Q

T
Q􏼐 􏼑ds􏼨 􏼩.

(19)

(e change of the probability measure is obtained. □
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2.4. Wishart Volatility Model. In the study by Da Fonseca
et al. [4] and Benabid et al. [9], under the risk-neutral
probability measure and arbitrage-free financial market, the

risky asset price dynamic and its volatility process are as
follows:

dS(t)

S(t)
� μdt + Tr

��
ct

√
dZt􏽨 􏽩, S0 � s,

dct � βQQ
T

+ Mct + ctM
T

􏼐 􏼑dt +
��
ct

√
dWtQ + Q

TdW
T
t

��
ct

√
, c0 � c,

(20)

where μ represents the risk free interest rate, Tr is the trace
operator, Z ∈Mn is a matrix Brownian motion under the
risk-neutral measure, and ct belongs to the set of symmetric
n × n positive-definite matrices as well as its square root ��

ct

√ .
We observe that volatility of the risky asset is the trace of the
matrix ct, with Ω, M, Q ∈Mn, and Wt ∈Mn is a matrix
Brownian motion.

(e dynamic of the Wishart process (see Bru [11]) de-
notes a matrix analogue of the square root mean-reverting
process. To ensure strict positivity and the typical mean-
reverting feature of the volatility, matrix M is considered to
be negative semidefinite, with the real parameter β> n − 1,
for condition of uniqueness and existence of the solution of
the dynamics of the Wishart processes.

3. Presentation of Double Wishart Model in
Stock Market

(is section introduces a proposed novel model, the mul-
tifactor model with two Wishart processes or double
Wishart stochastic volatility model with two dependence
matrices. (e model takes two underlying volatility com-
ponents defined as the trace of a Wishart process. However,
following Naryongo et al. [17], the diagonal components of
the Wishart matrices will be the factors guiding the dy-
namics of volatilities.

Under arbitrage-free financial market and under the
risk-neutral probability measure, we consider the following
risky asset dynamic:

dSt

St

� μdt + Tr
�
c

√
1,tdZ

c1
t +

�
c

√
2,tdZ

c2
t􏽨 􏽩, (21)

where the quadratic variations are as follows:

dc1,t � β1Q1Q
T
1 + M1c1,t + c1,tM

T
1􏼐 􏼑dt +

�
c

√
1,tdW

c1
t Q1 + Q

T
1 dW

c1
t( 􏼁

T ���
c1,t

􏽰
, c1,0 � c1,

dc2,t � β2Q2Q
T
2 + M2c2,t + c2,tM

T
2􏼐 􏼑dt +

�
c

√
2,tdW

c2
t Q2 + Q

T
2 dW

c2
t( 􏼁

T ���
c2,t

􏽰
, c2,0 � c2,

(22)

where β1 and β2 are real parameters such that β1, β2 > n − 1,
Q1, Q2M1, M2 ∈Mn, Q is invertible matrix, and
W

c1
t , W

c2
t ∈Mn are matrices Brownian motions, and also

Z
c1
t , Z

c2
t ∈Mn.

Lemma 3. $e correlation between the Brownian matrices of
the stock price dynamic and the Brownian matrices of the
Wishart processes is given as

ρ1,t �
Tr R

T
1 Q1c1,t􏼐 􏼑

�������
Tr c1,t􏼐 􏼑

􏽱 �����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱 ,

ρ2,t �
Tr R

T
2 Q2c2,t􏼐 􏼑

�������
Tr c2,t􏼐 􏼑

􏽱 �����������
Tr Q

T
2 Q2c2,t􏼐 􏼑

􏽱 .

(23)

Proof.

dSt

St

� rdt + Tr
���
c1,t

􏽰
dZ

c1
t +

���
c2,t

􏽰
dZ

c2
t􏽨 􏽩

� rdt +

�������

Tr c1,t􏼐 􏼑

􏽱 Tr ���
c1,t

√ dZ
c1
t􏼐 􏼑

�������
Tr c1,t􏼐 􏼑

􏽱 +

�������

Tr c2,t􏼐 􏼑

􏽱 Tr ���
c2,t

√ dZ
c2
t􏼐 􏼑

�������
Tr c2,t􏼐 􏼑

􏽱

� rdt +

�������

Tr c1,t􏼐 􏼑

􏽱

dX
c1
t +

���
c2,t

􏽰
dX

c2
t ,

(24)

where X
c1
t and X

c2
t are standard Brownian motions (see

proof in Appendix), and also considering the trace of the
dynamics of Wishart volatility process (21), we get

dTr c1,t􏼐 􏼑 � β1Tr Q
T
1 Q1􏼐 􏼑􏼐􏼐 􏼑 + 2Tr M1c1,t􏼐 􏼑􏼑dt + 2Tr Q1dW

c1
t

���
c1,t

􏽰
􏼐 􏼑,

dTr c2,t􏼐 􏼑 � β2Tr Q
T
2 Q2􏼐 􏼑􏼐􏼐 􏼑 + 2Tr M2c2,t􏼐 􏼑􏼑dt + 2Tr Q2dW

c2
t

���
c2,t

􏽰
􏼐 􏼑.

(25)

(ese processes can still be presented in the form as
follows:
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dTr c1,t􏼐 􏼑 � β1Tr Q
T
1 Q1􏼐 􏼑􏼐􏼐 􏼑 + 2Tr M1c1,t􏼐 􏼑􏼑dt + 2

�����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱 Tr Q1dW
c1
t

���
c1,t

􏽰
􏼐 􏼑
�����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱 ,

dTr c2,t􏼐 􏼑 � β2Tr Q
T
2 Q2􏼐 􏼑􏼐􏼐 􏼑 + 2Tr M2c2,t􏼐 􏼑􏼑dt + 2

�����������

Tr Q
T
2 Q1c2,t􏼐 􏼑

􏽱 Tr Q2dW
c2
t

���
c2,t

􏽰
􏼐 􏼑
�����������
Tr Q

T
2 Q2c2,t􏼐 􏼑

􏽱 ,

(26)

where ξt and ηt are Brownian motions (see proof in Ap-
pendix), such that

dTr c1,t􏼐 􏼑 � β1Tr Q
T
1 Q1􏼐 􏼑􏼐􏼐 􏼑 + 2Tr M1c1,t􏼐 􏼑􏼑dt + 2

��������������

Tr Q
T
1 Q1c1,t􏼐 􏼑dξt

􏽱

,

dTr c2,t􏼐 􏼑 � β2Tr Q
T
2 Q2􏼐 􏼑􏼐􏼐 􏼑 + 2Tr M2c2,t􏼐 􏼑􏼑dt + 2

��������������

Tr Q
T
2 Q2c2,t􏼐 􏼑dηt

􏽱

.

(27)

We now determine the covariation of the stock price and
Wishart processes:

Covt dX
c1
t , dξt( 􏼁 � Covt

Tr ���
c1,t

√ dZ
c1
t􏼐 􏼑

�������
Tr c1,t􏼐 􏼑

􏽱 ,
Tr Q1dW

c1
t

���
c1,t

􏽰
􏼐 􏼑
�����������
Tr Q

T
1 Q1c1,t􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� Et

Tr ���
c1,t

√ dW
c1
t R

T
1􏼐 􏼑

�������
Tr c1,t􏼐 􏼑

􏽱
Tr Q1dW

c1
t

���
c1,t

􏽰
􏼐 􏼑
�����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ �
􏽐ijCovt e

T
i

���
c1,t

􏽰
dW

c1
t R

T
1 ei, e

T
j Q1dW

c1
t

���
c1,t

􏽰
ej􏼐 􏼑

�������
Tr c1,t􏼐 􏼑

􏽱 �����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱

�
􏽐ijEt e

T
i

���
c1,t

􏽰
dW

c1
t R

T
1 eie

T
j Q

T
1 dW

c1
t( 􏼁

T ���
c1,t

􏽰
ej􏼐 􏼑

�������
Tr c1,t􏼐 􏼑

􏽱 �����������
Tr Q

T
1 Q1c1,t􏼐 􏼑

􏽱

�
􏽐ije

T
i

���
c1,t

􏽰
Tr R

T
1 eie

T
j Q

T
1􏼐 􏼑

���
c1,t

􏽰
ejdt

�������
Tr c1,t􏼐 􏼑

􏽱 �����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱

�
􏽐ijTr Q1R1eie

T
j􏼐 􏼑e

T
i c1,tejdt

�������
Tr c1,t􏼐 􏼑

􏽱 �����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱

�
􏽐ije

T
j Q1Reie

T
i c1,tejdt

�������
Tr c1,t􏼐 􏼑

􏽱 �����������
Tr Q

T
1 Q1c1,t􏼐 􏼑

􏽱

�
􏽐ije

T
j Q1R1c1,tejdt

�������
Tr c1,t􏼐 􏼑

􏽱 �����������
Tr Q

T
1 Q1c1,t􏼐 􏼑

􏽱

�
Tr R

T
1 Q1c1,t􏼐 􏼑

�������
Tr c1,t􏼐 􏼑

􏽱 �����������
Tr Q

T
1 Q1c1,t􏼐 􏼑

􏽱 � ρ1,t.

(28)

(e same procedures can be carried out on the second
differential equation to obtain the covariation as follows:

Covt dX
c2
t , dηt( 􏼁 �

Tr R
T
2 Q2c2,t􏼐 􏼑

�������
Tr c2,t􏼐 􏼑

􏽱 �����������
Tr Q

T
2 Q2c2,t􏼐 􏼑

􏽱 � ρ2,t. (29)
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(e two correlations between the Brownian motions of
the asset and the Brownianmotions of theWishart processes
are stochastic. □

3.1. $e Correlation Structure of the Model. (e Brownian
matrices W

c1
t , W

c2
t , Z

c1
t , andZ

c2
t can be correlated in such a

way that all the (scalar) Brownian motions belonging to i of
Z

c1
t andZ

c2
t and corresponding Brownian motions of the

column j of W
c1
t andW

c2
t have the same correlation, say

R
c1
ij andR

c2
ij . (is provides constant matrices R1, R2 ∈Mn

which describe the two correlation structures, in such a way
that Z

c1
t and Z

c2
t presented as follows:

Z
ck

t :� W
ck

t R
T
k + B

ck

t

�������

I − RkR
T
k

􏽱

, for k � 1, 2, (30)

where I denotes the identity matrix, T is the transposition,
and B

c1
t and B

c2
t are (matrices) Brownian motion inde-

pendent of W
c1
t andW

c2
t , respectively.

Lemma 4. $e correlation structure Z
c1
t : � W

c1
t RT

1 +

B
c1
t

�������

I − R1R
T
1

􏽱

is a matrix Brownian motion.

Proof. We note that Z
c1
t is a matrix Brownian motion iff for

α1, β1 ∈ Rn,

Covt dZ
c1
t , dZ

c1
t β1( 􏼁 � Et dZ

c1
t α1( 􏼁 dZ

c1
t β1( 􏼁

T
􏽨 􏽩 � αT

1 β1Idt.

(31)

(en,

Covt dZ
c1
t α1, dZ

c1
t β1( 􏼁 � Et dW

c1
t R

T
1α1 + dB

c1
t

���������

I − R1R
T
1α1

􏽱

􏼒 􏼓 dW
c1
t R

T
1 β1 + dB

c1
t

���������

I − R1R
T
1 β1

􏽱

􏼒 􏼓􏼔 􏼕

� Covt dW
c1
t R

T
1α1, dW

c1
t R

T
1 β1􏼐 􏼑

+ Covt dB
c1
t

���������

I − R1R
T
1α1

􏽱

, dB
c1
t

���������

I − R1R
T
1 β1

􏽱

􏼒 􏼓

� αT
1 R1R

T
1 β1Idt + αT

1 I − R1R
T
1􏼐 􏼑β1Idt

� αT
1 β1Idt,

(32)

similarly for the second dynamic process as

Covt dZ
c2
t α2, dZ

c2
t β2( 􏼁 � αT

2 β2Idt. (33)
□

3.2. $e Log-Asset Return Dynamic under Double Wishart
Model. Let Yt denote the log-price and the matrices R1 and
R2 describe the correlations between the Brownian of the
asset price process and those of the Wishart processes.

Proposition 1. $e log-price process Yt � log(St) under the
double Wishart volatility model is as follows:

dYt � r −
1
2
Tr c1,t + c2,t􏽨 􏽩􏼒 􏼓dt + Tr

���
c1,t

􏽰
dZ

c1
t +

���
c2,t

􏽰
dZ

c2
t􏽨 􏽩.

(34)

Proof. Let Yt � log(St), the asset dynamic is given as
follows:

dS(t)

S(t)
� rdt + Tr

���
c1,t

􏽰
dZ

c1
t +

���
c2,t

􏽰
dZ

c2
t􏽨 􏽩. (35)

By applying Ito’s formula on Yt (see Björk [16] and
Shreve [18]), we get

dYt � d log St( 􏼁 �
dSt

St

−
1
2

dSt( 􏼁
2

S
2
t

. (36)

Replacing the asset process (35) in the derivative
equation (36) of Yt,

dY(t) � rdt + Tr
���
c1,t

􏽰
dZ

c1
t +

���
c2,t

􏽰
dZ

c2
t􏽨 􏽩 −

1
2
Tr c1,t + c2,t􏽨 􏽩dt,

dYt � r −
1
2
Tr c1,t + c2,t􏽨 􏽩􏼒 􏼓dt + Tr

���
c1,t

􏽰
dZ

c1
t +

���
c2,t

􏽰
dZ

c2
t􏽨 􏽩.

(37)

(is can still be presented in the form as follows:

dY(t) � r −
1
2
Tr c1,t + c2,t􏽨 􏽩􏼒 􏼓dt + Tr

���
c1,t

􏽰
dW

c1
t R

T
1 + dB

c1
t

�������

I − R1R
T
1

􏽱

􏼒 􏼓􏼔

+
���
c2,t

􏽰
dW

c2
t R

T
2 + dB

c2
t

�������

I − R2R
T
2

􏽱

􏼒 􏼓􏼕, Y0 � y.

(38)

□
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3.2.1. Infinitesimal Generator under Double Wishart Model.
(e log-price process and Wishart affine processes, com-
bined with the corresponding pair of two correlated

Brownian motions, Z
c1 ,Y
s , Z

c1 ,c1
s and Z

c2 ,Y
s , Z

c2 ,c2
s , can be

presented in the form as in Benabid et al. [9] for easy
handling of the dynamics.

dYt � r −
1
2
Tr c1,t + c2,t􏽨 􏽩􏼒 􏼓dt + Tr

���
c1,t

􏽰
dZ

c1 ,Y
t +

���
c2,t

􏽰
dZ

c2 ,Y
t􏽨 􏽩

dTr c1,t􏼐 􏼑 � β1Tr Q
T
1 Q1􏼐 􏼑􏼐􏼐 􏼑 + 2Tr M1c1,t􏼐 􏼑dt + 2

�����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱

ρ1,tdZ
c1 ,Y
t +

������

I − ρ21,t

􏽱

dZ
c1
t􏼒 􏼓

dTr c2,t􏼐 􏼑 � β2Tr Q
T
2 Q2􏼐 􏼑􏼐􏼐 􏼑 + 2Tr M2c2,t􏼐 􏼑􏼑dt + 2

�����������

Tr Q
T
2 Q2c2,t􏼐 􏼑

􏽱

ρ2,tdZ
c2 ,Y
t +

������

I − ρ22,t

􏽱

dZ
c2
t􏼒 􏼓,

(39)

where

d<Z
c1 ,Y

, Z
c1 > t � ρ1,t �

Tr R
T
1 Q1c1,t􏼐 􏼑

�������
Tr c1,t􏼐 􏼑

􏽱 �����������

Tr Q
T
1 Q1c1,t􏼐 􏼑

􏽱 ,

d<Z
c2 ,Y

, Z
c2 > t � ρ2,t �

Tr R
T
2 Q2c2,t􏼐 􏼑

�������
Tr c2,t􏼐 􏼑

􏽱 �����������

Tr Q
T
2 Q2c2,t􏼐 􏼑

􏽱 .

(40)

Lemma 5. $e infinitesimal generator under the double
Wishart volatility model for Yt, c1,t, and c2,t is as follows:

LY,c1 ,c2
� r −

Tr c1 + c2􏼂 􏼃

2
􏼠 􏼡

z

zy
+
Tr c1 + c2􏼂 􏼃

2
z
2

zy
2

+ β1Tr Q
T
1 Q1􏼐 􏼑 + 2Tr M1c1( 􏼁􏼐 􏼑

z

zc1
+ 2Tr c1

z

zc1
Q

T
1 Q1

z

zc1
􏼠 􏼡

+ β2Tr Q
T
2 Q2􏼐 􏼑 + 2Tr M2c2( 􏼁􏼐 􏼑

z

zc2
+ 2Tr c2

z

zc2
Q

T
2 Q2

z

zc2
􏼠 􏼡

+ 2Tr c1R1Q1
z

zc1
􏼠 􏼡

z

zy
+ 2Tr c2R2Q2

z

zc2
􏼠 􏼡

z

zy
.

(41)

Proof. (e infinitesimal generator has nontrivial termwhich
arises from covariation d< c

ij

θ , Y> corresponding to the
coefficients of the term

z
2

zxθ;ijzy
�

z

zxθ;ij

z

zy
􏼠 􏼡, i, j � 1, . . . , n, θ � 1, 2. (42)

Let Cθ;t: �
���
cθ;t

√ be the square root matrix where

c
ij

θ;t � 􏽘
n

t�1
C

il
θ;tC

lj

θ;t � 􏽘
n

t�1
C

il
θ;tC

jl

θ;t. (43)

Since Cθ;t is symmetric, we determine the covariation
terms corresponding to z2/zxθ;ijzy coefficients as follows:

〈dc
ij

θ , Y〉 � Et 􏽘

n

i,k�1
C

il
θ;tdW

θ
lkQ

θ
kj + 􏽘

n

l,k�1
C

jl

θ;tdW
θ
lkQ

θ
ki

⎛⎝ ⎞⎠ 􏽘

n

l,k,h�1
C

lk
θ;tdW

θ
khR

θ
lh

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� 􏽘
n

l,k,h�1
C

il
θ;tQ

θ
kj + C

jl

θ;tQ
θ
ki􏼐 􏼑C

hl
θ;tR

θ
hkdt

� 􏽘
n

k,h�1
􏽘

n

l�1
C

il
θ;tC

hl
θ;t

⎛⎝ ⎞⎠Q
θ
kj + 􏽘

n

l�1
C

jl

θ;t
C

hl
θ;t

⎛⎝ ⎞⎠Q
θ
ki

⎡⎢⎢⎣ ⎤⎥⎥⎦R
θ
hkdt

� 􏽘
n

k,h�1
c

ih
θ;tQ

θ
kj + c

jh

θ;tQ
θ
ki􏼐 􏼑R

θ
hkdt.

(44)
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(is provides the corresponding coefficients of the term:

2Tr cθR
θ
Q

θ
Dθ􏼐 􏼑

z

zy
� 2 􏽘

n

i,j,k,h�1
D

ij

θ c
jh

θ R
θ
hkQ

θ
ki

z

zy
. (45)

(e notation when θ � 1, c1 � c1, R1 � R1, Q1 � Q1,

andD1 � z/zx
c1
ij while for θ � 2, c2 � c2, R2 � R2,

Q2 � Q2 andD2 � z/zx
c2
ij . □

3.3. $e Euler–Maruyama Discretization Scheme. (is sec-
tion basically deals with the discretization scheme of the Bi-
Wishart volatility model using Euler–Maruyama dis-
cretization technique.

(is is one of the best approximation methods to handle
sophisticated stochastic differential equations as in the study
by Ahdida and Alfonsi [6], Fadugba et al. [19], Dereich et al.
[20], Berkaoui et al. [21], and Mao [22]. It is a time discrete
approximation of an Ito process. Consider St as an Ito
process on t ∈ [t0, T] satisfying differential equation as
follows:

St � S0 + 􏽚
t

0
μ(t, s)ds + 􏽚

t

0
c(t, s)dWs, t≥ 0. (46)

For discretization t0 < t1 < t2 · · · < tN � T or on a regular
grid ti � iT/N, it is given as

􏽢Sti+1
� 􏽢Sti

+ μ 􏽢Sti
􏼐 􏼑

T

N
+ c 􏽢Sti

􏼐 􏼑 Wti+1
− Wti

􏼐 􏼑, 1≤ i≤N − 1,

(47)

and also considering a continuous case, we have
􏽢Sti+1

� 􏽢Sti
+ μ 􏽢Sti

􏼐 􏼑 ti+1 − ti( 􏼁 + c 􏽢Sti
􏼐 􏼑 Wti+1

− Wti
􏼐 􏼑, t ∈ ti, ti+1􏼂 􏼁.

(48)

One can observe that 􏽢S the Euler scheme depends on N

throughout the discretization grid, and it is similarly better
to denote it as 􏽢S

N.

3.4.$eCorrectedEuler–MaruyamaDiscretizationScheme for
Double Wishart Affine Processes. (is section discusses the
discretization techniques for the Bi-variate Wishart model.
(e log-price dynamic andWishart processes are discretized
using corrected Euler–Maruyama method. We notice that
the Euler scheme is not well defined; in fact, the Gaussian
increment may lead the scheme to negative values with some
positive probability, and the square root is then no long
defined. (erefore, this calls in the need to apply the cor-
rected Euler–Maruyama scheme to avoid negative values
(see Alfonsi [13] and Gauthier and Possamäı [23]).

(e asset dynamic is as follows:

dSt

St

� μdt + Tr
�
c

√
1,tdZ

c1
t +

�
c

√
2,tdZ

c2
t􏽨 􏽩, S0 � s, (49)

where the Wishart matrix processes are given as follows:

cj,t � cj,0 + 􏽚
t

0
Ωj + ηj(c, s)􏼐 􏼑ds + 􏽚

t

0

�
c

√
j,sdW

cj

s Qj + 􏽚
t

0
Q

T
j dW

cj

s􏼐 􏼑
T ���

cj,s

􏽰
for j � 1, 2, (50)

where Ωj � βjQjQ
T
j such that cj,0,Ωj ∈ S+

n (R) while
ηj ∈L(S+

n (R)) and Mj ∈Mn(R).
(en, discretize equations (50) and (37), by considering

a time horizon T and regular time grid tN
i � iT/N, for

i � 0, . . . , N.

􏽢cj,tN
i+1

� 􏽢cj,tN
i

+ Ωj + ηj 􏽢cj, t
N
i􏼐 􏼑􏼐 􏼑

T

N
+

����
􏽢c

+
j,tN

i

􏽱
W

cj

tN
i+1

− W
cj

tN
i

􏼒 􏼓Qj + Q
T
j W

cj

tN
i+1

− W
cj

tN
i

􏼒 􏼓
����
􏽢c

+
j,tN

i

􏽱
, for j � 1, 2, (51)

where 􏽢cj,tN
0

� cj,0 � cj. Now, we proceed to discretize the log-price dynamics as
follows:

􏽢Y
y

tN
i+1

� 􏽢Y
y

tN
i

+ μ −
1
2
Tr 􏽢c1,tN

i
+ 􏽢c2,tN

i
􏼔 􏼕􏼒 􏼓

T

N
+ Tr

����
􏽢c

+
1,tN

i

􏽱
Z

c1
tN
i+1

− Z
c1
tN
i

􏼒 􏼓 +
����
􏽢c

+
2,tN

i

􏽱
Z

c2
tN
i+1

− Z
c2
tN
i

􏼒 􏼓􏼔 􏼕. (52)

We now discretize the Brownian motions in equation
(52) by considering the correlation structures in (30), that is,
Z

cj

t � W
cj

t RT
j + B

cj

t

�������
I − RjR

T
j

􏽱
, for, j � 1, 2:
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Z
cj

tN
i+1

− Z
cj

tN
i

� W
cj

tN
i+1

R
T
j + B

cj

tN
i+1

�������

I − RjR
T
j

􏽱

− W
cj

tN
i

R
T
j + B

cj

tN
i

�������

I − RjR
T
j

􏽱

􏼒 􏼓

� W
cj

tN
i+1

− W
cj

tN
i

􏼒 􏼓R
T
j + B

cj

tN
i+1

− B
cj

tN
i

􏼒 􏼓

�������

I − RjR
T
j

􏽱

.

(53)

(ese Brownian matrices Zcj and Bcj follow normal
distribution, that is,

W
cj

tN
i+1

− W
cj

tN
i

∼ N 0, t
N
i+1 − t

N
i􏼐 􏼑I􏼐 􏼑,

W
cj

tN
i+1

− W
cj

tN
i

∼
�������

t
N
i+1 − t

N
i

􏽱

N(0, I),
(54)

and

B
cj

tN
i+1

− B
cj

tN
i

∼
�������

t
N
i+1 − t

N
i

􏽱

N(0, I). (55)

Hence, simplifying the computation, we substitute
equations (54) and (55) into equation (54)

Z
cj

tN
i+1

− Z
cj

tN
i

∼ R
T
j +

�������

I − RjR
T
j

􏽱

􏼒 􏼓

�������

t
N
i+1 − t

N
i

􏽱

N(0, I). (56)

Equation (56) is reduced in the form as follows:

Z
cj

tN
i+1

− Z
cj

tN
i

∼ R
T
j +

�������

I − RjR
T
j

􏽱

􏼒 􏼓

��
T

N

􏽲

N(0, I). (57)

Let the log-price dynamics Yt � log(St) in equation (52)
be 􏽢YtN

i+1
� log(􏽢StN

i+1
) and log(􏽢StN

i
) as follows:

log 􏽢StN
i+1

􏼒 􏼓 � log 􏽢StN
i

􏼒 􏼓 + μ −
1
2
Tr 􏽢c1,tN

i
+ 􏽢c2,tN
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i

􏽱
Z

c2
tN
i+1

− Z
c2
tN
i

􏼒 􏼓􏼔 􏼕. (58)

(is log-price expression can be represented in the form
as follows:

log 􏽢StN
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􏼒 􏼓 � log 􏽢StN
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(59)

(e increment ξk,i1≤k≤β allows to simulate

Tr[􏽒
tN
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i

�����
c1(s)

􏽰
dW

c1
s RT

1 ], and for other terms, the standard
Euler scheme is selected, that is,
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(60)

We observe that the integral term in equation (59) needs
to be simplified as follows:
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(61)
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where the Gaussian vector ζ1,i ∼ N(0, I) and the same for
the second term are as follows:

􏽚
tN
i+1

tN
i

�����

c
+
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􏽱
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��
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+
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􏽱

ζ2,i, (62)

where ζ2,i ∼ N(0, I), and then we can substitute equations
(61) and (62) in equation (59) as follows:
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(63)

Finally, we obtain the Euler–Maruyama discretization
scheme for the double Wishart diffusion processes as
follows:
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i
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􏽲
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�����������������

Tr 􏽢c
+
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i
I − R2R

T
2􏼐 􏼑􏼒 􏼓

􏽲

ζ2,i􏼢 􏼣.

(64)

4. Numerical Illustrations

(is section deals with numerical examples to examine
the effects of volatility and other model parameters on the
log-asset returns under the double Wishart volatility
model.

4.1. $e Log-Asset Returns under Double Wishart Volatility
Model. (e volatility specification under the doubleWishart
volatility model makes it mathematically flexible, to influ-
ence the asset return behavior. We quote market data drawn
fromQQQ (a fund by Invesco that tracks the performance of
the stocks listed under the NASDAQ Index) options, April
2020, which has been used in Naryongo et al. [17]. We take
the estimated parameter values from the market data, the
variance matrices c1 and c2, with volatility matrices Q1 and
Q2 are considered since they are very necessary parameters
in a stochastic volatility model.

c1,0 �
0.00008 0

0 0.000095
􏼠 􏼡,

c2,0 �
0.00012 0

0 0.0001
􏼠 􏼡,

Q1 �
0.10 0

0 0.23
􏼠 􏼡,

Q2 �
0.20 0

0 0.25
􏼠 􏼡,

(65)

with strike price K � 189 and interest rate r � 0.05.
Take the correlation values of

R1 �
− 0.25 0.1

− 0.35 0.3
􏼠 􏼡,

R2 �
− 0.5 − 0.60

0.18 − 0.45
􏼠 􏼡.

(66)

International Journal of Mathematics and Mathematical Sciences 11



Figure 1 demonstrates the effect of implied volatilities
and correlation matrices on the log-asset returns under the
double Wishart model. Given the parameter values, we
observe that the log-asset returns under the double Wishart
model exhibit interesting behaviors. (is depends also on
the choice of the model parameters, such as β1 � 4, β2 � 3,
and the number of paths N � 500. (is example proves that
the double Wishart volatility model has greater flexibility.
(e log-returns under the double Wishart model are more
volatile towards the end of the trading period. (e asset
prices increase from the higher deviations with the number
of paths under trading from the values of volatility matrices.
It leads to higher returns in 3-month asset trading period
under the double Wishart process.

Figure 2 shows that a change in correlation matrices
affects the behavior of the asset returns, that is, when

R1 �
0.0 0.85

− 0.05 0.75
􏼠 􏼡,

R2 �
0.20 0.0

0.01 − 0.20
􏼠 􏼡,

(67)

this provides different stock price behavior patterns due to
flexibility in the model parameters.(is can help investors to
study and predict the behavior of stock price over time. (e
parameters β1 � 4 and β2 � 3 are maintained. (e stock
price trend for one year is under double Wishart model,
when N � 500; the asset price increases with time from the
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Figure 1: (e log-asset return behaviors under the double Wishart volatility model at 3 months.
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Figure 2: (e log-asset returns trend under the double Wishart model when N � 500 at one year.
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implied volatility as it approaches annual trading period
from the volatility matrices.

Figure 3 illustrates the effect of correlation matrices and
N � 500 on the log-asset returns trend under the double
Wishart model while considering parameters
β1 � 4 and β2 � 3, while taking the values of

R1 �
0.0 0.05

0.05 0.6
􏼠 􏼡,

R2 �
0.8 0.5

0.45 0.65
􏼠 􏼡.

(68)

(e model shows interesting stock price trend predic-
tions.We note that the model parameters influence the stock
prices or log-returns greatly due to mathematical flexibility
of the model. We can observe that there is higher asset
returns at the end of the trading period.

5. Conclusion

(e multifactor Heston model with two dependence ma-
trices, that is, the double Wishart stochastic volatility model
is flexible enough to describe the market prices. (is solves
the problem of pricing financial derivatives or assets in short
or long maturities. (e effect of the model parameter
specification influences the behavior of the asset returns over
time. (is provides a theoretical framework for investors to
study the market behavior over time. (e numerical illus-
trations show the effect of model parameters on the asset
return behavior under double Wishart model. We recom-
mend future work on the exact simulation method and
higher-order discretization techniques for the double
Wishart volatility model.

Appendix

Verification of Brownian Motions in Lemma 3

(e following processes X
c1
t , X

c2
t , ξt, and ηt are Brownian

motions.
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(A.1)

Similarly, for Brownian motion X
c2
t , its proof can be

obtained through the same procedures as above. □
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Figure 3: (e log-returns behavior under the double Wishart model at 3 months with different correlation matrices.
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(en, the authors show that ξt is a Brownian motion as
follows.

Proof.
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(A.2)

Similarly, the same procedures can be followed to show
that ηt is a Brownian motion. □
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