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The purpose of this paper is to study the convergence analysis of an intermixed algorithm for finding the common element of the
set of solutions of split monotone variational inclusion problem (SMIV) and the set of a finite family of variational inequality
problems. Under the suitable assumption, a strong convergence theorem has been proved in the framework of a real Hilbert space.
In addition, by using our result, we obtain some additional results involving split convex minimization problems (SCMPs) and

split feasibility problems (SFPs). Also, we give some numerical examples for supporting our main theorem.

1. Introduction

Let H, and H, be real Hilbert spaces whose inner product
and norm are denoted by {-,-) and || - ||, respectively, and let
C, Q be nonempty closed convex subsets of H, and H,,
respectively. For a mapping S: C — C, we denoted by F (S)
the set of fixed points of S (i.e., F(S) = {x € C: Sx = x}). Let
A: C — H be a nonlinear mapping. The variational in-
equality problem (VIP) is to find x* € C such that

(Ax*,y-x"y=0, VyeC, (1)

and the solution set of problem (1) is denoted by VI (C, A). It
is known that the variational inequality, as a strong and great
tool, has already been investigated for an extensive class of
optimization problems in economics and equilibrium prob-
lems arising in physics and many other branches of pure and
applied sciences. Recall that a mapping A: C — C is said to
be a-inverse strongly monotone if there exists & > 0 such that

(Ax - Ay,x - y) 2allAx - Ayl’, Vx,yeC.  (2)

A multivalued mapping M: H, — 2H1 is called
monotone if for all x,y € H,, {x — y,u—v) >0, for any
ueMx and veMy. A monotone mapping
M: H, — 2" is maximal if the graph G(M) for M is
not properly contained in the graph of any other
monotone mapping. It is generally known that M is
maximal if and only if for (x,u) €e H; x H,{x - y,u—
vy>0 for all (y,v) e G(M) implies u e Mx. Let
M: H;, — 21 be a multivalued maximal monotone
mapping. The resolvent mapping J': H, — H, asso-
ciated with M is defined by

TM(x) = (I+AM) ' (x), VxeH,1>0, (3)

where I stands for the identity operator on H,. We note that
for all A > 0, the resolvent 3 is single-valued, nonexpansive,
and firmly nonexpansive.
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In 2011, Moudafi [1] introduced the following split
monotone variational inclusion problem (SMVI):

findx" € H, suchthatf € A, (x") + M, (x") (4)

and such that y* = Tx" € H, solves6 € A, (y") + M, (y"),
(5)

where 0 is the zero vector in H, and H,, M;: H; — 2H1 and
M,: H, — 2> are multivalued mappings on H, and H,,
A:H, — H, and A,: H, — H, are two given single-
valued mappings, and T: H, — H, is a bounded linear
operator with adjoint T* of T. We note that if (4) and (5) are
considered separately, we have that (4) is a variational inclusion
problem with its solution set VI(H,,A,,M;) and (5) is a
variational inclusion problem with its solution set
VI(H,, A,, M,). We denoted the set of all solutions of (SMVT)
by Q = {x* € VI(H,, A, M,): Tx* € VI(H,, A,, M,)}.

It is worth noticing that by taking M, = Noand M, =
N normal cones to closed convex sets C and Q, then (SMVI)
(4) and (5) reduce to the split variational inequality problem
(SVIP) that was introduced by Censor et at. [2]. In [1], they
mentioned that (SMVI) (4) and (5) contain many special
cases, such as split minimization problem (SMP), split
minimax problem (SMMP), and split equilibrium problem
(SEP). Some related works can be found in [1, 3-10].

For solving (SMVI) (4) and (5), Modafi [1] proposed the
following algorithm.

Algorithm 1. Let 1>0, x, € H,, and the sequence {x,} be

generated by
X = J1 (L=Af)(x, +yT* (1Y (I = Ag) - I)Tx,), neN,

(6)

{ Xp+l = (1 _ﬂn)xn +ﬁan [‘xnf (yn) + (1 —k- an)xn + kan]’ nz0,

where y € (1,1/L) with L being the spectral radius of the
operator T*T.

He obtained the following weak convergence theorem
for algorithm (6).

Theorem 1 (see [1]). Let H,, H, be real Hilbert spaces. Let
T: H, — H, be a bounded linear operator with adjoint T*.
Fori=1,2, let A;: H; — H; be a;-inverse strongly mono-
tone with a = min{a,, a,} and let M;: H; — 2™ be two
maximal monotone operators. Then, the sequence generated
by (6) converges weakly to an element x* € Q provided that
Q#3, A e (0,2a), and y € (1,1/L) with L being the spectral
radius of the operator T*T.

Since then, because of a lot of applications of (SMVI), it
receives much attention from many authors. They presented
many approximation methods for solving (SMVI) (4) and
(5). Also the iterative methods for solving (SMVIP) (4) and
(5) and fixed-point problems of some nonlinear mappings
have been investigated (see [11-19]).

On the other hand, Yao et al. [20] presented an inter-
mixed Algorithm 1.3 for two strict pseudo-contractions in
real Hilbert spaces. They also showed that the suggested
algorithms converge strongly to the fixed points of two strict
pseudo-contractions, independently. As a special case, they
can find the common fixed points of two strict pseudo-
contractions in Hilbert spaces (i.e., a mapping S: C — Cis
said to be k-strictly pseudo-contractive if there exists a
constant k € [0,1) such that [Sx— SyII2 < x- y||2 +k
I(I-8)x—-(I-9),0.3cmVx,y € C).

Algorithm 2. For arbitrarily given x,, y, € C, let the se-
quences {x,} and {y,} be generated iteratively by

(7)

Y1 = (1 _ﬂn)yn+ﬁnPC[“nf(xn)+(l _k_“n)yn+ksyn]’ nz0,

where {a,,} and {f8,,} are two sequences of the real number in
(0,1), T,S8: C—> C are A-strictly pseudo-contractions,
f: C — H is a p,-contraction, g: C — H is a p,-con-
traction, and k € (0,1 — 1) is a constant.

Under some control conditions, they proved that the
sequence {x,} converges strongly to Py f(y*) and {y,}
converges strongly to Pp) f(x"), respectively, where
x* € F(T), y* € F(S), and Ppp and Pr (s are the metric
projection of H onto F (T') and F (S), respectively. After that,
many authors have developed and used this algorithm to
solve the fixed-point problems of many nonlinear operators
in real Hilbert spaces (see for example [21-27]). Question:
can we prove the strong convergence theorem of two se-
quences of split monotone variational inclusion problems
and fixed-point problems of nonlinear mappings in real
Hilbert spaces?

The purpose of this paper is to modify an intermixed
algorithm to answer the question above and prove a strong
convergence theorem of two sequences for finding a com-
mon element of the set of solutions of (SMVI) (4) and (5)
and the set of solutions of a finite family of variational
inequality problems in real Hilbert spaces. Furthermore, by
applying our main result, we obtain some additional results
involving split convex minimization problems (SCMPs) and
split feasibility problems (SFPs). Finally, we give some
numerical examples for supporting our main theorem.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed
convex subset of H. We denote the strong convergence of
{x,} to x and the weak convergence of {x,} to x by notations
“x, —x as n— 00" and “x,—x as n-— 00,
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respectively. For each x,y,z € H and a,f,y € [0,1] with
a+f+y=1, we have

e + yI” < llxl® + 2¢y, x + ),

(8)

lox + By + yzll* = allxll* + Iyl + plxl’ - aBllx — ylI* - ayllx - zI* - Bylly — zII°.

Definition 1. Let H be a real Hilbert space and C be a closed
convex subset of H. Let S: C — C be a mapping. Then, S is
said to be

(1) Monotone, if (Sx —Sy,x - y) 20,Vx,y € H

(2) Firmly nonexpansive, if (Sx—Sy,x—y)>|Sx—
SyIIZ,Vx,y €eH

(3) Lipschitz continuous, if there exists a constant L >0
such that [|Sx — Syl < Lllx — yl,Vx,y € H

(4) Nonexpansive, if= [|Sx - Sy| <[x - yl,Vx,y € H

It is well known that if S is a-inverse strongly monotone,
then it is 1/a-Lipschitz continuous and every nonexpansive
mapping S is 1-Lipschitz continuous. We note that if
S: H — H is a nonexpansive mapping, then it satisfies the
following inequality (see Theorem 3 in [28] and Theorem 1
in [29]):

Sy =8x, I -8)x—-(I-98)y) S%II(I -8)x —(I-9)yl,

Vx,y € H.

(9)

Particularly, for every x € H and y € F(S), we have

1 2
(y=Sx, (I-9)x) SEH(I - 8)x|°. (10)
For every x € H, there is a unique nearest point P-x in C
such that

||x—PCx||£||x—y||, Vy e C. (11)

Such an operator P is called the metric projection of H
onto C.

Lemma 1 (see [30]). For a given z € H and u € C,

u=Pze{u-z,v-uy>0, VveC (12)

Furthermore, P, is a firmly nonexpansive mapping of H
onto C and satisfies

[Pex - PCyH2 <(Pcx—Pcy,x-y), Vx,yeH. (13)

Moreover, we also have the following lemma.

Lemma 2 (see [31]). Let H be a real Hilbert space, let C be a
nonempty closed convex subset of H, and let A be a mapping
of C into H. Let u € C. Then, for A>0,

ueVI(C,A)ou=P-(I1-1A)u, (14)

where P is the metric projection of H onto C.

Lemma 3. Let C be a nonempty closed and convex subset of a
real Hilbert space H. For every i=1,2,...,N, let
A;: C— H be the a;-inverse strongly monotone with
a=min_,, o} If "NVI(C, A) + D, then

N
N
v1<c, Z a,.A,.> =nVvI (C, A), (15)
i1 =

where 0<a,<1 for all i=1,2,...,N and YV a;=1.
Moreover, I =AY .1, a;A; is a nonexpansive mapping for all
A € (0,2a).

Proof. B Lemma 43 of [32], we have that
VI(C, YL, a;A) = NY,VI(C, A;). Let A€ (0,2@) and let
x, y € C. As the same ar%’ument as in the proof of Lemma 8
in [16], we have I -1 );7, a;A; as nonexpansive. O

Lemma 4 (see [33]). Let H be a real Hilbert space,
A: H— H be a single-valued nonlinear mapping, and
M: H — 21 be a set-valued mapping. Then, a point u € H
is a solution of variational inclusion problem if and only if
u= ]ﬂw (I -A2A)u,VA>0, ie.,

VI(H, A M) = F(J)' (I-14)), V¥A>0. (16)

Furthermore, if A is a-inverse strongly monotone and
A€ (0,2«],then VI (H, A, M) is a closed convex subset of H.

Lemma 5 (see [33]). fe resolvent operator ]fl associated with
M is single-valued, nonexpansive, and I-inverse strongly
monotone for all A > 0.

The following two lemmas are the particular case of
Lemmas 7 and 8 in [16].

Lemma 6 (see [16]). For everyi = 1,2, let H; be real Hilbert
spaces, let M; H; — 2Hi be a multivalued maximal
monotone mapping, and let A;: H; — H,; be an a;-inverse
strongly monotone mapping. Let T: H, — H, be a bounded
linear operator with adjoint T* of T, and let G: H, —> H, be
a m%ping defined by G(x)= Ifl (I-MA) (x—yT"
(- ])tz2 (I-1A,)Tx), for all X € H,. Then, |Gx-
P <l =yl =y (L= DI -} (1= L A)Tx — (1
]Az2 (I- /\2A2))Ty||2,for all x, y € H,, where L is the spectral
radius of the operator T*T, A, € (0,2a,), A, € (0,2a,), and
y>0. Furthermore, if 0<y <1/L, then G is a nonexpansive

mapping.
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Lemma 7 (see [16]). Let H, and H, be Hilbert spaces. For
i=12 let M;: H,— 2% be a multivalued maximal
monotone mapping and let A;: H; — H; be an a;-inverse
strongly monotone mapping. Let T: H, — H, be a bounded
linear operator with adjoint T*. Assume that Q + ¢. Then,
x* € Qif and only if x* = G(x*), where G: H, — H, is a
mapping defined by

Gl =y (1= A1A1)<x - yT*<I — (I - A2A2)>Tx>,
(17)

for all  xeH,, A €(0,2a),4, € (0,2t;), and
0 <y < 1/L, where L is the spectral radius of the operator T*T.

Next, we give an example to support Lemma 7.

Example 1. Let R beaset of real numberand H, = H, = R?,
and let (-,-): R? x R> — R be inner product defined by
(6, y) =x-y =%y, +xy, for all x= (x;,x,) € R* and
vy = (¥, y,) € R? and the usual norm | - |: R* — R given
by lxll = x2+x2, for all x=(x,x,) € R%L  Let
T: H, — H, be defined by Tx = (2x,,2x,) for all x =
(x,x,) €R* and T*:R?*— R?> be defined by
T*z = (2z,,2z,) for all z = (z,z,) € R*. Let M,,M,:
R* — 2R be defined by M;x={(3x,-53x,—
5)and M,x = {(x,/3 - 2,x, /3—2)}, respectively, for all
x = (x,,x,) € R%. Let the mapping A, A,: R* — R? be
defined by A;x = ((x; —4)/2, (x, —4)/2)and A,x = ((x,—
2)/3, (x, —2)/3), respectively, for all x = (x;,x,) € R2.
Then, (2,2) is a fixed point of G. That is, (2,2) € F(G).

Proof. It is obvious to see that Q = {(2,2)}, A, is 2-inverse
strongly monotone, and A, is 3-inverse strongly monotone.
Choose A, = 1/3. Since M,x = {(3x, — 5,3x, — 5)} and the

resolvent  of Ml,]flx =(T+AM) 'x  for all
x = (x;,x,) € R?, we obtain that
5
]flx :§+g, forallx = (x,,x,) € R%. (18)

Choose A, = 1. Since Myx = {(x1/3-2,x,/3-2)} and
the resolvent of M,,J, *x= (I +AM,M,) 'x for all
x = (x,,x,) € R? we obtain that

3
x=-4 forallx = (x,,x,) € R%. (19)

Since the spectral radius of the operator T*T is 4, we

choose y = 0.1. Then, from (18) and (19), we get that

Gx) =™ (1 - %Al)(x — 01T (1= 12 (1 - 4,))Tx),

(20)

for all x = (x,,x,) € R?. Then, by Lemma 7, we have that
(2,2) € F(G). O

Lemma 8 (see [34]). Let {s,} be a sequence of nonnegative
real numbers satisfying s, < (1 —a,)s, +0,,Vn>0 where
{a,} is a sequence in (0,1) and {8,} is a sequence in R such
that

1) 2220 oy = 0.
(2) limsup, . «,/8,<0 or
lim s, =0.

Yoo ld,l<oco.  Then

3. Main Results

In this section, we introduce an iterative algorithm of two
sequences which depend on each other by using the intermixed
method. Then, we prove a strong convergence theorem for
solving two split monotone variational inclusion problems and
a finite family of variational inequality problems.

Theorem 2. Let H, and H, be Hilbert spaces, and let C be a
nonempty closed convex subset of H,. Let T: H; — H, be a
bounded linear operator, and let f,g: H — H, be

P> pg-contraction mappings with p = max{pf,pg}. For
i=1,2, let M*,M): H; — 21 be multivalued maximal
monotone mappings and let A¥,Al: H,— H; be
af, o] —inverse strongly monotone mappings, respectively. For
i=1,2,...,N, let B5,B/: H — H, be f},B—inverse
strongly ~ monotone  mappings, respectively, Bx =
min._,, N{Bi} and /_3)/ =min_y, n{B}. Let GG

H,— H, be defined by G x-= ]ﬁvf‘ (I-ATA7) (x—
YT (1= T3 (1= M5A5)) Tx), Vx € Hy, and Gy = -

* M;

MAD (y =T (I - Ty (I-MA))Ty), ¥ y € Hy, respec-
tively, where \Y € (0,2a2),1] € (0,2a)), and 0<y*,y? <1/L
with L being a spectral radius of T*T. Assume that F* =
AN (NN VIC,B)+D and F =@ n (NN, VI(C,
B/)#@. Let {x,} and {y,} be sequences generated by
xy, ¥, € H, and

N
Xne1 = 6nxn + GnPC<I - /’lz Zaz)'ch>xn + qn(anf (yn) + (1 - (xn)éxxn)’
i=1

i=1

N
Yue1 = 6nyn+0nPC<I_[’l£z’Zazthy

(21)

>yn + (o9 (x,) + (1= ,)G"y,),
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for all n>1 where
S, +0,+n,=1, {aj,a3,..., ayh{

holds:

(1) Zn ltun<OOZn lﬂn<00

O<a<ur<2B,, 0<b<yn<2ﬂy for some a,b € R.

2) Y2, a, = 00, lim,__, e, = 0.

(3) Zn laz _Zanal =L

(4) 0<a<é,,0,,1,<b<l, for all neN, for some

a,b>0.

I&*

{0u} {ou} {11}, {@a}< [0, 1]

al, ag ..... ak} < (0,1),

and {u}{uh} € (0,00). Assume the following condition

= ”]iv;lx (I- )L’fA’f)(xn -y'T" (I - ]i\;ﬁ; (I- A;A;))Txn) -x",

with (5) 2221 |8n+1 - (Snl’ 2221 |Un+1 - Un')
and Y0 |a,,, —a,l<oo. Then, {x,} converges
strongly to X = Pg- f (¥) and {y,} converges strongly
toy = Pgyg(%).

and

Proof. We divided the proof into five steps. O

Step 1. We will show that {x,} and {y,} are bounded. Let
x* € F* and y* € F”. Then, from Lemma 7 and Lemma 6,
we get

(22)
From (21), Lemma 3, and (22), we have
N —~
|%1 = x| = 6%, + 0, Pc <1 -y afo>xn + (@ f () + (1= @,)G x,) = x7|,
i=1
N —~
< 8,,,”9(7” - x*“ +0, PC<I - .”z Z az?cB?C>xn - X* +1, ’(“nf(yn) + (1 - “n)Gxxn) -x
i=1
<4 “x ||+0 ||x —x*||+11n an(f(yn)—x*)+(1—(xn)(C~;xxn—x*) o)
<(1-n, [n”f(yn_ +(1-a *]
S(l n)"xn_'x ||+71n[an”f(yn - f(y*)_x* +(1_(xn)||xn_'x* ]
S(1 n)||xn_x*||+’1n[“npf||yn_ n“f(y*)_ +(1_“n)”xn_x* ]
S(1 n)"x _x*||+’1n np"yn_ "f (1_“n)||xn_x*
= (1= @) = %" + mutupl|ya = 7| + e ||f(y )= x|
Similarly, from definition of y,, we have
1Y = ¥ < (0= @)y = ¥ + ttacap| 0 = 37| + a0l g (7) = 57| (24)

Hence, from (23) and (24), we obtain

||xn+1 - x*” +||yn+1 - y*“ < (1 - nn(xn)("xn
.0, f (07) =2 +g (")~ y
= (1 - (1 _p)r]n‘xn)(“xn - X*“ +||yn - y* ") + ﬂn“n(”f(y ) -

By induction, we have

=&l =y )+ e = 2] = )
L (25)
x| +la(x*) - »°])
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for every n € N. Thus, {x,} and {y,} are bounded. v, = Po(I - ) Zf\il a’BNy,, z, = a,f (y,) + (1 - a,)G x,,
) ) and w, = a,f(x,) + (1-a)G"y,, for all n>1. From

Step. 2. We will show that lim, lx, —x)=  [emma 6, we have

X

hmn—»oo”)/nﬂ - yn” =0. Put U, = PC (I - .“ﬁ ZII\:TI az B;‘)xn’

nzn - zn—l" = |Kanf (yn) + (1 - “n)éxxn) _(“n—lf(ynfl) + (1 - “n—l)éxxn—l)”’
< (xn"f(yn) - f(yn—l)“ + (1 - (xn)”éxxn - Gxxnﬂ" +|(Xn - “n—ll”f(yn—l)" +|an - “rkll”éxxn—l" (27)
< Ocnpf“yn - yn—l" + (1 - ‘xn)”xn - xn—l” +|“n 0 Hlf(yn—l)" +l(xn | Hléxxn—l”

< anp"yn - yn—l” + (1 - ‘xn)"xn - xn—l” +|“n - “n—1|(”f(yn—1)" +lléxxn—1")'

By applying Lemma 3, we get that

>

"”n - ”n—lu =

N N
P¢ (1 ) ai‘B?)xn - Pc <1 ), a?‘B?)xn_l

i=1 i=1

N N
PC<I =ty Z“?B;‘>xn1 - PC<I = Uyt Za;ch>xn1

i=1 i=1

a;|| B x,|- (28)

<||x, = x| +
N
<, = x| ey =]
ps

From the definition of {x,}, (27), and (28), we have

o =l =180+ 0ty + 120) ~ (B + Gty + a7 )l
<8,|x, - xn—lu +18,, = 8[| % || + 0, |u, — “n—l“ +|o, - Un—ll””n—l" + |2 — Zn—1|| 10 = Mt |20 H
e o [ty | SR e

Lol = el (= )5~ 5| = (1 e IG5 D] = ol
= (1= 7,0 [|% = X | + 10000y = Yor | + 00l = 1] i a; | B x|

10 = sl nes | 10 = s et |+ 1kt = s (1 ) +1G0a ) [ = s 21|

By the same argument as in (27) and (29), we also have
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nwn - wn—l” < “np"xn - xn—l" + (1 - “n)”yn - yn—l" +|(xn - “n—l|("g('xn—l)" +“nyn—1")' (30)

N
”yn+1 - yn“ < (1 - ﬂnan)"yn - yn—l" + ﬂn(an”xn - xn—l" + 0n|[’l£ - AMZ—II Z a?/IIBg/yn—ll| (31)
i=1

+|8n - 6n—1|“yn—1" +l0n - 0n—1|||vn—1|| + ’/Inl(xn - ‘xn—ll("g('xn—l)“ +||nyn—1") +|’7n - r]n—ll"wn—l"'

From (29) and (31), we obtain that

“xn+l - xn” +|lyn+1 - yn” < (1 - (1 _P)r]nan)(llxn - xn—l" +||yn - yn—l")

N N
+ Unl#z - nuilc—l| <zaf“3fxn1“ + Z azy"Bzyynl”) + |6n - 8n—1”(||xn—1|l +'|yn71||) +l0n - O‘n71|(“un71" +||vn—1 ||)

i=1 i=1

+ qnllxn - an—ll("f (ynfl)" +||g (xn—l)“ +lléx'xn—1“ +||nyn—l||) +|T1n - r/n—]'(llzn—lu +||wn—1||)
N N

< (1 - (1 _p)a‘xn)(”xn - xn—l" +“yn - ,'an1||) + b|[4i - ‘u;_1| <Zaf||3fxn1|l + Zaf}"Bz;‘}ynl”)
i=1 i=1

10, = Sl (ot s )+l = s (Bt + s )

+blot, = a1 | (L ) 19 Con DN HIG 0 | 1G7 pa]) + 110 = s (| + s ])-
(32)

From (32), conditions (1), (2), and (5), and Lemma 8, Step 3. We  show  that lim, |z, —Pc(I - p;
we obtain that zfil a’B)z,|l = lim, .z, - zenll =0. From (21), we

lim,, o ||%1 = %] = 0, (33) have that

limn—»oo“ynﬂ - yn“ =0. (34)

2
2_

>

*
"'xn+1 —-X

N
8n(xn_x*) +0n<PC<1_#zZafB?>xn_x*> +11n(zn_x*)

i=1
N N

Po( 1-1 Y alBY Jx, - 5= Po( T-ul Y alB; ),
i=1

i=1

N
xn_PC<I_uuﬁzaz?ch>xn
i=1
N
x, - Pc I—‘uleafo X,

2

<8, |x, - x" ||2 +o0, -4,0,

2

& (f (7~ Gx,) +(Gx, - )

2
- 6n0n

< (l_rln)"xn_x* + 1,

2

16T 20, () 2y

2
- 8nan

< (1 - r]n)"xn -x"
i=1

2
®

+ znnan"f(yn) - Gxx”" "Z” X0

N
Xn — PC<I _#zza?B?>xn

i=1

< ||x,, - x*"2 -4,0,
(35)

2

*

’ + zﬂnan”f(yn) - C~;xxn""'zn - x*”,

] + zﬂn“n"f(yn) - éxxn" ”Zn - X* "

)
8,0, < ||xn -x || —||xn+1 -x

N
Xn _PC<I _.“Zza?Blj'c>xn

i=1

(36)

<= gl [ - 2+ -
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Then, we have

N
xn_PC<I_#zza;CBf>xn

i=1

— 0 asn— o00. (37)

Observe that

i=1

N
z, - PC<I — i Za;‘Bj‘>zn

< ”Zn - xn” +

N

X, — PC<I —yZZafo)xn
N N

Po| T-u; Y aiBf |x,—Pc| - ) aiBf |z,
in1 in1

From (33) and (37), we have

||zn - xn" —> 0 asn — oo. (39)

By the same argument as above, we also have that

nwn - xn” — 0 asn — oo. (40)

Note that

i=1

+ bl
(41)
N
< ||zn - xn” +|x, - PC<I -t Z afo)xn +||xn - zn"
i=1
N
= ann - xn” +|x, - PC<I - Z afo)xn ,
i=1
By (37) and (39), we get that Consider
N - S| Xns1 — Xy n~ “nfl 44
z, —PC<I—u,’§ZafB;‘>zn —0 asn—oco. (42) lene =20l < s = 0] e =2 )
i-1 By (33) and (39), we get that
By the same argument as (41), we also obtain ||xn+1 - zn” — 0 asn— oo. (45)
N
w, - PC<I - Z af’Bf’)wn — 0 asn—co. (43) However,
i=1
6w = G| < e = ] +xi1 = 2l +2 = G
= "xn - xn+1|| +||xn+1 - Zn" +Ilanf (yn) + (1 - ‘Xn)éx'xn - éx'xn” (46)
= "xn — Xn+l “ +||xn+1 - Zn" + ‘Xn”f(yn) - Gxxn"’
It follows from (33) and (45) that Applying the same method as (48), we also have
||xn - Gxxn“ — 0 asn— 0. (47) ||wn - Gywn” — 0 asn — oo. (50)
Consider
Iz, = G'z,|| < |20 — .|| + | — G x| +]|G %, = G2, Step 4. We  will show that limsup, . {f

< 2||zn - x,,“ +||xn - Gxxn”.
(48)
From (39) and (47), we obtain

“zn - zen" — 0 asn— oo (49)

() -%,z,-X)y<0andlimsup, , {g(X)-7,z,-¥) <0,

where X = Pg«f(¥) and § = Py, f (X). First, we take a

subsequence {znk} of {z,} such that

limsup, oo {f (¥) - X2, - %) =lim__(f(¥) - %z, —X).
(51)
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g € F =0"n(n _IVI(C BY)). Assume that g, ¢ Q. By

Since {x,} is bounded, there exists a subsequence x,, of
Lemma 7, we get that g, #G" q,. Applying Opial’s condition

{x,} such that X, —q; as k — co. From (39), we get that

2, —q- Next, we need to  show  that  and (49), we get that
=X
o Zn, — 1 oo Zy -G ql”’
=X =X =X
im inflz,, -Gz, w~ G (52)
Zp, 41 ”

Assume that g, ¢ NY,VI(C, BY). Then, from Lemma 3
and Lemma 2, we have g, ¢ F(Po(I — Zl 1a;B7)). From
Opial’s condition and (42), we obtain

This is a contradiction. Thus, g, € QF.

N
:, —PC<1 -4, zafB:‘)ql

] < i

N N
< liminfllz, - PC<I ~ Zafo) + l1m1nf PC<I 7 Za B; > - PC<I ~ thy, Zafo)ql
—® i=1 i=1 i=1
Zy = ql"
(53)
This is a contradiction. Thus, g, € ﬂfi VI(C, B), and By the same method as (55), we also obtain that
S0, . o~ —

limsup{g(X) - ¥,z, — ) <0. (56)

N
g, € F =0"n <[11 VI(C, Bf‘)) (54)

However, z, —q,. From (54) and Lemma 1, we can
derive that

n—=~oo

Step 5. Finally, we show that the sequences {x,} and {y,}
converges strongly to X = Pg« f () and y = Pgy f (X), re-

spectively. From the definition of z,, we have

z,— Xy =lim_ , {(f(y)-X%, Z, — Xy,

=<f-
<0.

limsup{f (¥) - X,

n—~oo

X,q,— %)

(55)

”Zn - 32"2 = <‘xn (f (yn) - %) + (1 - ‘xn)(axxn - ;C)’Zn - 35>’

=a,{f(y,) - %z, - %) +(1-a,){G x, - %z, - X)
<a,{f (7))~ F P2y~ + 0, (f(F) - %2, - %) + (1 - a,)|Gx, - &2, - | (57)
S(an“yn—j/”"Zn—?C” +0£n<f(j}) _R)Zn_-;» +(1 _‘xn)"xn_;é""‘zn_sé"

2 2 - _ 1-«a, 2 2
<5 (=31 +lew -] 0t 3 B2~ + L% [, 3 4]z, - 2],

which implies that
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~ x,p o, ~ ~
2. - %[ <Wllyn 3+ +(a a )p)nx - x|’ +W<f(y) - %) (58)
From the definition of {x,} and (58), we get
N 2
”xn+1 - 32”2 < 8n||xn - %"2 +0,|Pc <I - Z afo)xn x| + f’]n"Zn - 32”2,
i=1
_ = 2 XtupP )11” = 2 2“n’7n = _ = = (59)
< (U= ma)p =5 - 31+ 1 Traopgle gy SO %20
1 %, (2-p) XlaP o2 nﬂn B
(1 B e 5T ¢ e )R
Applying the same argument as in (58) and (59), we get
- Aty (2= P) - O nf . 20,1y DT T
1 =317 < (1 - m)” -5+ m"xn -3+ Tva,(1-p) G(X) =92, -7 (60)
From (58) and (59), we have
- - X1, (2= p) . .
B =3+l =51 < (1222820 [, =5 +1p =51
nin. =~ -~ 2an n ~ ~ ~ ~ ~
a3 4l =]+ 1 e [ ) - %2, - B 0@ - 52, - )
2a,1, (1= p) _ _ 2,1, _ o _
(1= 2P s, -3 = 51+ 1o [ ) -, 9 () -, D)
(61)

According to condition (2) and (4), (61), and Lemma 8,
we can conclude that {x,} and {y,} converge strongly to
X = Pgx f(¥) and ¥ = Pgy g (X), respectively. Furthermore,
from (39) and (40), we get that {z,} and {w,} converge
strongly to X = Pg«f(¥) and y = Pgyg(X), respectively.
This completes the proof. m|

One of the great special cases of the SMVIP is the split
variational inclusion problem that has a wide variety of
application backgrounds, such as split minimization prob-
lems and split feasibility problems.

If we set A¥ = 0 and Af' = 0in Theorem 2, foralli = 1, 2,
then we get the strong convergence theorem for the split
variational inclusion problem and the finite families of the
variational inequality problems as follows:

Corollary 1. Let H, and H, be Hilbert spaces, and let C be a
nonempty closed convex subset of H,. Let T: H; — H, be a
bounded linear operator, and let f,g: H — H, be
pf Py~ -contraction mappings with p = max{pf P } For every
i=1,2, let M*,M}: H; — 2 be multzvalued maximal
monotone mappings. For i=1,2,...,N, let B B
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H, — H, be B, B! —inverse strongly monotone with f, =
min_, n{i} and B, = min;_;, B/} Let $ = {x* €
H: 0e Mix*,x =Tx" € Hy: 0 € M5X} and 87 ={y* ¢
H;:0eM]y*,7=Ty* € Hy: 0 € MJy}. Assume that

T~

I
—

Xny1 = 8nxn + JnPC<I - /"z

=

Il
—_

Y1 = (Snyn+UnPC<I_AMiLC

for all n>1, where {6,},{0,}{n.}{a,}<l0,1] with
S,+0,+n,=1 {a%,af,...a }{a).al,....a%} c (0,1),
A, A € (0,00) for all i=1,2, and 0<y~,y” <1/L with L
being a spectral radius of T*T. Assume the following con-
ditions hold:

(1) Y2, 45 <00, Y% un<oo, and O<a<pr<2B,

0<b<‘uﬁs2ﬁy,forsome a,beR.

2) Y2, a, =00, lim,__, a, =0.

() Xliaf = Elal =1

(4) 0<a<é,,0,,1,<b<l, for all neN, for some
a,b>0.

(5) 2221 |6n+1 - 6n|> Zﬁ; |0n+1 - anl’ and 2221 |ocn+1 -
a,l<co. Then, {x,} converges strongly to
X=Pg«f(y) and {y,} converges strongly to
5/ = PWg(?c)

4. Applications

In this section, by applying our main result in Theorem 2, we
can prove strong convergence theorems for approximating
the solution of the split convex minimization problems and
split feasibility problems.

4.1. Split Convex Minimization Problems. Let ¢: H — R be
a convex and  differentiable  function  and
y: H — (—00,00] be a proper convex and lower semi-
continuous function. It is well known that if V¢ is
1/a-Lipschitz continuous, then it is a-inverse strongly
monotone, where Vg is the gradient of ¢ (see [10]). It is also
known that the subdifferential Oy of ¥ is maximal monotone
(see [35]). Moreover,

o (x") + y(x") = min,y [@(x) + ¥ (x)]<0 €Ve(x™) + 0p (x7).
(63)

F =8*n(nNVIC,B)N+D and F'=8"n(nk,
VI(C,B)))#+@. Let {x,} and {y,} be sequences generated by
xy, ¥, € H, and

a; Bf)'xn + ﬂn(“nf (yn) + (1 - (xn)]:fl‘[i(x - VXT*<I - ]QE‘I;)Txn)’

(62)

afB,-y)ynw(ang(xmu ) (v =y (11 )T ),

Next, we consider the following the split convex mini-
mization problem (SCMP): find

x" € Hj, suchthate, (x")+y,(x") = min,y ¢, (x) + v, (x)]
(64)
and such that y* = Tx* € H, solves
9, (y") + 2 (") = minyey [0, (0) + v, (D)), (65)

where T: H, — H, is a bounded linear operator with
adjoint T*, ¢;, andy; defined as above, for i =1,2. We
denoted the set of all solutions of (64) and (65) by ®. That is,
® = {x* which solves(64): Tx* solves (65)}.

If we set AY =V¢¥, Al =V¢!, and M7 =0y*, M] =
oy!, for i=1,2, in Theorem 2, then we get the strong
convergence theorem for finding the common solution of
the split convex minimization problems and the finite
families of the variational inequality problems as follows.

Theorem 3. Let H, and H, be Hilbert spaces, and let C be a
nonempty closed convex subset of H,. Let T: H; — H, be a
bounded linear operator, and let f,g: H — H, be

P> pg-contraction mappings with p = max{pf,pg}. For
i=1,2 let y*,y: H — (—00,00] be proper convex and
lower semicontinuous functions, and let ¢¥, !+ H; — R be
convex and differentiable function such that Vo¥ and Vo, be
1/ak-Lipschitz continuous and 1/a]-Lipschitz continuous,
respectively. For i=1,2,...,N, let Bf,B]: H, — H, be
and By =min_,, nif'}. LetG,G’: H — H, be defined
=X a * X
by Gx=JY (I-XVe) (x-yT (-] yiU-X
~ o’
Voi)Tx),Vx € H,, and G'y= ]A{% I-XV o))(y-
Y
P (I - ]i?z (I -AMV@))Ty),Vy € Hy, respectively, where

A € (0, Zaj‘),/\iy € (0, Zaiy) and 0<y*, 9’ <1/L with L is a
spectral radius of T*T. Assume that F*=0*n(N¥,
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VI(C,B)#@ and F¥ =@ n (NN VI(C,B))#D. Let
{x,} and {y,} be sequences generated by x,,y, € H, and

N
Xptl = 8nxn + GnPC<I _.“z Zafo

i=1

N
Yne1 = 6nyn+anPC<I_#3l’Zazthy

i=1

for all n>1 where {5,},{0,}, {n.} {a,}<[0,1] with
S,+0,+n,=1 {a%,af,...a }{a).al,....ak} < (0,1),
and {u*}, {un}  (0,00). Assume the following condition
holds:

(1) Y2, 4k <00, Y% un<oo, and O<a<pr<2B,

0<b<yﬁ§2ﬁy,for50mea beR.
2y« a, = 0.

=00, lim,__, «,

(3)2711 I_ZHNI 1_1
(4) 0<a<é,,0,,n,<b<l,forallneN, for somea,b>0

(5) ZZZI |6n+1 - 6n|’ thzl |0n+1 - Gnl’ and ZEZI |an+1 -
a,l<oco. Then, {x,} converges strongly to
X=Pg:f(y) and {y,} converges strongly to
5/ = ngg(%).

4.2. The Split Feasibility Problem. Let H, and H, be two real
Hilbert spaces. Let C and Q be the nonempty closed convex
subset of H, and H,, respectively. The split feasibility
problem (SEP) is to find

apointx € C, suchthatAx e Q. (67)

The set of all solutions (SFP) is denoted by
={x € C: Ax € Q}. This problem was introduced by
Censor and Elfving [8] in 1994. The split feasibility problem
was investigated extensively as a widely important tool in
many fields such as signal processing, intensity-modulated
radiation therapy problems, and computer tomography (see
[36-38] and the references therein).
Let H be a real Hilbert space, and let & be a proper lower
semicontinuous convex function of H into (—00, +00]. The
subdifferential oh  of h is  defined by

Xpe1 = (Sn'xn + GnPC <I - ﬂ;c Zafo)xn + ’1n<“nf (yn) + (1 - “H)PC('x - yxT*(I - PQ)Txn))’

>xn + (0 f (1) + (1= @,)G x,,),

(66)

>yn + nn((xng ('xn) + (1 - (xn)éyyn)’

oh(x)={z € H: h(x)+<{z,u—xy<h(u),Yu € H} for all
x € H.Then, 0h is a maximal monotone operator [39]. Let C
be a nonempty closed convex subset of H, and let i be the
indicator function of C, i.e., i (x) = 0 if x € C and i (x) =
o0 if x ¢ C. Then, i is a proper, lower semicontinuous and
convex function on H, and so the subdifferential di. of i, isa
maximal monotone operator. Then, we can define the re-
solvent operator ] ‘“ of 0ip for A>0, by
];‘ (x)=T+A azc)_ (x) forallx € H.

Recall that the normal cone N, (1) of C at a point u in H
is defined by Ny (u)={z € H: {z,u—-v<0),Vv e C} if
ueCand No(u) =ifu ¢ C We note that 0i = N, and
for >0, we have that u = ]A x if and only if u = Pox (see
(31D]).

Setting M, = dic, M, = dig, and in (SMVI) (4) and (5),
then (SMVI) (4) and (5) are reduced to the split feasibility
problem (SEP) (67)

Now, by applying Theorem 2, we get the following strong
convergence theorem to approximate a common solution of
SFP (67) and a finite family of variational inequality
problems.

Theorem 4. Let H, and H, be Hilbert spaces, and let C and
Q be the nonempty closed convex subset of H, and H,, re-
spectively. Let T: H, — H, be a bounded linear operator
with adjoint T*, and let f,g: Hl — H, be py, pg con-
traction mappings with p = max{pf Py Forz =12,...,N,
let BY,B]: H, — H, be B}, 3] —inverse strongly monotone
with 8, = min,_ {ﬁ } and B N’V =min._;, N{B} As-
sume that =N (NN, VI(C,BY)+@ and
F=¥'n (nglvz(c By));E@ Tet {x,} and {y,} be se-
quences generated by x, y, € H, and

(68)

Yne1 = 6nyn + GnPC<I —P‘z Za?’Bf’)yn + rln(‘xng(xn) + (1 - an)PC(y - VyT*(I - PQ)Tyn)’

i=1
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for all n>1, where {6,},{0,}.{n.},{a,}<l0,1] with
S,+0,+n,=1 {af,a%,....a }{a).al,....ak} < (0,1),
{2t {pn} € (0,00), A5, A € (0,00) for all i=1,2, and
0 <y*,y” <1/L with L being a spectral radius of T*T. Assume
the following condition holds:

(1) Y2, 4 <00, Y2 pn <00, and 0<a<ur<2B.,0<
b< <2, for some a,b € R.

(2) Y2, &, = 00,lim,__, e, = 0.

() S af =¥ @ = 1.

(4) 0<a<d,,0,,n,<b<l, for all neN, for some
a,b>0.

(5) Z::(:)l |8n+1 - 6n|’ Zﬁzl |0n+1 - anl’ and ZZ(:)I |‘xn+1
—a,|<oco. Then, {x,} converges strongly to
X=Pg:f(y) and {y,} converges strongly to
j/ = Pg.yg(y(').

Proof. Set MY = 0ic, My = dic, Mj =i, M3 =i, and
A¥=0and A =0 in Theorem 2. Then, we get the
result. O

The split feasibility problem is a significant part of the
split monotone variational inclusion problem. It is exten-
sively used to solve practical problems in numerous situa-
tions. Many excellent results have been obtained. In what
follows, an example of a signal recovery problem is
introduced.

Example 2. In signal recovery, compressed sensing can be
modeled as the following under-determined linear equation
system:

y=Ax+0, (69)

where x € RY is a vector with 71 non-zero components to be
recovered, y € RM is the observed or measured data with
noisy 8, and A: RN — RM (M < N) is a bounded linear
observation operator. An essential point of this problem is
that the signal x is sparse; that is, the number of nonzero
elements in the signal x is much smaller than the dimension
of the signal x. To solve this situation, a classical model,
convex constraint minimization problem, is used to describe
the above problem. It is known that problem (69) can be seen
as solving the following LASSO problem [40]:

1
min, eyl - Ax|?,  subjectto ||x||, <t, (70)

where t>0 is a given constant and | - ||, is ¢, norm. In
particular, LASSO problem (70) is equivalent to the split
feasibility problem (SFP) (67) when C = {x € RN: ||x||, <t}
and Q = {y}.

5. Numerical Examples

In this section, we give some examples for supporting
Theorem 2. In example 3, we give the computer program-
ming to support our main result.

Example 3. Let R be a set of real number and H, = H, = R?.
Let C = [-20,20] x [-20,20], and let {-,-): R?xR? — R
be inner product defined by {(x,y) =x-y = x,¥, +x,¥,,
forall x = (x;,x,) € R*and y = (y,, y,) € R*and the usual
norm |-[l: R* — R given by |x| = x}+x2, for all
x=(x,x,) €R% Let T:R>— R> be defined by
Tx = (2x,,2x,) for all  x=(x,,x,) € R* and
T*: R — R? be defined by T*z = (2z,,22z,) for all
z = (z1,2z,) € R%. Let M7, M{, M5, M}: R* — 2R be
defined by M¥x={(3x,-2,3x,-2)L, Mix= {(2x,
2x,)L M3 = {((x1/3) +2,  (x,/3) +2)}, and M) x = {((x,/
3) + 3, (x,/ 3) + 3)}, respectively, for all x = (x,x,) € R
Let the mapping AY, A7, AY, AJ: R* — R? be defined by
Atx = ((x; = 3)12, (x5 = 3)/2), A{x = (x;+ 6,x, +6), Ajx
= ((x; —2)/ 3, (x, = 2)/3), and A} = ((x; - 1)/3, (x, -1)/3),
respectively, for all x= (x,,x,) € R®. For every
i=1,2,...,N, let the mappings BY, B{: R* — R?* be de-
fined by Bfx = ((x; = 1)/3i, (x, — 1)/3i) and Bf’x =
((xq +2)/51, (x5 + 2)/50), respectively, for all
x=(x,x,) €R? and let aF=(2/3+1/N3")and
a] = (4/5' + 1/N5"). Let the mappings f, g: R* — R? be
defined by f(x) = (x,/7,x,/7)and g(x) = (x,/9, x,/9), re-
spectively, for all x = (x;,x,) € R%

Choose y*andy” =0.1, A{=2,A{ =12,A] =0.1,
and)j = 1.9. Setting {3,} ={n/(9n+3)}, {o,} ={(4n+
@)/ On+3),  {n,} ={@n+ (7/3))/(9n+3)}, {a,}=
{120n}, {u*}={1/7n*}, and {ui}={1/57*}. Let
x; = (x},x?) and y; = (¥}, y3) € R% and let the sequences
{x,} and {y,} be generated by (21) as follows:
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TaBLE 1: Values of {x,} and {y,} with initial values x, = (-10,10), y; = (=10, 10), and n = N = 50.

n xn = (x}11’x121) yn = (yi’yfl)

1 (~10.000000, 10.000000) (~10.000000, 10.000000)
2 (~4.093342, 5.126154) (~5.481385, 3.338182)

3 (~1.544910, 3.037093) (~3.639877,0.575101)

4 (~0.307347,2.029037) (~2.789106, ~0.719370)
30 (0.998745,0.996821) (~1.996611, —1.998243)
47 (0.998973, 0.998235) (~1.998394, —1.999022)
48 (0.998986, 0.998280) (~1.998454, ~1.999055)
49 (0.999000, 0.998324) (~1.998511, —~1.999087)
50 (0.999013, 0.998365) (~1.998566, ~1.999118)

n +4n+(2/3)P I
X = X
"7 943" 9p43  ©

yn+1

i=1

4
MZ

_ Y «
| &y, =15 (- 1.2A{)<y— 0.1T (1 g

for all n>1, where x,, = (x},x2) and y, = (y., y2). By the
definition of M7, M?’,A;‘, and Aly, foralli=1,2, Bf and Bf',
for all i=1,2,...,N, and f and g, we have that
(LD e Q*n (NN, VI(C,B¥))  and (=2,-2) e ¥ n
(NN, VI(C,B)). Also, it is easy to see that all parameters
satisfy all conditions in Theorem 2. Then, by Theorem 2, we
can conclude that the sequence {x,} converges strongly to
(1,1) and {y,} converges strongly to (-2,-2).

Table 1 and Figure 1 show the numerical results of {x,,}
and {y,} where x, =(-10,10), y, = (-10,10), and
n=N =50.

Next, in Example 4, we only show an example in infinite-
dimensional Hilbert space for supporting Theorem 2. We
omit the computer programming.

Example 4. Let H, = H, = C = ¢, be the linear space whose

elements consist of all 2-summable sequence
(%1, X5, ..., xj,...) of scalars, ie.,
o 2
£, =4 x x =(x1,x2,...,xj,...)and Z 'xj' <oo ¢, (72)
=

1 N<2+ 1
7" 5\3 N3V

n 4n +(2/3) 1 /4 1
= + Pl I -— —t—
m+3" " on+3 C( 5nZZ 5 N5V

)Bf)xn +

4n+7/3(

1 20n —1~x
9+ 3 _f(yn) + G xn)’

20n 20n

dn+7/3 1 1 20n—1~,
L e )
9n+3 (20ng(x")+ 20m O

B >yn +

(71)

Gix, = 1M (1~ 2A’1‘)(x —01T" (1 — (- 0.1A;‘))Txn>,

(I- 1.9A§)>Tyn),

with an inner product {:,-): ¢, x¢, — R defined by
(e, y) = Z;’Zl x;y > where x = {xj}j:1 and y = {yj}].zl €,
and anorm | - ||: ¢, — R defined by |x[, = (Z?:l Ilez)”2
where x = {xj}j: €t LetT: ¢, — ¢, be defined by T'x =
(x1/2,%,/2,...,x;/2,...) for all x= {xj};: €¢,. And,
T*: ¢, — ¢, be defined by Tx = (2,/2,2,/2,...,2;/2,...)
for all x = {z)}7 € &,. Let M{, M}, M5, Mj: &, — ¢, be
defined by Mjx = {(2x1,2x2, 2%, .)}, Myx = {(x,-
»Xj— 1,..)LM3 = {3x1,3x2, . ,3xj, .. .}, and
M) x = {(le -L2x-1,...,2x; - 1,.. .)}, respectively,
for all x = {xj}j; € £,. Let the mapping A%, A}, AY, AS:

¢, — ¢, be defined by Afx = (x,/3,x,/3,...,x,/3, ...),
Alx = ((x; = 1)/2, (x, - 1)/2,..., (x]- -1)/2,...), Asx
= (x/4,x,/4, ..., x;/4,..), and AJ = ((2x; - 1)/3, (2x, -

1)/3, ..., (2xj — 1)/3) respectively, for all x = {x]}jzl €,

Lx,—1,...

For every i =1,2,..., N, let the mappings B, B): £, — ¢,
be defined by Bfx = (2x,/3i,2x,/3i,...,2x;/3i,...) and Blx
= ((2x; = 1)/4i, (2x, — 1)/4i, ..., (2x; — 1)/4i), respectively,
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— Xn N ]
2 2
~T~ Xn Yin

F1GUre 1: Convergence of {x,} and {y,} with initial values x, = (-10,10), y; = (10, 10), and n = N = 50.

) . X _ P X _ Jy _ i —

for all x= {x‘}; € 52, and et af-c _ (5/61 + 1/N6N) Let /11 = l’ll = I’AZ = 05, andlzl— % Slnce L= 1/4
J=1 we choose y*and y” = 0.5. Let x; = (x},x2,...,x],...) and

yi=0hLyh. . yl,..) €6, and let {x,} and {y,} be the

sequences generated by (2) as follows:

anda) = (7/8 + 1/N8Y). Let the mappings f,g: &, — ¢,
be defined by f(x)= (x,/5 x2/5,...,xj/5,...),g(x) =

(x1/4, %514, ..., x;/4,..), respectively, for all
o
X = {x]-}j=1 €,

n 2n+2/3 1 Y/5 1 2n+4/3/ 1 10n— 1~y
= Pl1-—N(Z+— |B" ( G )
B C< 32 Z<6’+N6N> ’>x”+ 5n+3 IOnf( Yu) + 20m "

_on ey Z w +2n+4/3(1 o)+ 1011 )
Yuet =gt gy tel Im o Al gt L D ST AC Y Gy )

i=1
(73)

X

G'x, = (I- A’f)(x - 0.5T*<I — (1 - o.SA;‘))Txn),

nynzj‘lw( Ay)<y 0.5T" (1 e (1 2Ay)>Tyn),

for all n>1, where x,= (x}, xﬁ,...,xn,. ) and y,= 6.Conclusion

(Vpp Vo> ym--). It Qs easy to see that My, (1). Table 1 and Figure 1 in Example 3 show that the
M?, A, and A],Vi=1,2,B¥and B!,Vi=1,2,...,N, T, f, g sequence {x,} converges to (1,1)€Q*n
and all parameters satisfy Theorem 2. Furthermore, we have (NN, VI(C,B¥)) and {y,}] converges to
that 0€ Q*n (NN, VI(C,BY)) and 1€ ' n (n¥,VI(C, (-2,-2) e X’ n (NN, VI(C,B))
BY)). Then, by Theorem 2, we can conclude that the sequence

(2) Example 4 is an example in infinite-dimensional
{x,} converges strongly to 0 and {y, } converges strongly to 1.

Hilbert space for supporting Theorem 2
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(3) Theorem 2 guarantees the convergence of {x,} and

{y,} in Example 3 and Example 4
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