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Osteoporosis, a bone metabolic disease, is one of the major diseases occurring in aging population especially in postmenopausal
women. A system of impulsive differential equations is developed in this paper in order to investigate the effects of parathyroid
hormone and prolactin on bone-forming cells, namely, osteoblasts, and bone-resorbing cells, namely, osteoclasts, under the
impulsive estrogen supplement. %e theoretical analysis of the developed model is carried out so that we obtain the conditions on
the system parameters in which the stability and permanence of the model can occur. Computer simulations are also provided to
illustrate the theoretical predictions.

1. Introduction

Osteoporosis is a disease which shows no symptoms until
there is a bone fracture incidence [1]. It is characterized by
an impairment of bone mass, measured by a Bone Mineral
Density (BMD) test as the T-score is less than or equal to 2.5,
and microarchitectural deterioration of bone tissue [2–5].
%is disease causes a major public health issue for all races
and both sexes [1]. Since BMD decreases as the population
ages, osteoporosis occurs prevalently in menopause woman
and elderly men between 75 and 80 years of age [6]. More
than 200 million people worldwide were approximated to be
osteoporotic patients with hip fractures [7]. In Europe and
the United States, a report revealed that 30% of women are
diagnosed with osteoporosis [8]. It was reported in %ailand
that 19.8% of postmenopausal women are prevalently os-
teoporotic [9]. Furthermore, approximately 40% of women
who experience menopause and 30% of men might have an
osteoporosis-related fracture in the remaining lifetime [10].

Bone is a living tissue [11]. %ere is a process in its place
to resorb old bone and form new bone to maintain its

strength and health, called bone-remodeling process, and
such a process occurs throughout a person’s life [10, 12, 13].
In osteoporosis patients, the loss of bone mass occurs be-
cause the removal of older bone is more than the replace-
ment of new bone which is an imbalance between bone
resorption and bone formation [10]. %ere are two families
of cells mainly involved in the process of bone remodeling,
namely, osteoclastic cells, breaking down the bone cells, and
osteoblastic cells, forming the bone tissue [12, 13]. Bone-
remodeling process is composed of four phases sequentially,
which are activation, resorption, reversal, and formation
[12]. In this process, osteoblast lineage cells play a crucial
role in the activation stage by taking action on blood cell
precursors or hematopoietic cells to establish osteoclastic
resorption of bones. Under a layer of lining cells, the removal
of bone is done by osteoclasts in the resorption step. %e
mineral here is dissolved, and the bone matrix is broken
down. In the reversal phase, the surface of the resorbed bone
creates a thin layer of protein to make it ready for the
following stage. Finally, in the formation step, osteoblasts
acting in successive waves start to form up new bones by

Hindawi
International Journal of Mathematics and Mathematical Sciences
Volume 2021, Article ID 5435876, 17 pages
https://doi.org/10.1155/2021/5435876

mailto:chontita.rat@mahidol.ac.th
https://orcid.org/0000-0002-2362-5885
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5435876


laying down multiple layers of matrix in an orderly ar-
rangement. %en, some of these osteoblasts stay inside the
bone and become osteocytes, remaining in contact to ad-
jacent osteocytes and osteoblasts on the bone surface. %is
process is successfully finished in 3-4 months, while the first
three stages take 2 to 3 weeks to finish [12]. %ere are many
factors involved in bone-remodeling process such as para-
thyroid hormone (PTH), prolactin (PRL), calcitonin, and
estrogen.

PTH plays an important role in the bone-remodeling
process [14]. It is released from the parathyroid gland, and
both stimulating and inhibiting effects have been reported
on the development of osteoblasts from its progenitors
[14–18]. On the one hand, PTH indirectly enhances the
development of osteoclasts from its progenitors by operating
through osteoblasts since osteoclasts lack PTH receptors
while preosteoblast precursors and preosteoblasts possess
them [14–18]. On the other hand, PRL is a polypeptide
hormone synthesized in and secreted from specialized cells
of the anterior pituitary gland, the lactotrophs [19].
According to [20], PRL receptors have been reported on
osteoblasts, and hence, PRL then has effects on bone-
remodeling process as well. PRL enhances bone resorption
by increasing receptor activator of NF-ligand (RANKL) and
decreasing osteoprotegerin (OPG) expressions by osteo-
blastic cells [21].

Bone mass reduces significantly due to the declining
secretion of estrogen during and after the menopause years
in women [22]. Estrogen deficiency in postmenopausal
women leads to accelerating resorption of bone by osteo-
clasts, and osteoporosis will then occur [23]. %e direct and
indirect studies indicated that estrogen also plays a key role
on skeletal health in men [24]. Several hormones play an
important role in the process of bone remodeling and also in
the treatments of osteoporotic patients. Estrogen replace-
ment therapy has a beneficial effect on postmenopausal
women in preventing the loss of bone as shown in clinical
studies [25, 26]. In a long-term study of following up
postmenopausal women who take estrogen replacement
therapy, in vivo study results demonstrated that replacement
estrogen therapy can prevent or slow down osteoporosis in
postmenopausal patients compared to an unsupplemented
control group [27]. A recent research using cancellous rats
reported that decreased estrogen levels led to bone changes
which affect flow of interstitial around osteocytes [28]. Many
studies have shown that estrogen impacts positively in
improving bone mineral density, and taking lower doses of
estrogen is shown to be effective and cause fewer side effects.
At the cellular level, estrogen increases the level of OPG
which is able to bind with RANKL to block the differenti-
ation, the activity, and the survival of osteoclasts.

Since bone is an alive and dynamic tissue [11], many
researchers have been trying to describe the process of bone
remodeling inside our bodies using several types of math-
ematical models. Chudtong et al. [29] introduced an im-
pulsive system to describe bone-remodeling process
involving PTH supplements by extending Rattanakul et al.’s
model in [30]. Rattanakul et al. [31] constructed a mathe-
matical model as a system of nonlinear differential equations

to investigate bone formation and resorption process based
on the effect of calcitonin. Motivated by [31], Pan-
itsupakamon and Rattanakul [32] modified the model
proposed in [31] by incorporating the time delay observed in
the bone-remodeling process. %e influence of estrogen
supplement is also considered by adding a term to the
dynamics of the active osteoclast population in the modified
model. Chaiya and Rattanakul [33] proposed an impulsive
mathematical model of bone-remodeling process incorpo-
rating the effects of prolactin and the impulsive control
strategies of parathyroid hormone supplement on osteo-
blasts and osteoclasts. %e dosage of parathyroid hormone
can be added appropriately to the system to ensure the
suitable levels of active osteoblasts and active osteoclasts.
%ey also proposed another model accounting for the effects
of PTH and calcitonin on bone-remodeling process together
with the effects of impulsive treatments of estrogen in [34].
However, a mathematical model of bone resorption and
bone formation consisting of osteoblastic cells, osteoclastic
cells, parathyroid hormone, and prolactin with the effect of
impulsive treatment of estrogen has never been established.

2. Model Development

In this section, we propose the following impulsive differ-
ential equation model to investigate the dynamics of bone-
forming cells and bone-resorbing cells based on the effects of
PTH, PRL, and estrogen supplements:

dx

dt
�

a1

k1 + z
+ a2y − b1x,

dy

dt
�

a3

k2 + z
+ a4x − b2y,

dz

dt
�

a5x

k3 + x
2

 
+

a6y

k4 + y
2

 
⎡⎢⎣ ⎤⎥⎦zw − b3z,

dw

dt
� a7x −

a8xw

k5 + x
−

a9yw

k6 + y
− b4w,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT, (1)

with

Δz(t) � − ρz(t),

Δw(t) � μ,
t � nT, (2)

where Δz(t) � z(t+) − z(t)andΔw(t) � w(t+) − w(t). In
what follows, x(t), y(t), z(t), and w(t) account for the level
of PTH in blood at time t, the level of PRL in blood at time t,
the number of active osteoclasts at time t, and the number of
active osteoblasts at time t, respectively. T accounts for the
period between each impulsive estrogen treatment, n ∈ Z+ �

1, 2, 3, . . .{ }, ρ accounts for the inhibiting effect of estrogen
treatment on osteoclasts, 0< ρ< 1, and μ accounts for the
stimulating effect on osteoblasts of estrogen treatment, μ> 0.

In addition, all parameters in (1) and (2) are assumed to be
positive.
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PTH secretion from the parathyroid gland is controlled
by the calcium level in blood. Once the number of active
osteoclasts increases, blood calcium levels then increase due
to the increase in bone resorption resulting in the decrease of
PTH secretion in order to maintain calcium level within the
normal range [35, 36]. Hence, we then assumed that the rate
of change of the concentration of PTH in blood at time t
denoted by dx/dt in equation (1) varies inversely with the
number of active osteoclasts as shown in the first term on the
right-hand side of the first equation in equation (1).
According to [37], an increase in the level of plasma PRL also
enhances the release of PTH from the parathyroid gland and
hence the second term on the right-hand side denotes the
stimulating effect of PRL on PTH. %e last term stands for
the removal rate of PTH from the system.

However, PRL stimulates osteoclastic differentiation by
decreasing OPG and increasing RANKL expressions by
osteoblastic cells [21]. RANKL then binds to RANK, its
receptor on preosteoclast, and stimulates the differentiation
of osteoclasts. To balance the bone-remodeling cycle, when
the number of osteoclasts increases, the secretion of PRL is
then decreased. In the second equation of (1), the rate of
change of the level of PRL in blood denoted by dy/dt is then
assumed to vary inversely with the number of active oste-
oclasts as shown in the first term on the right-hand side. On
the other hand, the increase in the number of osteoclasts
leads to the increase in the calcium level in blood and then
the secretion of PTH from the parathyroid gland, as well as
the secretion of PRL from the anterior pituitary gland, which
also enhances the secretion of PTH will be decreased in
order to maintain the calcium level in blood within the
normal range [35, 36]. %en, the second term on the right-
hand side stands for the stimulating effect of PTH on the
release of PRL from the anterior pituitary gland. %e last
term stands for the removal rate of PRL from the system.

Osteoclasts lack PTH and PRL receptors, whereas os-
teoblasts possess them. %erefore, the effects of PTH and
PRL on the differentiation of osteoclasts are both indirect
effects. However, it has been reported in [17] that the dif-
ferentiation of active osteoclasts also requires the production
of osteoclast differentiation factor (ODF) and its receptor on
osteoclasts as well and hence the differentiation of active
osteoclasts requires the presence of both osteoblastic and
osteoclastic cells. Even though PTH has the stimulating
effects on the differentiation of active osteoclasts as reported
in [18, 38], it has also been observed clinically in [17] that
PTH inhibits the differentiation of active osteoclasts when
the level of PTH increases further as well. On the other hand,

PRL enhances bone resorption by decreasing OPG and
increasing RANKL expressions by osteoblastic cells [21].
RANKL then binds to RANK, its receptor on preosteoclast,
and stimulates the differentiation of osteoclasts [21]. %us,
the rate of change of the number of active osteoclasts
denoted by dz/dt is then assumed to depend on the stim-
ulating and inhibiting effects of PTH and PRL as presented
on the first term on the right-hand side of the third equation
in (1). %e last term stands for the removal rate of active
osteoclasts.

Osteoblasts possess both PTH receptors and PRL re-
ceptors, and hence, the effects of PTH and PRL on the
differentiation of osteoblasts are both direct effects. PTH
prevents a suicidal process called apoptosis of osteoblasts
[39, 40]. In addition, both stimulating and inhibiting effects
of PTH on osteoblastic differentiation process have been
clinically observed depending on the differentiation stages
[14]. As for the stimulating effect of PTH on the differen-
tiation of osteoblasts, we assumed that the rate of change of
the number of active osteoblasts denoted by dw/dt varies
directly with the level of PTH as presented on the first term
on the right-hand side of the fourth equation of (1), whereas
the inhibiting effect of PTH on the differentiation of oste-
oblasts is presented on the second term on the right-hand
side. On the other hand, it has been reported in [41] that the
osteoblast number (DNA content) is declined significantly
due to PRL, resulting in a decrease in osteoblast prolifera-
tion, and hence, the third term on the right-hand side is
assumed to represent the inhibiting effect of PRL on oste-
oblasts. %e last term represents the removal rate of active
osteoblasts.

%e first equation of (2) accounts for the inhibitory effect
of impulsive treatment with estrogen supplement on the
number of active osteoclasts. %e second equation accounts
for the simulative effect of impulsive treatment with estrogen
supplement on the number of active osteoblasts.

Several clinical observations indicate that the dynamics
of PTH and PRL are so much faster than the dynamics of
osteoclasts and osteoblasts [35, 36, 42, 43]. In what follows,
PTH and PRL are then assumed to equilibrate rapidly to
their equilibrium for which dx/dt � 0 and dy/dt � 0, re-
spectively. %at is,

x �
a1b2

A k1 + z( 
+

a2a3

A k2 + z( 
≡ f1(z) (3)

and

y �
a3

b2 k2 + z( 
+

a4f1(z)

b2
�

a3

b2 k2 + z( 
+

a1a4

A 0k1 + z( 
+

a2a3a4

Ab2 k2 + z( 
≡ f2(z), (4)

where A � b1b2 − a2a4 with b1b2 > a2a4.

%us, the reduced system of (1) and (2) can be obtained
as follows:
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dz

dt
�

a5f1(z)

k3 + f
2
1(z) 

+
a6f2(z)

k4 + f
2
2(z) 

⎡⎢⎣ ⎤⎥⎦zw − b3z,

dw

dt
� a7f1(z) −

a8f1(z)w

k5 + f1(z)
−

a9f2(z)w

k6 + f2(z)
− b4w,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

t≠ nT,

(5)

with

Δz(t) � − ρz(t),

Δw(t) � μ,
t � nT. (6)

3. Stability Analysis

Now, we let

U: R+ × R
2
+⟶ R+, (7)

where R+ � [0,∞), R2
+ � S ∈ R2: S � (z, w), z, w ∈ R+ . Let

us denote the map defined by the right-hand side of (5) and
(6) by F � (F1, F2).

Definition 1. Let U be a continuous function in (nT, (n +

1)T] × R2
+⟶ R+. If

lim
(t,Y)⟶ nT+ ,S( )

U(t, Y) � U nT
+
, S(  (8)

exists and is finite for each S ∈ R2
+, n ∈ Z+, and V being

locally Lipschitzian in S, then the upper right derivative of
U(t, S) with respect to (5) and (6) is defined as

D
+
U(t, S) � lim

h⟶0+
sup

1
h

[U(t + h, S + hF(t, S)) − U(t, S)],

(9)

where F � (F1, F2).

%e solution S(t) � (z(t), w(t)) to systems (5) and (6) is
assumed to be a piecewise continuous function which means
that S(t) is continuous on (nT, (n + 1)T] for n ∈ Z+ and
lim

t⟶nT+
S(t) � S(nT+) exists. According to the smoothness

properties of F [44], the solution to systems (5) and (6) exists
and is unique. For t≠ nT, we can see that dz/dt � 0 if z(t) �

0 and dw/dt> 0 if w(t) � 0. Furthermore, for
t � nT, Z(nT+) � (1 − ρ)z(nT), where 0< ρ< 1 and
w(nT+) � w(nT)+, where μ> 0.

Lemma 1. For all t≥ 0, the solution of systems (5) and (6),
S(t) � (z(t), w(t)), is nonnegative provided that S(0+)≥ 0.
In addition, S(t) is positive for all t≥ 0 provided that
S(0+)> 0.

Lemma 2. Suppose that (z(t), w(t)) is a solution to (5) and
(6) and

b4 >
a5M3

k3
+

a6M4

k4
. (10)

!en, for sufficiently large t, there exists a positive con-
stant M such that z(t)≤M and w(t)≤M.

Proof. Let u(t) � z(t) + w(t), supf1(z) � M1, supzf1
(z) � (1/A)(a1b2 + a2a3) � M3, supzf2(z) � (a3/b2)
+(a1a4/A) + (a2a3a4/Ab2) � M4, and c � min b3, b4

− (a5M3/k3) − (a6M4/k4)}.
For t≠ nT, it follows that

D
+
u + cu �

dz

dt
+
dw

dt
+ cz + cw

�
a5f1(z)

k3 + f
2
1(z) 

+
a6f2(z)

k4 + f
2
2(z) 

⎡⎢⎣ ⎤⎥⎦zw − b3z + a7f1(z)

−
a8f1(z)w

k5 + f1(z)
−

a9f2(z)w

k6 + f2(z)
− b4w + cz + cw

≤
a5zf1(z)

k3 + f
2
1(z)

+
a6zf2(z)

k3 + f
2
1(z)

 w + c − b3( z + c − b4( w + a7M1

≤
a5M3

k3
+

a6M4

k4
+ c − b4 w + c − b3( z + a7M1

≤ a7M1 ≡M0.

(11)

%us, D+u≤ − cu + M0. For t � nT, we can see that

4 International Journal of Mathematics and Mathematical Sciences



u nT
+

(  � z nT
+

(  + w nT
+

( 

� (1 − ρ)z(nT) + μ + w(nT)

� z(nT) + w(nT) + μ − ρz(nT)

≤ u(nT) + μ.

(12)

By applying Lemma 2.2 in [44], it can be derived that

u(t)≤ u(0)e


t

0
− c ds

+ 
t

0
e 

t

s
− c dτM0ds + 

0< tn < t

e 
t

tn

− c dτ

� u(0)e
− ct

+ M0 
t

0
e

− c(t− s)
ds + 

0< tn < t

μe
− c t− tn( )

� u(0)e
− ct

+ M0
1
c

−
e

− ct

c
  + μ

e
− c(t− T)

− e
− c t− tn+1( )

1 − e
cT

⎛⎝ ⎞⎠

<
M0

c
+ μ

e
− c(t− T)

1 − e
cT

+ μ
e

cT

e
cT

− 1
≤

M0

c
+ μ

e
cT

e
cT

− 1
≡M.

(13)

%erefore, u(t)≤M as t⟶∞ and u(t) is uniformly
ultimately bounded, which means that when t is large
enough with z(t)≤M and w(t)≤M for some positive
constant M.

Let us consider the following reduced impulsive system
of (5) and (6) when osteoclasts are absent (z � 0):

dw

dt
� B − Cw, t≠ nT,

w nT
+

(  � w(nT) + μ, t � nT,

w 0+
(  � w0,

(14)

where B � a7f1(0), C � (a8f1(0)/k5 + f1(0)) +(a9f2(0)

/k6 + f2(0)) + b4, f1(0) � (a1b2/Ak1) + (a2a3/Ak2) and
f2(0) � a3/b2k2 + a4f1(0)/b2.

It is obvious that B and C are positive provided that
b1b2 > a2a4. By solving system (14), we obtain its periodic
solution as follows:

w(t) �
μe

− C(t− nT)

1 − e
− CT

+
B

C
, t ∈ (nT, (n + 1)T], (15)

such that w(0+) � μ/1 − e− CT + B/C> 0.

%erefore, the positive solution to system (14) can be
written as

w(t) � w0 −
B

C
−

μ
1 − e

− CT
 e

− Ct
+ w(t), t ∈ (nT, (n + 1)T].

(16)

Lemma 3. System (14) has a positive periodic solution w(t).
In addition, the solution w(t) of (14) converges to w(t) as
t⟶∞.

Hence, the positive periodic solution to systems (5) and (6)
in the absence of osteoclasts is

(0, w(t)) � 0,
μe

− C(t− nT)

1 − e
− CT

+
B

C
 , (17)

for t ∈ (nT, (n + 1)T] with w(nT+) � w(0+) � (μ /1
− e− CT) + (B/C), n ∈ Z+.

Theorem 1. !e solution (0, w(t)) of systems (5) and (6) is
locally asymptotically stable if

0<T<Tmax, (18)

b3 <
DB

C
, (19)

Dμ
C
< ln

1
1 − ρ

 , (20)

where D � (a5f1(0)/k3 + f2
1(0)) + (a6f2(0)/k4 + f2

2(0))

and Tmax ≡ (1/(DB/C − b3))[ln(1/1 − ρ) − Dμ/C].

Proof. %e local stability of the solution (0, w(t)) may be
determined by considering the behavior of small amplitude
perturbations of the solution.

Here, we let

z(t) � u1(t),

w(t) � w(t) + u2(t).
(21)

It follows that

u1(t)

u2(t)
  � Φ(t)

u1(0)

u2(0)
 , 0< t<T, (22)
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where Φ(t) is the fundamental solution matrix, in which

dΦ(t)

dt
�

Dw(t) − b3 0

∗ − C

⎛⎝ ⎞⎠Φ(t), (23)

and Φ(0) is the identity matrix I.
%us, we obtain the fundamental solution matrix as

follows:

Φ(t) �
e


t

0
Dw(s)− b3( )ds 0

∗ ∗ e


t

0
(− C)ds

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (24)

Note that the terms ∗ and ∗∗ are not required in
further analysis and their exact expressions are not
necessary.

Linearization of (6) provides

u1 nT
+

( 

u2 nT
+

( 
⎛⎝ ⎞⎠ �

1 − ρ 0

0 1
 

u1(nT)

u2(nT)
 . (25)

Next, the Floquet theory is then applied to guarantee the
local stability of the solution (0, w(t)).

Let us consider

M �
1 − ρ 0

0 1
 Φ(T). (26)

%e solution (0, w(t)) is locally asymptotically stable if
the magnitudes of λ1 and λ2 and the eigenvalue of M are
both less than 1.

We can see that

λ1 � (1 − ρ)e


T

0
Dw(s)− b3( )ds

� (1 − ρ)e
(Dμ/C)+(DB T/C)− b3T

,

λ2 � e


T

0
(− C)ds

� e
− CT

.

(27)

Since 0< ρ< 1 andC> 0, it follows that |λ1|< 1 provided
that (18)–(20) are satisfied. Also, it is obvious that |λ2|< 1,
and hence, the proof is complete. □

4. Permanence of the System

Definition 2. Systems (5) and (6) are said to be permanent
if there exist positive constants m, M, and t0 such that
for all solutions (z(t), w(t)) with positive initial values
z(0+) and w(0+) the following conditions hold for all
t> t0 > 0:

m≤ z(t)≤M, (28)

m≤w(t)≤M. (29)

Theorem 2. Suppose that

T>T
∗
, (30)

where T∗ ≡ (1/(DB/C) − b3)ln(1/1 − ρ). Systems (5) and (6)
are permanent provided that (10), (19), and (30) hold.

Proof. Let S(t) � (z(t), w(t)) be any solution of (5) and (6)
with z(0+)> 0 and w(0+)> 0. Suppose that (10) holds; it
follows that when t is large enough, z(t)≤M and w(t)≤M

for some M> 0 according to Lemma 2.
Consider the second equation of (5); we can see that

dw

dt
≥ −

a8f1(z)w

k5 + f1(z)
−

a9f2(z)w

k6 + f2(z)

− b4w≥ − Cw, t≠ nT,

w nT
+

(  � w(nT) + μ, t � nT.

(31)

It follows that for sufficiently large t, there exists ε> 0
such that

w(t)> −
B

C
+ w(t) − ε. (32)

%erefore, we obtain

w(t)>
μe

− CT

1 − e
− CT

− ε ≡ m1, (33)

when t is large enough.
Next, we will show that there is a positive constant m2 for

which z(t)>m2. Firstly, for some m3 > 0, we let

M1 �
a5f1 m3( 

k3 + f
2
1 m3(  

+
a6f2 m3( 

k4 + f
2
2 m3(  

,

M2 �
a1a7b2k2 + a2a3a7k1

CA k1 + m3(  k2 + m3( 
.

(34)

Secondly, we will do the following two steps. □

Step 1. We will show that z(t1)≥m3 for some t1 > 0 by
contradiction.

Suppose that z(t)<m3 for all positive values of t. From
the second equation of (5) and (6), we can see that

dw

dt
� a7f1(z) −

a8f1(z)w

k5 + f1(z)
−

a9f2(z)w

k6 + f2(z)
− b4w, t≠ nT,

≥
a1a7b2 k2 + z( 

A k1 + z(  k2 + z( 
+

a2a3a7 k1 + z( 

A k1 + z(  k2 + z( 
− Cw,

≥
a1a7b2k2 + a2a3a7k1

A k1 + m3(  k2 + m3( 
− Cw,

w t
+

(  � w(t) + μ, t � nT.

(35)

Let us consider the following comparison system:
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dP

dt
�

a1a7b2k2 + a2a3a7k1

A k1 + m3(  k2 + m3( 
− CP, t≠ nT,

P t
+

(  � P(t) + μ, t � nT,

P 0+
(  � w 0+

( .

(36)

A periodic solution of (29) can then be obtained as
follows:

P(t) ≡
μe

− C(t− nT)

1 − e
− CT

+
a1a7b2k2 + a2a3a7k1

CA k1 + m3(  k2 + m3( 
, t ∈ (nT, (n + 1)T],

(37)

with P(0+) ≡ μ/1 − e− CT + B/C. %erefore, the positive so-
lution of (29) is

P(t) � P 0+
(  −

a1a7b2k2 + a2a3a7k1

CA k1 + m3(  k2 + m3( 
−

μ
1 − e

− CT
 e

− CT
+ P(t).

(38)

Note that f1(m3) � (a1b2/A(k1 + m3)) + (a2a3/A(k2 +

m3)) and f2(m3) � (a3/b2(k2 + m3)) + (a4/b2)f1(m3).

From the first equation of reduced system (5), we have

dz
dt

�
a5f1(z)

k3 + f
2
1(z) 

+
a6f2(z)

k4 + f
2
2(z) 

⎡⎢⎣ ⎤⎥⎦zw − b3z

≥
a5f1 m3( 

k3 + f
2
1 m3(  

+
a6f2 m3( 

k4 + f
2
2 m3(  

⎛⎝ ⎞⎠w − b3
⎡⎢⎢⎣ ⎤⎥⎥⎦z

� M1w − b3 z.

(39)

According to the comparison theorem [45], we obtain
w(t)≥P(t). It follows that

P(t) − ε1 <P(t)≤w(t), t≠ nT, t≥T1, (40)
for some T1 > 0 and for ε1 > 0 which is small enough.

Hence,

dz

dt
≥ M1

P(t) − ε1(  − b3 z, t≠ nT, t≥T1,

z t
+

(  � (1 − ρ)z(t), t � nT, t≥T1.

(41)

Suppose that n ∈ Z+ and NT≥T1. %en, by integration
over (nT, (n + 1)T], n≥N, we obtain

z((n + 1))T≥ z(nT)(1 − ρ)e


(n+1)T

nT

M1 P(t)− ε1( − b3( dt 

� z(nT)(1 − ρ)e
M1 M2− M1ε1− b3( T+ M1μ/C( ( 

� z(nT)η,

(42)

where η ≡ (1 − ρ)e(( M1 M2− M1ε1− b3)T+( M1μ/C)).

We can see that

ln η � ln(1 − ρ) + M1
M2 − M1ε1 − b3 T +

M1μ
C

 .

(43)

%en, for a positive constant ε1 which is sufficiently
small, we have

ln η ≈ ln(1 − ρ) + M1
M2 − M1ε1 − b3 T +

M1μ
C

 

> ln(1 − ρ) + M1
M2 − b3 T

� M1
M2 − b3 T − ln

1
1 − ρ

 .

(44)

%erefore, if (19) and (30) hold, then a small positive
constant m3 can be chosen so that ln η> 0, and hence η> 1. It
follows that z((n + k)T)≥ z(nT)ηk⟶∞ when k⟶∞
which contradicts the boundedness of z(t). Hence, there
exists t1 > 0 such that z(t1)≥m3.

Step 2. If z(t)≥m3 for all t≥ t1, then the proof is complete;
otherwise, there exists t> t1 such that z(t)<m3 and we then
let t∗ � inf

t>t1
z(t)<m3 , so that the following two possible

cases are obtained.

Case 1. %ere exists n1 ∈ Z+, such that t∗ � n1T. It follows
that for t ∈ (t1, t∗], z(t)≥m3, and we obtain z(t) � m3 by
the continuity of z(t). When t is large enough, z(t) and w(t)

are both bounded above by a positive constant M andw(t) is
also bounded below by a positive constant m1 which imply
that we can choose positive constants M′ and m′ for which
z(t)<M′ and m1′ <w(t)<M′ such that

m1′ <
b3
M1

, (45)

with

w t
∗+

(  −
a1a7b2k2 + a2a3a7k1

CA k1 + m3(  k2 + m3( 
−

μ
1 − e

− CT




− μ<M1′.

(46)

We also choose n2, n3 ∈ Z+ that satisfy the following
conditions:

n2T>
1
B
ln

M′ + μ
ε1

  (47)

and

(1 − ρ)
n2e

η1 n2+1( )T( )ηn3 > 1, (48)

where
η1 ≡ M1m1′ − b3 < 0. (49)

Here, we let T′ � n2T + n3T. We claim that there exists a
constant t2 ∈ (t∗, t∗ + T′] in which z(t2)>m3. Otherwise,
by considering (38) with P(t∗+) � w(t∗+), for t ∈ (nT, (n +

1)T] and n1 ≤ n≤ n1 + n2 + n3, we obtain
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P(t) � P t
∗+

(  −
a1a7b2k2 + a2a3a7k1

CA k1 + m3(  k2 + m3( 
−

μ
1 − e

− CT
 e

− C t− t∗( )
+ P(t). (50)

For n2T≤ t − t∗ ≤T′,

|P(t) − P(t)| � P t
∗+

(  −
a1a7b2k2 + a2a3a7k1

CA k1 + m3(  k2 + m3( 
−

μ
1 − e

− CT




e

− C t− t∗( )

� w t
∗+

(  −
a1a7b2k2 + a2a3a7k1

CA k1 + m3(  k2 + m3( 
−

μ
1 − e

− CT




e

− C t− t∗( )

< M′ + μ( e
− C t− t∗( )

< M′ + μ( e
− Bn2T

< ε1.

(51)

It follows that
P(t) − ε1 <P(t)<w(t). (52)

Similar to Step 1, we then obtain

z t
∗

+ T′(  � z n1T + n2T + n3T( 

≥ z t
∗

+ n2T( ηn3 .
(53)

According to the first equation of (5),

dz

dt
�

a5f1(z)

k3 + f
2
1(z) 

+
a6f2(z)

k4 + f
2
2(z) 

⎡⎢⎣ ⎤⎥⎦zw − b3z, t≠ nT

≥ M1w − b3 z

� M1m1′ − b3 z

� η1z,

z t
∗

(  � (1 − ρ)z(t), t � nT.

(54)

By integrating (54) over [t∗, t∗ + n2T], it follows that

z t
∗

+ n2T( ≥ z t
∗

( e
η1 n2T( )

≥ z t
∗

( (1 − ρ)e
η1 n2T( )

≥m3(1 − ρ)
n2e

η1 n2T( )

≥m3(1 − ρ)
n2e

η1 n2+1( )T( ).

(55)

%erefore, we obtain

z t
∗

+ T′( ≥ z t
∗

+ n2T( ηn3

≥m3(1 − ρ)
n2e

η1 n2+1( )T( )ηn3

>m3,

(56)

which is a contradiction, and hence, z(t2)>m3 for some
t2 ∈ (t∗, t∗ + T′].

Next, we let t � inf
t>t∗

z(t)>m3 . It follows that z(t)<m3
for t ∈ (t∗,t), and we can obtain z(t) � m3 by the continuity
of z(t). %en, l ∈ Z+ is chosen where l≤ n2 + n3 and
t∗ + lT≥t. Suppose t ∈ (t∗ + (l − 1)T, t∗ + lT]. From (54),
we obtain

z(t)≥ z t
∗

+(l − 1)T( (1 − ρ)
l− 1

e
η1 t− t∗+(l− 1)T( )( )

≥m3(1 − ρ)
l
e

η1 t− t∗( )( )

≥m3(1 − ρ)
n2+n3e

η1lT

≥m3(1 − ρ)
n2+n3e

η1 n2+n3( )T
.

(57)

Since η1 is negative and l< n2 + n3, we let

m2 � m3(1 − ρ)
n2+n3e

η1 n2+n3( )T
, (58)

so that z(t)≥m2 for (t∗,t). We can use t instead of t∗, the
proof can be proceeded in the same manner and conse-
quently, we will obtain z(t)≥m2 for sufficiently large t.

Case 2. t∗ ≠ nT for all n ∈ Z+. %en, for t ∈ [t1, t∗), we have
z(t)≥m3 and z(t∗) � m3. We assume that there exists
n1′ ∈ Z+ such that t∗ ∈ (n1′T, (n1′ + 1)T). %is leads to the
following two possible subcases:

Case 2.1: for all t ∈ (t∗, (n1′ + 1)T], z(t)≤m3. If there
exists a constant t2′ ∈ [(n1′ + 1)T, (n1′ + 1)T + T′], then
we can claim that z(t2′)>m3. Otherwise, let us consider
(38) with P((n1′ + 1)T+) � w((n1′ + 1)T+). For
t ∈ (nT, (n + 1)T], n1′ + 1≤ n≤ n1′ + 1 + n2 + n3, it fol-
lows that

P(t) � P n1′ + 1( T
+

(  −
a1a7b2k2 + a2a3a7k1

CA k1 + m3(  k2 + m3( 
−

μ
1 − e

− CT
 e

− C t− n1′+1( )T( ) + P(t). (59)

By a similar argument in Case 1, we have

|P(t) − P(t)|< ε1, (60)

for n2T≤ t − t∗. It follows that
P(t) − ε1 <P(t)≤w(t). (61)
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Since n2T≤ (n1′ + 1 + n2)T − t∗, we then have

z n1′ + 1 + n2( T( ≥ z t
∗

( e
η1 n1′+1+n2( )T− t∗( )

≥ z t
∗

( (1 − ρ)
n2e

η1 n1′+1+n2( )T− t∗( )

≥m3(1 − ρ)
n2e

η1 n2+1( )T
.

(62)

%us,

z n1′ + 1 + n2 + n3( T( ≥ z n1′ + 1 + n2( T( ηn3

≥m3(1 − ρ)
n2e

η1 n2+1( )Tηn3

>m3,

(63)

which is a contradiction. %erefore, we obtain
z(t2′)>m3 for some t2′ ∈ [(n1′ + 1)T, (n1′ + 1)T + T′].
Next, we assume that t � inf

t>t∗
z(t)>m3 . %en, we have

z(t)≤m3 for t ∈ [t∗, t) and z(t) � m3. Suppose that
t ∈ (n1′T + (l′ − 1)T, n1′T + l′T] and a positive number
l′ is chosen for which l′ ≤ n2 + n3 + 1. From (54), we
obtain

z(t)≥ z n1′T + l′ − 1( T( e
η1 t− n1′T+ l′− 1( )T( )( ),

z n1′T + l′ − 1( T( ≥ z t
∗

( e
η1 n1′T+ l′− 1( )T− t∗( ).

(64)

%erefore,

z(t)≥ z n1′T + l′ − 1( T( (1 − ρ)
l− 1

e
η1 t− n1′T+ l′− 1( )T( )( )

≥ z t
∗

( (1 − ρ)
l− 1

e
η1 t− t∗( )

≥m3(1 − ρ)
l′− 1

e
η1 t− t∗( )

.

(65)

Since n1′T + (l′ − 1)T< t≤ n1′T + l′T and n1′T< t∗ < (n1′
+1)T, we then obtain t − t∗ ≤ l′T< (n2 + n3 + 1)T.

%us,

z(t)≥m3(1 − ρ)
n2+n3e

η1 n2+n3+1( )T
. (66)

We let

m2 � m3(1 − ρ)
n2+n3e

η1 n2+n3+1( )T
. (67)

It follows that z(t)≥m2 for t ∈ (t∗, t). We can use t

instead of t∗, the proof can be proceeded in the same
manner, and consequently, we will obtain z(t)≥m2 for
sufficiently large t.
Case 2.2: there exists t″ ∈ (t∗, (n1′ + 1)T] such that
z(t″)>m3. We assume that t � inf

t>t∗
z(t)>m3 . %en,

we have z(t)<m3 for t ∈ [t∗, t), and z(t) � m3. Since
t< (n1′ + 1)T< t∗ + T, for t ∈ [t∗, t), we obtain the
following:

z(t)≥ z t
∗

( e
η1 t− t∗( )

≥m3e
η1T

� m2.

(68)

Since z(t)≥m3, we can proceed the proof in the same
manner for t> t . We then have z(t)≥m2 for t≥ t1 because
m2 <m2 <m3 and the proof is complete.

5. Periodic Solution: Existence and Stability

To investigate the possibility of a bifurcation of the nontrivial
periodic solution to systems (5) and (6) near (0, w(t)), we
first interchange the variables of z and w for convenience on
computation. In what follows, let us consider the following
system instead:

dz

dt
� a7f1(w) −

a8f1(w)z

k5 + f1(w)
−

a9f2(w)z

k6 + f2(w)
− b4z,

dw

dt
�

a5f1(w)

k3 + f
2
1(w) 

+
a6f2(w)

k4 + f
2
2(w) 

⎡⎢⎣ ⎤⎥⎦zw − b3w,

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

t ≠ nT,

(69)

with

Δz(t) � μ,

Δw(t) � − ρw(t),
t � nT. (70)

Let

G1(z, w) � a7f1(w) −
a8f1(w)z

k5 + f1(w)
−

a9f2(w)z

k6 + f2(w)
− b4z,

G2(z, w) �
a5f1(w)

k3 + f
2
1(w) 

+
a6f2(w)

k4 + f
2
2(w) 

⎡⎢⎣ ⎤⎥⎦zw − b3w.

(71)

Note that

f1(w) �
a1b2

A k1 + w( 
+

a2a3

A k2 + w( 
,

f1′(w) � −
a1b2

A k1 + w( 
2 +

a2a3

A k2 + w( 
2

⎛⎝ ⎞⎠,

f2(w) �
a3

b2 k2 + w( 
+

a1a4

A k1 + w( 
+

a2a3a4

Ab2 k2 + w( 
,

f2′(w) � −
a3

b2 k2 + w( 
2 +

a1a4

A k1 + w( 
2 +

a2a3a4

Ab2 k2 + w( 
2

⎛⎝ ⎞⎠.

(72)

According to Lakmeche and Ario [45], the following
notations are used:

International Journal of Mathematics and Mathematical Sciences 9



zΦ1
zw

�
zΦ2
zz

� 0,

zΦ1
zz

� 1,

zΦ2
zw

� 1 − ρ,

z
2Φ1

zz zw
�

z
2Φ2

zz zw
�

z
2Φ2

zw
2 ,

Θ1(z, w) � z + μ,

Θ2(z, w) � (1 − ρ)w,

ζ(t) � ( w(t), 0)
T
,

S0 � w τ0( , 0( 
T
,

τ0 � Tmax.

(73)

And, we have

zG1(ζ(r))

zz
� −

a8f1(0)

k5 + f1(0)
−

a9f2(0)

k6 + f2(0)
− b4 � − C,

zG2(ζ(r))

zw
�

a5f1(0)

k3 + f
2
1(0)

+
a6f2(0)

k4 + f
2
2(0)

 w(r) − b3 � Dw(r) − b3,

zG1(ζ(r))

zw
� a7f1′(0) − a8 w(r)

f1′(0)

k5 + f1(0)
−

f1′(0)f1(0)

k5 + f1(0)( 
2

⎛⎝ ⎞⎠ − a9 w(r)
f2′(0)

k6 + f2(0)
−

f2′(0)f2(0)

k6 + f2(0)( 
2

⎛⎝ ⎞⎠,

zG2(ζ(r))

zz zw
�

a5f1(0)

k3 + f
2
1(0)

+
a6f2(0)

k4 + f
2
2(0)

� D,

zG2(ζ(r))

zw
2 � 2a5 w(r)

f1′(0)

k3 + f
2
1(0)

−
2f1′(0)f

2
1(0)

k3 + f
2
1(0) 

2
⎛⎜⎝ ⎞⎟⎠ + 2a6 w(r)

f2′(0)

k4 + f
2
2(0)

−
2f2′(0)f

2
2(0)

k4 + f
2
2(0) 

2
⎛⎜⎝ ⎞⎟⎠,

zΦ1 τ0, S0( 

zτ
�

zw τ0, S0( 

zt
�

− Cμ exp − Cτ0( 

1 − exp − Cτ0( 
< 0,

zΦ1 τ0, S0( 

zz
� exp 

τ0

0

zG1(ζ(r))

zz
dr  � exp − Cτ0( > 0,

zΦ1 τ0, S0( 

zw
� 

τ0

0
exp

zG1(ζ(r))

zz
dr 

zG1(ζ(]))

zw
exp 

]

0

zG2(ζ(r))

zw
dr d]

� 
τ0

0
exp − C τ0 − ]( (  × a7f1′(0) − a8 w(])

f1′(0)

k5 + f1(0)
−

f1′(0)f1(0)

k5 + f1(0)( 
2

⎛⎝ ⎞⎠⎡⎢⎢⎣

− a9 w(])
f2′(0)

k6 + f2(0)
−

f2′(0)f2(0)

k6 + f2(0)( 
2

⎛⎝ ⎞⎠⎤⎥⎥⎦ × exp 
v

0
Dw(r) − b3(  dr(  d],

zΦ2 τ0, S0( 

zw
� exp 

τ0

0

zG2(ζ(r))

zw
dr  � exp 

τ0

0
Dw(r) − b3(  dr > 0,

z
2Φ2 τ0, S0( 

zz zw
� 

τ0

0
exp 

τ0

v

zG2(ζ(r))

zw
dr 

z
2
G2(ζ(]))

zz zw
exp 

v

0

zG2(ζ(r))

zw
dr dv

� 
τ0

0
exp 

τ0

]
Dw(r) − b3(  dr D exp 

v

0
Dw(r) − b3(  dr d]> 0,
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z
2Φ2 τ0, S0( 

zw
2 � 

τ0

0
exp 

τ0

v

zG2(ζ(r))

zw
dr 

z
2
G2(ζ(υ))

zw
2 exp 

v

0

zG2(ζ(r))

zw
dr d]

+ 
τ0

0
exp 

τ0

v

zG2(ζ(r))

zw
dr 

z
2
G2(ζ(r))

zz zw
 

× 
v

0
exp 

v

θ

zG1(ζ(r))

zz
dr 

zG1(ζ(θ))

zw
exp 

θ

0

zG2(ζ(r))

zw
dr dθ d],

z
2Φ2 τ0, S0( 

zw zτ
�

zG2 ζ τ0( ( 

zw
exp 

τ0

0

zG2(ζ(r))

zw
dr 

� Dw τ0(  − b3( exp 
τ0

0
Dw(r) − b3(  dr .

(74)

Now, we can compute

d0′ � 1 −
zΘ2
zw

zΦ2
zw

 
τ0 ,S0( )

� 1 − (1 − ρ)exp 
τ0

0
Dw(r) − b3(  dr ,

(75)

where τ0 is the root of d0′ � 0 and

a0′ � 1 −
zΘ1
zz

zΦ1
zz

 
τ0 ,S0( )

� 1 − exp − Cτ0( > 0,

b0′ � −
zΘ1
zz

zΦ1
zw

+
zΘ1
zw

zΦ2
zw

 
τ0 ,S0( )

� −
zΘ1 τ0, S0( 

zw
,

I � −
z
2Θ2

zz zw

zΦ1 τ0, S0( 

zτ
+

zΦ1 τ0, S0( 

zz

1
a0′

zΘ1
zz

zΦ1 τ0, S0( 

zτ
 

zΦ2 τ0, S0( 

zw
−

zΘ2
zw

z
2Φ2 τ0, S0( 

zz zw

1
a0′

zΘ1
zz

zΦ1 τ0, S0( 

zτ
+

zΦ2 τ0, S0( 

zτ zw
 

� − (1 − ρ)

z
2Φ2 τ0, S0( 

zz zw

1
1 − exp − Cτ0( 

zΦ1 τ0, S0( 

zτ
+ Dw τ0(  − b3( exp 

τ0

0
Dw(r) − b3( dr  

� − (1 − ρ)exp
Dμ
C

+
DB τ0

C
− b3τ0 

− C Dτ0μ exp − Cτ0( 

1 − exp − Cτ0( ( 
2 + Dw τ0(  − b3

⎛⎝ ⎞⎠,

J � − 2
z
2Θ2

zz zw
−

b0′

a0′
zΦ1 τ0, S0( 

zz
+

zΦ1 τ0, S0( 

zw
 

zΦ2 τ0, S0( 

zw
−

z
2Θ2

zw
2

zΦ2 τ0, S0( 

zw
 

2

+ 2
zΦ2
zw

b0′

a0′
z
2Φ2 τ0, S0( 

zw zz
−

zΘ2
zw

z
2Φ2 τ0, S0( 

zw
2

� 2(1 − ρ)
b0′

a0′
z
2Φ2 τ0, S0( 

zw zz
− (1 − ρ)

z
2Φ2 τ0, S0( 

zw
2 .

(76)
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We can see that I> 0 if

T>
1
C
ln 1 +

μC D

b3C − B D
 , (77)

μ<
B

C
−

b3

D
, (78)

while J< 0 provided that (19) and

B

C
K1 + K2( >K0, (79)

k3 <f
2
1(0), (80)

k4 <f
2
2(0), (81)

hold where K0 � a7f1′(0), K1 � − (a8k5f1′(0)/(k5 + f1(0))2)

and K2 � − (a9k6f2′(0)/(k6 + f2(0))2).

%is leads to the following theorem according to Lak-
meche and Ario [45].

Theorem 3. If (19), (77), and (78) hold, then systems (5) and
(6) have a positive periodic solution.

6. Numerical Simulations

In this section, numerical simulations are performed to
illustrate the theoretical predictions as proved in the
previous section.

To illustrate the theoretical prediction in %eorem 1, the
parameters in systems (5) and (6) are chosen to satisfy the
conditions in (18) and (20) as follows: a1 � 0.32, a2
� 0.58, a3 � 0.19, a4 � 0.39, a5 � 0.1, a6 � 0.34, a7 � 0.91, a8
� 0.7, a9 � 0.03, b1 � 0.98, b2 � 0.68, b3 � 0.25, b4 � 0.15, k1
� 0.56, k2 � 0.95, k3 � 0.96, k4 � 0.99, k5 � 0.84, k6 � 0.65, μ
� 0.01, ρ � 0.2, T � 1, z(0) � 0.1, and w(0) � 0.1. %e com-
puter simulation is shown in Figure 1. We can see that the
solution of systems (5) and (6) converges asymptotically to the
oscillating solution (0, w(t)) as time passes for which the active
osteoblasts are vanished as predicted in %eorem 1.

To illustrate the theoretical prediction in %eorem 2, the
parameters in systems (5) and (6) are chosen to satisfy the
conditions in (10), (19), and (30) as follows: a1 � 0.32, a2
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Figure 1: A computer simulation of systems (5) and (6).%e solution trajectory approaches oscillatory solution (0, w(t)) when time passes.
Here, a1 � 0.32, a2 � 0.58, a3 � 0.19, a4 � 0.39, a5 � 0.1, a6 � 0.34, a7 � 0.91, a8 � 0.7, a9 � 0.03, b1 � 0.98, b2 � 0.68, b3 � 0.25, b4
� 0.15, k1 � 0.56, k2 � 0.95, k3 � 0.96, k4 � 0.99, k5 � 0.84, k6 � 0.65, μ � 0.01, ρ � 0.2, T � 1, z(0) � 0.1, and w(0) � 0.1 in which all
conditions in %eorem 1 are satisfied.
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� 0.58, a3 � 0.19, a4 � 0.39, a5 � 0.1, a6 � 0.34, a7 � 0.91, a8
� 0.7, a9 � 0.03, b1 � 0.98, b2 � 0.68, b3 � 0.01, b4 � 0.5, k1 �

0.56, k2 � 0.95, k3 � 0.96, k4 � 0.99, k5 � 0.84, k6 � 0.65, μ
� 0.1, ρ � 0.1, T � 5, z(0) � 0.1, and w(0) � 0.1. %e com-
puter simulation is shown in Figure 2. We can see that the
solution of systems (5) and (6) are bounded above and
bounded below, and hence, the system shows permanence as
predicted in %eorem 2.

To illustrate the theoretical prediction in %eorem 3, the
parameters in systems (5) and (6) are chosen to satisfy the
conditions in (29), (77), (78), and (79)-(81) as follows: a1 �

0.32, a2 � 0.58, a3 � 0.19, a4 � 0.39, a5 � 0.1, a6 � 0.34, a7
� 0.91, a8 � 0.7, a9 � 0.03, b1 � 0.98, b2 � 0.68, b3 � 0.01, b4
� 0.5, k1 � 0.56, k2 � 0.95, k3 � 0.96, k4 � 0.2, k5 � 0.84, k6
� 0.65, μ � 0.1, ρ � 0.1, T � 10, z(0) � 0.1, and w(0) � 0.1.

%e computer simulation is shown in Figure 3. We can see
that the solution of systems (5) and (6) exhibits sustained
oscillations as predicted in %eorem 3.

In addition, to illustrate the effect of different periods
between each estrogen administration, computer simula-
tions of systems (5) and (6) for T � 1, 5, 10, 15 when a1 �

0.32, a2 � 0.58, a3 � 0.19, a4 � 0.39, a5 � 0.1, a6 � 0.34, a7
� 0.91, a8 � 0.7, a9 � 0.03, b1 � 0.98, b2 � 0.68, b3 � 0.25, b4
� 0.15, k1 � 0.56, k2 � 0.95, k3 � 0.96, k4 � 0.99, k5
� 0.84, k6 � 0.65, μ � 0.01, ρ � 0.2, z(0) � 0.5, andw(0)

� 0.5 are as shown in Figure 4.
As shown in Figure 4, we can see that the period between

each estrogen administration T is significant. %e smaller
value of T yields the better result on the number of osteo-
clasts and osteoblasts.
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Figure 2: A computer simulation of systems (5) and (6) showing the permanence of the system. Here, a1 � 0.32, a2
� 0.58, a3 � 0.19, a4 � 0.39, a5 � 0.1, a6 � 0.34, a7 � 0.91, a8 � 0.7, a9 � 0.03, b1 � 0.98, b2 � 0.68, b3 � 0.01, b4 � 0.5, k1 � 0.56, k2 � 0.95,

k3 � 0.96, k4 � 0.99, k5 � 0.84, k6 � 0.65, μ � 0.1, ρ � 0.1, T � 5, z(0) � 0.1, and w(0) � 0.1 in which all conditions in %eorem 2 are
satisfied.
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Figure 3: A computer simulation of systems (5) and (6). %e solution exhibits sustained oscillations. Here, a1 � 0.32, a2 �

0.58, a3 � 0.19, a4 � 0.39, a5 � 0.1, a6 � 0.34, a7 � 0.91, a8 � 0.7, a9 � 0.03, b1 � 0.98, b2 � 0.68, b3 � 0.01, b4 � 0.5, k1 � 0.56, k2 � 0.95, k3
� 0.96, k4 � 0.2, k5 � 0.84, k6 � 0.65, μ � 0.1, ρ � 0.1, T � 10, z(0) � 0.1, and w(0) � 0.1, in which all conditions in %eorem 3 are
satisfied.
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7. Conclusion

In this paper, an impulsive mathematical model of the
process of bone remodeling accounted for bone-resorbing
cells, osteoclasts, and bone-forming cells, osteoblasts, is
developed in order to investigate the effect of impulsive
estrogen supplement. %e effects of parathyroid hormone
and prolactin are also taken into account. We then apply the
Floquet theory and the comparison theorem to derive the
conditions in which the periodic solution is locally as-
ymptotically stable. Moreover, the permanence of the system
is also investigated as well so that we arrived at the con-
ditions for which the sustained oscillation of the solution is
guaranteed. In addition, computer simulations are presented
to illustrate the theoretical predictions. %e results indicate
that the dosage of estrogen supplement indicated by μ and ρ

and the frequency of estrogen supplement indicated by 1/T
play important roles in the treatment of osteoporosis pa-
tients. Even though the smaller value of T yields the better
result on the number of osteoclasts and osteoblasts, the side
effects of estrogen administration are also needed to take
into account. %erefore, the appropriate dosage and fre-
quency of estrogen supplement that could control the
number of bone-forming cells and bone-resorbing cells to lie
within the desirable range might lead to an efficient treat-
ment in osteoporosis patients.

Data Availability

%e data/information supporting the formulation of the
mathematical model in this paper are/is from previously re-
ported studies and datasets, which have been cited in the paper.
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Figure 4: Computer simulations of systems (5) and (6) for T � 1, 5, 10, 15 when a1 � 0.32, a2 � 0.58, a3 � 0.19, a4 � 0.39, a5 � 0.1, a6 �

0.34, a7 � 0.91, a8 � 0.7, a9 � 0.03, b1 � 0.98, b2 � 0.68, b3 � 0.25, b4 � 0.15, k1 � 0.56, k2 � 0.95, k3 � 0.96, k4 � 0.99, k5 � 0.84, k6
� 0.65, μ � 0.01, ρ � 0.2, z(0) � 0.5, andw(0) � 0.5.
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