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We study determinants of the square-type Stirling matrix S* and the square-type Bell matrix B*. For this purpose, we prove that §*
and B* have LU factorizations S* = LgUg and B* = LgU where the diagonal entries of Ug are k¥~ !, while those of U are k! (k > 1).

1. Introduction r1 1
The Stirling numbers s, , (1, n > 0) of second kind count the 11
number of ways to partition an m element set into n subsets.
The Stirling matrix S = [s,.,] satisfies a recurrence rule 1 3 1
Sl = Smn (n+1)s,,, [1]. The sum }" s, ;. of the S = [si’j] = ,
m" row of S is called the m™ Bell number B(m), so 17 6 1
{B(m)|m=0}={1,1,2,5,15,...}. A triangular matrix B =
[b;;] having Bell numbers on both border and holding 1152510 1
bi+1’j+1 = b,»’j + biﬂ’j (i, j=1) is called the Bell 1r~1atrix [2]. i ]
Since every entries in the first row and column of S are zeros (1)
except s,y = 1, we denote by S the Stirling matrix deleted in M1 ]
the first row and column from S.
- - 1 2
1
01 2 3 5
_ o1 1 B=[b,| = B2l
S- 5 7 10 15
01 31
01 7 61 15 20 27 37 52
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Let

ri 1 1 17
6 10

S'=|1 7 25 65 |,
1 15 90 350
5 151 )
10 37
B* =2 7 27 114|,
5 20 87 409

—
W

1
—_
w N

be a square-type Stirling matrix and a square-type Bell
matrix. In the work, we study the determinants of $* and B*
by finding their LU factorizations. In fact, we prove that $*
has an LU factorization §* = LgUg, where Lg = S and U has
diagonal entries 1,2,32,4%,... (Theorem 2), and B* has an
LU factorization B* = LyUp where Ly = SP along with the
Pascal matrix P and Uy has diagonal entries 1,1,2!,3!,...
(Theorem 12). This consideration is motivated by the
square-type Pascal matrix

111

L1203
P = , (3)
136

where its LU factorization is P* = PPT [3] so detP* = 1.
Note that detB;, was discussed in [4] by means of Hankel
transformation. Our feature in the work is to study detB;; by
recurrence rules of Bell numbers over an LU factorization of
B;. For our notations, with a matrix M, M, denotes the size
kxk, and let r;(M;) and c;(M;) be the i" row and j"
column of M. Write (x,...,x,a,b,...) and
(a,b,...,x,...,x)simplyby (x';a,b,...)and (a,b,...;x")

with the ¢ copies X' of x. Therefore, (x';r;(M})) means a
row matrix having t x’s followed by a row matrix r; (M),
and similarly, (X' icj (M;)) means a column matrix
x
. Let di[a,b,...] be a diagonal matrix having
¢ (Mk)
diagonal entries a,b, .. ..

2. Square-Type Stirling Matrix

Fori, j>1,letr;(S) and c;(S) (resp., r; (S"") and ¢; (S™")) be
the i row and j column of S (resp., S~!). Since S and S~ !
are lower triangular matrices, r;(S) and r;(S™!) can be
considered as of size 1 x 7, while ¢j (S) and ¢j (S~ 1) are of size
0o x 1. But, if necessary, like the case of multiplication
r; (8)c; (S), we may regard r;(S) filled with infinitely many
zeros after the first i entries.

Lemma 1. Let S=[s;;], S' = [s{;], and S* = [s};] for
i, j>1. Letr;(S") and c; (S*) be the i" row and j" column of
S*.

(D) In'S, sy jo1 = sij+ (G+ s j and cjy (S) = (05¢;
)+ (G +1D(0;¢5, (S))

(2) InS” 1’ Sl+1 ,j+1 = 1V] 1]+1 ’17/1145, 1+11 ( 1) l' and
Z’J 157 =0 fori>2.

(3)In 8§, si;=s;j,; and s;;=s]; ! +]sl L And,

¢;j(8") =¢;.1(8) +j(05¢
¢y (8 + (0

(5*)) =YLt
¢;(87) = X% i (0'5¢,1 (8.

Proof. The recurrence in (1) is well known [5]. The column
€j.1(S) is

T
Cir1 (8) =00 50,8501 ji1> Sjun jars Sjas jins - - )

The inverse S™! is the signed Stirling matrix of first kind
[6] satisfying the recurrence s, From

I=8.'S, = [r;(S,"¢;(S)],

ZJ 1 51 fori>2, since ¢, (S) is composed of all 1s. Moreover,

iV
i+1,j+1 ~ t,j AT

we have 0=r,(S"1)c,(S) =

simple computation of $™' shows s}, (1<i<5) equals
1,-1,2,-31,4l, respectively. Hence, if we
s¥,11 = (~1)'i! for some i, then sY,, | = s}, ;-
—(+1) (=D = (D)™ G+ 1)

Comparing

assume
. V —
(i+1)sf, =

_; T
. . .
07555 Sju1,j + U+ Dsjerjo Sjanj + (4 DSjan jers - )

1¢;(9) + (i + (054, ().

(4)
= T i —j T
055,800 8j2p0--) + G+ D(050,8)4 1015 Sj0 010 -)
=(0
[S11 S22 S33 ]
X . S2,1 S32 S43
S =i5i,ji = (5)
S31 Sa2 S5
with S = [sl]] it is easy to see 51*1' = Sivjo1,j and
st; =i+ jsiy, ;- Now, for the j" column ¢;(8"), we have
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Cj (8) = Cj—l(s + ]( i€ (S*))

)
=Cj—1 (S*)+](0,C] 1(8 )+](O,C](S )))
)

=cj_1(S +](O,c] L (S* ))+] (0 ici (S ))+] (0 ,c](S ))

Il
1]
gk
.
1N
—~
(=]}
a8
o
-
_
—
%)
*
~—
SN—"

Theorem 1. ri(S’l)(ﬁj_t;cj(S*)) =0 forall 0<t<j<i.

Proof. Note that ¢ (§*) = (51],52],53], )b = (sj,j,
)" and (S)— "

Siel,j> Sje2,jo -

(SO e (8) = (s 2, ¢a(87) +i(0se

r(s)(0"

Thus, by assuming r; (s H " c;(§*))=0for1<t<j-2,
we have ri(S‘l)(ﬁ;cj(S*)):ri(S‘ 1)(6;61»_1 (8*)+ j(0sc;
(8))) = r; (S (05¢;4 (S*))+]'7’i(571)(62;6j (§))=0. O

Theorem 2. S* has an LU factorization SX, where X is an

upper triangular matrzx having diagonal entries il (i>1).
Therefore, detS; = TE, i .

(S )). Hence, we have

r,-(S 1) ¢ 1(S)+]r(

= I:Z;jt(ﬁt;cj_l (8)) + jk<6k?cj (S*)>

(6)
A |
(SO ¢ (8) =1, (Sej () =0 from STIS=1.
When t = 2, by Lemma 1 (3), we have
1(5))
sci (S ))+]r( )(ﬁj_l;cj(s*)) (7)

e (S) =

Proof. Let [x; ] X = S’lS* Then, Lemma 1 (2) shows
x; =1 (S 1)cl(S )=Yi_s sy, = 0 for all i>1, since all en-
tries in ¢, (§*) are 1. And,

Xi2 :ri(sil)cz(s )—r( )(Cl(s ) +2(0;¢,(S7)))

Xij-1 = ri(Sil)Cz’—l (87) = 71'(571) (ci2(87) + (= 1)(0;¢,,(S7)))

=X, +({-1r (

which shows X is an upper triangular matrix. Now, for x;,
we have

=r($° 1)c,(

= (S 1)( N +i(0;¢4(ST)) +---
(S 1) Ci— 1(3 )+”’( s )(05Ci—1(5*))+

=i (s ) =i

+i (ST (07 %6y (7)) +i

=x;, + 2ri(Sf )(0; 6 (S%)) =0,
(8)
by Theorem 1. Thus, by assuming x;; , = 0, we have
(9)
D(0:¢5(57))) =0,
+i72(0 %6, (87) 71075 (SM))
: (10)

(S0 e (8)
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Indeed, 71 (P) = (r; (P); 0) + (0; 7, (P)), .
11 1 1 1 111 1 ¢jn (P) =(05¢;(P)) +(0:¢;,, (P))-
13 6 10 11 25 9
S = = )
1 7 25 65 131 3% 37
Theorem 3. For any 1<j<k, di[0,1,...,k—1] (0;c;
11 1761 4 ) e g
5 90 350 - (Pr1)) = jcj (Py) and ri (P)di[2K, ..., 2,1] = r (P)Py.

Proof. Due to the binomial identity p( p-1 ) = q( p ) for
3. Bell Matrix with the Pascal Matrix 1

p,q=1, we have q-1

Let 7;(P) and ¢ (P) be the i™ row and jth column of the
Pascal matrix P = [pij] Gj=1). Well-known recurrence
rules of 7;(P) and ¢ (P) are

i\ [+ j+2 k-1\\"
(U I))
j j j j
/-1 j j+1 k-2\\"
Ay o) ()
j-1 j-1 j-1 j-1 (13)
] CL Vi L L Oy )
=di[0,...,j-1;j,...,k=1]{ 0,0" °, , , yeos
ji-1 ji-1 ji-1 ji-1

=di[0,1,...,k = 1](0;¢; (Pyy))-

Clearly, r;(P)di[2%,2,1] = (1,2, 1)P;. Assume
(PP, = r, (P)di[25°1,...,2,1] for some k. Note that
r;(P) is the set of coeflicients of (x + 17! and r; (P)P;
equals ; (P?) which is the set of coefficients of (2x + 1)

expanded in descending order. Thus, (12) with (2x + )F =
2x(2x + DM 1+ 2x + DF! implies

Tis1 (P)Pyy; = thesetof coeft. of (2x + 1)F

= the set of coeff. of 2x (2x + 1) " + the set of coeff. of (2x + 1)

=2(ri (P)Py;0) + (05 74 (P)Py)

=(2r (P2, 1]50) +(0;r (P)i[2Y, 1))

2* 2k (14)
=(rPr0)| 2 [+ (@) 2!
1 1

= ((re (P): 0) + (0; 7 (P)))di[ 25, 1]

= 1 (P)i[25,.. 1],
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A matrix P = | pf ] is called a flipped matrix of P =
[p;;] if itis horizontafly flipped sideways of P,. Hence,

Pik - P
Py =0 P
sz 2,k 2,1 X
(15)
Prk 0 Pra

F .
Pij = Pik-jr1»  J <k

Theorem 4. Let r;(PLP,) be the i row of PLP, for 1<i<k.
Then,

(1) ry (PgP;) = 1. (P) and 1. (PEPy) = 1. (P) Py

ri(Pipk) ri—l(Pipk) +(7’i 1 P£-1Pk71)§ 0)

i-1

=15 (Py) + Z(rt(Pi—IPk—l); 0)-

t=1

We now develop some interrelations of the Bell matrix
B= [bi)j], square-type Bell matrix B* = [bi’fj], and Pascal
matrix P.

A
= ”H(ngk) +(ri—2(P£—1Pk—1); 0) +(ri—1(P£—1Pk—1)§ 0)
ri,3(P£Pk) +(ri—3(P£—1Pk—1)§ 0) +(ri—2(P£—1Pk—1); 0) +(”i71(P£-1Pk71)§ 0)

= rl(Pipk) +<7’1(P£—1Pk71)§0) +<7’2(P£—1Pk71); 0) LI

2)r; (prk) =Tia (ngk) +(riy (Pf_lpk_l); 0)= rg
(P + Yoy (r (PE_, Py_y); 0)

Proof. Clearly, r (PEP) =1, (PD)P; = (ﬁkfl; P, =
Ty (Pk) and Ty (Pipk) =Tk (Pg)Pk =T (Pk)Pk And, for

1<i<k, we have
ri(PePy) +(ri( Py Pt );0) = (r,(Py)) +(ri( Piey ) 0) Py

= ri+1(P£Pk)'
(16)
Thus, it follows immediately that
(17)
+(ri—1(Pf—1Pk—1); 0)
O

;l:eorem 5. Let c;(B") be the j™ column of B* for i, j<k.
en,

bi,j bl] bl]
bi+1,j bi+1,j bi+1,j+1
(1) Tht1 (P) = bi+k,j+k’ soP =
T i+2,] bi+2, j+2
bi+k,j
[ bj+1,1
N bj+2,1 N
(2) Pye;(B”) = » 507, (Py)c;(B") =bj,;;. (18)
..bj+k,1
bm,l [ bm+k,1 bm,l
b b b
5 m+1,1 m+k,2 £ m+1,1
(3) P,y = , SO ri(PkH) biki-
bm+k,1 L bm+k,k+1 bm+k,1
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Proof
bi)j
bi+1,j+1 =1, (P) b >
i+1,j
bi+2,j+2 = bi,j + 2bi+1,j + bi+2,j =r3(P) bi+1,j .
bi+2,j
So if we assume
bi’j
bi+1 j
5/
r (P) = biyk1), jk-1)> (20)
bi+(k—1),j
for some k, then
b,
5/
bi,j bi+1,j
bi+1,j
Tk+1(P) :Tk(P) +7’k(P)
bi+(k—1),j bi+k,j
bi+k,j
= bk, jHk-1) bi+k,j+(k—1) = Db, ko
(21)
bm,l [ 1 bm>1
F bm+1,1 11 bm+1,1
pk+1 =
bm+k,1 L1 k- k1 bm+k,1
bm+k— 1,1
=| b1 72 (P)
m+k,1

= (bm+k,l’ bm+k,2’ bm+k,3’ s

bl +7,0 (PP (BY), if j>1,
ri1 (P)c; (BY), if j=1.

Proof. Clearly, b;, = b;; =r;_; (P)c, (B*) by Theorem 5 (2).

Theorem 6. b; ;= {

125
And, observe b;"j (1<j<3)from B} = I:l 3 10] such that
27 27
by, =7=2+(1,1)(2,3)" =bj, +r, (PLP,) (b}, b;,)" and
biy=27=7+(2,1)(510)" = b3, +r, (PyP,) (b} 5, b3,)".

by recurrence (12). Comparing B* = [b};] with B = [b; ;], we
have

i,j i+j-1,j°
bij = b;ﬂ,p (22)
by, =b,, +b]

. b.., .
_ 1) . .
2j = b]<+ 71, (1) implies
3,j J+2.j

b b, b

i Joj J+L1
P.c (B*) _p Jj+1,j bj+1,j+1 _ bj+2,1
k€ = Ly = =
bj+k—1,j bj+k—1,j+k—1 bj+k,1
(23)
Moreover, (1) gives rise to (3) such that
(24)
bm+k— 2,1 bm,l !
} T3 (P) bm+k— L1 |- Tket (P)
bm+k,1 bm+k,1
T
’bm+k,k+l) .
O
15
. B; 37 . . . ¥
From Bj = 3 114 I bi; (1<j<4) satisfy by,=

5,20,87 409
20=5+(1,2,1)(2,3,7) =bj,+ 1, (PLPy) (b ,,b3,,b3,)", by
=87 =20+ (2,3,1) (5,10,27)" = b},+r, (P} P,)
(b} 5, b35,b3,)", and b}, =409 =87 + (4,4,1)
(15,37,114)" = b} + 5 (PLP;) (b}, b3, b))
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Now, for some i, we assume b7, =b/, j+71;,
F * H H * _ _Iy*
(P;_,Piy)c; (BY) for all 1< j<i. Then, bi+1,j —bi’j+1 bi’j

equals

b; _(b;,j"'r'(Pz}':—lPi—l)C'H B*))_(b* 1+rj—1(Pf—1Pi—l)Cj(B*)

i+l,j j

=(b?‘.—b*

J

F
ij i,j—l) +(rj(Pi—1Pi—1

But, since

rj(le':—IPi—l)CjH (B*) = rj(Pil)Pi—lcjﬂ (B*) = rj(Pi1)

rj—l(Pf—lpi—l)Cj (B") = bi+j—1,j—1>

by Theorem 5, we have

* * %
bi+1,j = (bi,j - bi,j—l) +(bi+j,j - bi+j—1,j—1)

*

* F
= bi+1,j—1 +byjj1 = bi+1,j—1 + rj—l(pi )

)Cj+1 (B") - rj—l(Pi—IPi—l)Cj (B ))
bj+2,1
bj+3,1 .
o (26)
bj+i,1
r b])] -
bj+1,j+1
bj+2,j+2 (27)
..bj+i—1,j+i—1 -

= bzirl,j—l + rj—l(Pf)PiCj (B") = bz:l,j—l + rj—l(PfPi)Cj (BY).

4. LU Factorization of the Square-Type
Bell Matrix

We are ready to have an LU factorization of B] = [b; j] with
diagonal entries.

Theorem 7. B; = LU, (1<k<5) where the lower trian-
gular matrix L, = S, P, and the upper triangular matrix U,
has diagonal entries {1, 1,2!,3!,4!}.

Proof. Let U = [u,-,j] (1<i, j<k) be with

U= bl’j, o
Upj = b;,j —Upj forall j>1.
12

Then, B;:[i g] yields U2=[0 X

i

]. And, B;Ugl =

=S, P, is a lower triangular matrix; denote it by L,.

125 U

From Bj=|13 10| clearly wu;;=5b7; and
27 27

u2’3 = b;,3 — 1/[1’3 =5 by (28). Let

s =3, = ra (BB b3,)" | - 20, forall j2 1. (29)

Then, the identity by,, | = 4, (P)c; (B*) in Theorem 5 (2)
implies b3, = r, (P) (b, b;)l)T, s0 uy; = 0 because u,; = 0.
Similarly, 15, = [b3, — 7, (P) (b}, 03,)" ] = 2u,, =2 -2
1=0, uys=[bi5—ry(P)(b]3,05,) 1 -2uy3=12-2-5=
2, SO

U, up; 125

U; = Uy | = 15]
Uz, Uzy U
3,10 3,2 "33 (30)
1
BiU;'=|11 |=5P;,
231
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is a lower triangular matrix and denote it by Ls.

15
From B} = B, 13174 , (28), and (29), we have
5,20,87 409

Uy = bi4, Uy = 53,4 —u =22, and uy, = [b§,4 —-r,(P)
(b} b3 )" ] = 2u, 4 = 18. Now, let
* * T .
Uy = [b4’j - 13 (P)c; (B )] - (5, 5)(u2,j,u3,j) , forall j>1.
(31)

Since by, =r3(P)c,(B*) and u,; =u;; =0, we have
Uy =0, uy, = [bz,z —13(P)c, (B*)] - (5,5) (Uz,z,um)T =
5-(55(L0)" =0, uyy=[bj;~r3(P)es (B)] - (5,5)
(Uyzou33) =35-(55)(52)" =0, and uyy, = [b],-
73 (P)cy (B¥)] = (5,5) (1434, u34)" = 6. Therefore,

[ 15
U, - U, 22
18
L0° 6
[ 1 1
g | O] ! 11 _3p
e 11 |[121 o
[5,10,6 1 131]JL1331
(32)
Denote it by L,.
From
- 59 -
151
B: = B, 523 |, (33)
2066
L 15,67,322,1657 9089 ]

(28), (29), and (31), give uy5= b;,s —u;5=99,
Uys = [b35 — 1y (P)cs (BY)] — 2uy 5 = 122, and w5 = [b -
73 (P)cs (BY)] = (5,5) (5, Uz 5)" = 84. Now, let

W =[b5; —ry(P)c;(B)| =3[ — 3 (P)c; (B)],

(34)
and l.et us;=Ws ;= (7,6) (M3,j,“4,j)T for j>1.

Since  wuy; =uy; =0, by, =r;(P)c,(B*), and
b;, =r,(P)c; (B), we have us; = 0. Also,
Usy =Uyy =uy3=0 and w3 =2 imply w5, =Ws,—
(7,6) (s, t4y,) =15-3.5=0, Us3 =Wss - (7,6)
(Usppus)' = 0=Ws,—(7,6) (18,6)" =us,, and
Uss = Wss — (7,6)(122,84)" = 4!. Hence,

-
U, 99
Us = 122 |,

4! | (35)

L 15,37,31,10 1

Denote it by Ls. 0

Note u; ; = (j— D! for 1 <j<5. From (34), we let
W, ;= [b; =1 (P)e;(BY)] = 3[b)y ; = ris (P)e; (BT) ],
forall j>1.
(36)

Theorem 8. Assume the matrix U, in Theorem 7 further
satisfies ug;=We ;=T (uy .. .,us,j)T and u;; =W~
I (”2,j> .. ,u6)j)T with row matrices I'y = (7,33,34,11) and
I's = (47,174,202,93,17). Then, for 1 <k <7, Uy is an upper
triangular matrix having uy; = (k- 1)l and L, = BjU;" isa
lower triangular matrix such that L, = S P,.

Proof. From

[ 203 7
674

. B! 2589

BG = > (37)

11155

52922

| 52,255,1335,7432,43833 272947 |

(28), ..., (34), show u,¢="bj,, u,s =471, usq =770,
uys = 810, and us 4 = 480. Let

T
us;=We = (tl’tz)ta’t4)(“2,j:”3,j’”4,j’“5,j) g

forsomet; € Z.

(38)

Note from Theorem 5 that u,, =uy, =u,, =us, =0,
bg’l =14(P)e; (B"), and b;,l = 15(P)c, (B*). Thus, ug, = 0by

(38). And, we also observe Ugy = Wey—
(tptytsty) (Uygeenn  Usy) =52-3-15— (t,ty,t5,t,)
(1;0)7,  so ug, =0 if ¢, =7. Similarly, since
W, =458 —3- 119, W, = 3292 - 3780, and

Wes = 22686 — 3 - 4949 from (36), in order to be w3, tg 4
and ug 5 all zeros, the identities
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sus3) = 101 = (7,65, 5,8,)(5,2;0°)

,u5,4)T =952 — (7,t,,t5,1,)(22,18,6,0)",

T
>

(39)

T
Jsg) =7839 = (7,15, t5,1,)(99,122,84,24)",

we get (u,,...
by (28), ..., (38). Now, let

,Ug;) = (877,2386,4832, 6840, 6240, 3240)

T
uy =Wy =(t, ... ,ts)(uz,]-, . ,ué)j) , forsomet; € Z.
(42)
Since u;; =0 (1<i<6), b; =rs(P)c;(B"), and

b;, =r5(P)c; (B*), we also have u;; = 0. In order to get
u;;=0(2<j<6), the integers t; (1 <i<5) are determined
as follows: Note that W, =203 - 352 from (36), so 0 =
Uy =Wy — (t,... ,t5)(1;0M7 implies £, = 47.

Analogously, with W, ; = 1957 - 3 - 458, W, , = 15254
~3.3292, W, 5 = 113139 - 322686, and W, = 837333 —
3.156972 from (36), we also have

(43)

Uy s = W, 5 — (47,174,202, 93, 15) (99, 122, 84,24,0)" = 0

u; ¢ = W —(47,174,202,93,17) (471,770, 810, 480, 120)T =0.

T
Uy = Woo = (t, bt b t5) (Uy gtz s .5 g ;) = 6L
Therefore,

Ugs =Wez—(t1,. - ,t4)(u2)3, .

Ugy =Wey— (... ,t4)(u2)4, .

Ugs =Wes— (... ,t4)(u2,5, .
yield t,=33, t;=34, and t,=11. Thus, with
W = 156972 — 3 - 31775 in (36), we have
Uge = W — (7,33,34,11) iy, . . ., usg)" = 5L,

Hence,
[ 2037
471
U, 770
U6 = >
810
480 (40)
(0”5
I Ls 0 —
Le=BsUs = = S¢P.
| 52,151,160,75,15 1
Similarly, from
[ 877
3263
B; 13744
B; = 64077 |,
325869
1788850
 203,1080,6097,36401,229114, 1515903 10515147 |
(41)
3\ T
Ups = Wy = (47,174, t5,1,,15)(5,2;0°) =0
Uy, =Wy, —(47,174,202,1,,5)(22,18,6:0° ) =0
Thus, with (t,,t,, 15ty t5) = (47,174,202,93,17) and
W,, =6301550 —3.1110280 from (36), we have



10

i 877 7

Proof. u,;=bj; and

L 203, 674, 856,520, 155,21 1 |
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Theorem 9. The above upper
Uy = [u;] (j=i) satisfies

(44)

% .
= mmbl)j withm, =1,

:(mZ,pmz,z)Cj (B3), with {mZ,t} =(-1,1),
=(m3 1, M35, M3 3) j(B;)With {mit} =(1,-3,1),

L= m4,1,...,m4’4)cA(BZ with {m,, } = (-1,8,-6,1),

=(1,-24,29,-10,1),
=(-1,89,-145,75,-15,1),

z

-+

=2
—— =— ——

3

&

g
— = ——

-415,814,-545,160,-21, 1).

uyj=by;—u j=-by,+b;; =

J
(-1, l)c (B3) by Theorems 7 and 8. Slmllarly, we have

Uy

o

o

= b;. -7, (p)(b;‘

b;’ )T] - 2u

= (b3, - (L 1)(8],.85, )T] 2(-L1)(b] . b5,)"
= (1,-3, 1)(b;"j,b;"j,b;"j)T = (1,-3,1)c; (B;)

[ * * * * T T *
= (b1 = ()b b303) | - (5.5) (1t o1 )" = (1,826, 1) (B,

Moreover, with ¢ (B*) = (b 2], ..)T, we also have

and, similarly, the rest u ; and u; ; follow immediately. [

us ;= [b3; —r(P)e; (B))] - 3[b}, — 3 (Pe; (B3)] ~ (7.6) (s oy ;)

= (1,-24,29,-10, 1)c; (B5),

matrix

(45)

(46)

(47)

With all m; ,’s in Theorem 9, write a lower triangular matrix
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-1 .
-1 1
1 -3 1
M, =[m,]=|-1 8 -6 1
1 -24 29 -10 1
-1 8 -145 75 -15 1
L 1 -415 814 -545 160 -21 1]
(48)
Then,
[1 25 15 52 203 877 7
1522 99 471 2386
2 18 122 770 4832
U, =M,B; = 6 84 810 6840 |, (49)
24 480 6240
120 3240
L 720 |
gives an LU factorization By = M;1U7, where
-1 .
1 1
2 3 1
L=M,'=|5 10 6 1 =3S,P,.
15 37 31 10 1
52 151 160 75 15 1
203 674 856 520 155 21 1]
(50)

ri(M) =(0,m,_ ...

On the other hand, by (22), the i th column ¢; (B*) of B*
satisfies

* * * *
by by, +by by
% % * *
2 2i-1 19351 3,i-1
¢;(B*) = = I Tl=aa B+
b; b;. . +b;
3 3i-1 T 0451 4,i-1
(55)

Thus, (52) and (55) together show

> mi,l)i,l) - (i- 2)(”’11'72,1» e

= (057, (M) = (i = 2)(r;, (M);0°) = (i -

Observe that the matrix M, = [m;,] is the exponential
Riordan array (without signs) (refer to [7]) satisfying a
recurrence rule

) . \T
mi :(mi—l,t+1’mi,t+l’mi+l,t+l)(l -1i1). (51)
M is also known as the coefficients of the Charlier poly-
nomial [8], and we may refer Table 3 in [9] for M~ ! = L.

Theorem 10. Let M = [m;,] be a matrix satisfying recur-
1
rence (51) with m; | = (-1)" ! and M, = [—1 1
1 31
the diagonal entries of the upper triangular matrix
Uy, = M B} are (k—1)! for all k> 1.

“. Then,

Proof. LetU = [u;;]. Then, U; = M;B; has diagonal entries
u; (1<i<7)as1,1,2,...,6! due to Theorem 9. We note the
following identities.

Since U = MB* is an upper triangular matrix, we have

r;(M)c;(B") =u;; =0, foralll<j<i. (52)
Recurrence (51) gives
My =my oy = (0= 2)my = (= Dmyy (53)

over M. Hence, with (52), the i th row r;(M) = (m;,, ...,
my;;) satisfies

My 250, 0) -(i- 1)(mi—1,1’ s Mg 0)
(54)
1) (r;_; (M);0).
[ b;i—l 1
biin . .
r; (M) =r;(M)c;(B*) —r;(M)c;_, (B")
(56)
-bzirl,i—l e

ii T Wii-1 = Ui

and similarly,
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*

so we have (u;_; —uw;_1; 1)~ ((=2u;_5; 1 = (i—Duy_y; .

bi’i Hence, if we assume uy; = (k—1)! for all k<i, then
3| " Y (=)= (G=2)u,_ 5,y = (i—1)! =u;,, so the in-
(M =r.(M .. (B")=c:(B =U...; — U . i-1,i i-1,i-1 i-2,i-1 i,
M) = ) (€101 (BY) = €i(B7)) = e =14 duction hypothesis with (58) yields
b;;
(57)
Moreover, by (28), (55), and (56), u;; = r;(M)c;(B")
equals
i = (057 (M))e;y (BY) = (i = 2)r;, (M)e;; (BT)
by
— (= Vi (M)ey (BY) +r;(M)| >
birriat

= (“i—l,i - ui—l,i—l) ==y = (= Dy iy +

(58)

*
Upsr i = Tivg (M)Ciyy (BY)
.
by
-

_ b..
= (037, (M))c; (BY) = (i = 1)(r,_y (M);07)c; (B”) =i (r; (M); 0)c; (B”) + 7y (M)| >

*

4,
* (59)
2,
= (0§ r; (M))Ci (B*) =i -Driy (M)g; (B*) —ir; (M)c; (B*) + 74y (M) b%:’i
4
=il —(@-Dil+il =il
O

Theorem 11. The lower triangular matrix Ly = [1; ;] = ScPr  Proof. Since L = S;Py, for any 1 <i, j <k, Theorem 3 shows
in  Theorem 8  satisfies | l

T i,j> li,j+1 ’ li,j+2
(1,j+1,j+1).

i+, (

Linjor = Ti1 S)ejoy (P) =((057:(8)) +7;(S)di[0,1,....,i = 11)((0;.¢; (P)) +(0: ¢, (P)))
=(0;7,(9)(0:¢;(P)) +(0;7,(9)(0; ;1 (P))
+(r;(S)di[0, ..., i = 1])(05¢;(P)) +(r; (9)di[0, .. .,i = 1])(0; ¢}, (P))
=1+ 1+ (S)(dif0,1,...](05¢; (P))) +r,(5)(di[0, 1,...1(0; ¢}, (P))) o
=1+ 1L+ i (Sejy (P) + (i + Dry (S, (P)

= li,j + li,j+1 + jli,j+l +(j+ 1)li,j+2 :(li,j’li,j+1’li,j+2)(1’j +1,j+ .
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The L, and U, are obtained by the recurrence in The-
orems 10 and 11. In fact, from M, and L,, we get

§7P7
Ly =
877 3263 4802 3556
M7
M, =
—1 2372 -5243 4179
SO
U7
M,B; = =U,, (62)
0 7!, 221760
! 0, 8 |

in which all diagonal entries are (k —1)!.
Theorem 12. detB} =[] il = (k—1)! detB;_,.

detB; = detl;detU, = detU, = [[5i! =

Clearly,
(k—1)! detB;_,.
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