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In this study, we use the union of the bounding hyperpyramids to estimate the output reachable set for periodic positive systems
under two classes of exogenous disturbances. Optimization algorithms are used to obtain the smallest bounding hyperpyramids
possible. Finally, numerical examples are given to verify the theoretical results.

1. Introduction

In recent decades, periodic systems, whose parameters
contain periodic properties, have received a lot of at-
tention. The study of periodic systems is motivated by the
fact that many real-world practical systems possess pe-
riodic characteristics and can thus be described as peri-
odic systems. For example, a pendulum system is a
periodic system with cyclic behavior [1]. In the literature,
a lot of important results on linear periodic systems have
been reported, see, e.g., [2-10].

On the contrary, several dynamical systems indicate that
the state and output variables are forced to be positive, or at
least nonnegative, at all times when initial conditions and
inputs are nonnegative. This type of system is known in the
literature as the positive system. Positive systems have many
fields of application: chemistry, biology, sociology, and
economics. Many important properties and applications of
positive systems can be found in the works of Luenberger
[11], Farina and Rinaldi [12], and Kaczorek [13].

Recently, dynamical systems with both periodic and
positive properties have attracted the interest of many re-
searchers. The stability and stabilization problems of dis-
crete-time periodic positive systems were studied by
Bougatef et al. [14] and Ait Rami and Napp [15]. For periodic
positive systems with time delays, the stability problem was
addressed in [16]. See also [17], for more periodic systems’
research results.

Reachability, as a fundamental concept in control theory,
has received a lot of attention. Numerous authors have
investigated the reachability of positive systems for both
discrete and continuous systems [18-23]. The set containing
all system outputs that are reachable from the origin under a
prescribed set of inputs is called the output reachable set.
Many researchers have focused on characterizing the out-
puts’ reachable sets for dynamical systems, but when the
input signal is constrained, transferring the output of the
system to an arbitrary desired output from the origin is
generally difficult, so the popular technique in the literature
is to determine a region as small as possible to bind the
output reachable set. A usual strategy is to estimate the
output reachable set by a few ellipsoids that can be deter-
mined by solving linear matrix inequality (LMI). Reachable
set estimation problem has been studied for time-delay
systems [24, 25], singular systems [26], periodic systems
[27], positive systems [28], switched positive systems [29],
etc.

This paper aims to solve the output reachable set esti-
mation problem for periodic positive systems under two
possible classes of nonnegative exogenous disturbances
based on two norms.

The organization of this paper is the following form. In
Section 2, the formulation of the problem is given and the
positivity of the considered system is defined. In Section 3,
results on the estimation of the output reachable set are
given under two classes of exogenous disturbances, and the
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optimization techniques are used to obtain the smallest
possible hyperpyramids which bound the output reachable
set. Some examples are considered to verify the theoretical
results.

Notations. The notations used in this work are Z, set of
nonnegative integers, Z° set of positive integers, R set of real
numbers, R" set of n-dimensional real vectors, R™" set of
m x n real matrices, R" positive orthant of R", R’ closed
positive orthant of R”, AT transpose of A, 1 vector
(1,1,...,115, 1 identity matrix, x >0 (x> 0) every compo-
nent of the vector x is nonnegative (positive), A>0 (A > 0)
every entry of matrix A is nonnegative (positive), and o* =
{s,s+1,...,k} is the finite subset of Z, with s<k.

2. Preliminaries

Consider the discrete-time periodic linear system described
by

are real matrices with appropriate dimensions and we as-
sume that there exists T € Zg such that, for all t € Z,, we
have A, =A,,;» B, =B, and C,=C,;. We note
x:=(x)i200 ¥ = (Vdizoo and 9 = (9);20-

Definition 1. Systems (1)-(2) are said to be positive if, for any
initial condition x, € R} and for any exogenous input
9, ¢ R? and t € Z,, we have x, € R} and y, € R, for all
teZ,.

Remark 1. Systems (1)-(2) are positive if A, >0,B,>0,
andC, >0, for all t € g} .

In the rest of this paper, we assume that systems (1)-(2)
are positive.

The results presented in this paper are divided into two
cases according to the following norms: 9], = % 9,
and |l = suptzoll%lll, where |9, = X% 19,1, for

X = Ax, + B, teZ, " 9 =919, ...,9,] eR™
x, € R", Case 1: 9exi)={9]I9],,<1and9, >0, forallt ¢
z.}.
v, =Cx;, teZ, (2) The output reachable set in this case is defined as
] ) follows:
where x, € R" is the state vector, 9, € R™ is the exogenous
input signal, y, € R is the output vector, and A,, B,, and C,
Ry, = {yl thereis § € X7, such that y and 9 satisfy (1) - (2) with x, = 0}. (3)

Case 2: 9 € 2F | = {9]|9]l, <1and 9, >0, forallt €
z).

The output reachable set in this case is defined as
follows:

ERZOJ = {yl thereis 9 € 220,1 such that y and 9 satisfy (1) — (2) with x, = 0}. (4)

The output reachable set in this paper will be bounded
by hyperpyramids of the form

S (&) = {( € @:IET(S 1}, where ¢ € R’. (5)

3. Main Results

In this section, we will estimate the output reachable set
of systems (1)-(2) by hyperpyramids for the two cases
mentioned above. For that, we will use optimization
techniques to  obtain the smallest possible
hyperpyramids.

3.1. Estimation of Output Reachable Sets

3.1.1. Case 1. In this case, we consider systems (1)-(2) under
zero initial conditions and exogenous input 9 € X7 .

Lemma 1. Let ¢,: RT — R,, t>0, be a set of functions
such that

(i) 9, (0) = 0.
(i) Ify € R, and 9 € X | is the corresponding input, we
have

Pt (Vi) = @ (y) < 1T9t’ VteZ,. (6)

Then, we obtain ¢,(y,)<1,Vy e R, and Vt € Z .

Proof. Let y € Ry and 9 € X}, be the corresponding input.
Then, Vt € Zg, and we have

Pt (J’t) = P (yt—l) < 1T9t—1 = "9t—1 |1’

: (7)
@1 (y1) =90 (o) < 1T90 = ”‘90”1-
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So, we obtain
S
0 (y:) =90 (o)< Y 179, <19, <1. (8)
s=0
Since @y (yy) = ¢,(0) =0, then we get ¢,(y,)<1. The
proof is completed. O

According to this lemma, we get the following bounding
of the output reachable set.

Theorem 1. Consider systems (1)-(2), and assume that there
exist § € R", I € ab, with & = &, such that, for all | € 6},

T ~T T
{ A Cyé -G <0, )
T AT
Bl Cl+1£l+1 <l

Then, Ry, C UL (&) (i.e., the output reachable set is
bounded by the union of a set of hyperpyramids).

Proof. Let (£,),5, be the sequence defined by &, =&, ;,
Vt € Z,, and let, for £ >0,

pi R, — R,

10
z— &z, (10

Let y € Ry, and 9 € I}, be the corresponding input. For
anyt >0, thereis! € 0'on1 such that t = I[T]. Then, we obtain

T T T
Pt Vi) 0 (vy) = (€t+1ct+1At =& Ct)xt +§,,1Cra B,
= (517;1Cl+1A1 - szCz)xt + €IT+1CZ+IBZ'9t
<179,
(11)

According to Lemma 1, we get ¢,(y,)<1. And, the
periodicity of & implies that y, € UL 'S (&). So,
KT, ¢ U (&). The proof is completed. O

If T=1, then systems (1)-(2) reduce to the linear
positive time-invariant system given by

x.,,=Ax, +BY,, teZ,

{ t+1 | t t + (12)
x, € R™.

y,=Cx,, teZ,. (13)

From Theorem 1, we can deduce the following corollary
to determine an estimation of the output reachable set of
systems (12)-(13).

Corollary 1. Consider systems (12)-(13), and assume that

there exists £ € R, such that the following condition holds:
A'CE-Cé<o,
. Tf ; (14)

B'Céx<l.

Then, R7, € F(&).

3.1.2. Case 2. In this case, we consider systems (1)-(2) under
zero initial conditions and exogenous input 9 € X7 .

Lemma 2. Let ¢,: RT — R, t € Z_, be a set of functions
such that

(i) 9o (0) = 0.
(ii) There exist 6, € [0,1], t € Z,, such that if y € R},
and 9 € I | is the corresponding input, then

Pri1 ()/t+1) - 0,9, ()/t) < (1 - Qt)lTSt’ VteZ,.
(15)

Then, we obtain ¢,(y,) <1, Vt € Z,.

Proof. Let y e R}, and 9 € X} | be the corresponding
input, and we have

Pri1 ()’t+1) - 0,0, (}’t) < (1 - Gt)lTSt = (1 - 9[)"9"00,1 <1-0,.

(16)
Then, @1 (y11) = 1<6, (9, () — 1).
For any time ¢ € Z?, we have
@ () =161 (911 (1) - 1)
<010, (¢ (y2) = 1)
(17)

<0105 (9o (y0) = 1)-

Since @, (y,) = ¢,(0) = 0<1, it follows that ¢, (y,) < 1.
The proof is completed. O

Using this lemma, we can derive the following bounding
of the output reachable set.

Theorem 2. Consider systems (1)-(2), and assume that there
exist § € R", 1 € of, with & =&, and 6, € [0,1], 1 € 6},
such that, for all | € 6}~', we have

T ~T T
{ A Cpin - 0,C <0, (18)
T AT
B Ciy &< (1-0)1.

Then, RY, | ¢ UL 'S (&).

Proof. We construct two sequences (&,),., and (6,),-, by
posing & =&, and 6, = 0,1, Vt € Z,. We consider the
family of functions:
¢, R — R,
t + T+ (19)
zr— ¢, z.

Let y € R],, and 9 € !, be the corresponding input.
Forallt € Z,, thereis!l € OOT’I such that t = [[T]. Then, we
obtain
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Pri1 (J’t+1

6,9 () £t+lct+1A -0 Et )xt + fz;-lCH—IBtSt

(fmcmAl 6,¢ Cl)xt +&,,C1 B,
<(1-gn’
=(1-o)"

(20)

So, Lemma 2 implies that ¢, (y,) <1, and from the pe-
riodicity of &, we obtain y, € US(§). So,
R C UL (&). The proof is completed. O

If T = 1, we can deduce the following corollary for the
estimation of the output reachable set of the linear positive
time-invariant systems (12)-(13).

Corollary 2. Consider systems (12)-(13), and assume that
there exists £ € R, such that the following condition holds:

{ ATcTe-ocTe<o,

21
BIcTé< (1-0)1. (2D

Then, R, < S (¥).

Remark 2. In Theorem 1 (Theorem 2), the norms of the
exogenous inputs are no greater than 1. We can deduce the
estimation of the output reachable set if the norms of the
exogenous inputs are no greater than a scalar 9>0. If
||9||11<9(||9||001_ then the output reachable set
2’1+1(m+ 1) can be bounded by the union of a set of
hyperpyramlds ulls (51/9) Indeed, if we assume that
191, < (||9||001 <9), then we obtain
||(\9/9)||1,1 <1 (1979l <1). Systems (1)-(2) can be re-
written in the following form:

(22)
Ye_c Xt
9 9

So, according to Theorem 1 (Theorem 2), y,/9 can be
bounded by U/ 'S (£). Then, y, can be bounded by
UL (E/9).

The hypervolume of the hyperpyramid (5) is equal to
1/(r! [T, (1/8;)) (Carter and Champanerkar [30]). The
volume of the bounding hyperpyramids considered in the
two cases can be minimised by solving the following opti-
mization problem:

r T-1
min<— Y Y log fz,m>’ (23)
m=1 =0

which subjects to the conditions in Theorems 1 or 2, with

El = [51,1)51,2a-- flr]T le UT L

05 -
0.45 b
04 |
035 |
03}

y2 025 ¢
02| s
0.15 | Lt T
01} : T
0.05 | L

*  Output reachable set
---l=1
— 1=0

FiGURE 1: Estimation of output reachable set with 9 € X1 ,.

To solve optimization problem (23) which subjects to the
conditions in Theorem 2, we adopt genetic algorithm (GA).
For more details about GA, see [31, 32].

3.2. Examples. In this section, we will give examples for the
two cases.

3.2.1. Case 1. Consider systems (1)-(2) with period T =2,
and

(405 C) ([0.1 0.6] [0.5] [0.3 0.7])
ere N\ 102 04 03] 01 01])

(24)
0.5 0.2 0.2 0.2 0.6
30|y 02 o103 051)
0.4 0.2 0.1 0.3 0.5
By solving problem (23), we obtain
1.2321
50 = >
4.1090
(25)

1.2549
51 = .
2.1621
The bounding hyperpyramids are shown in Figure 1 with

exogenous inputs defined by 9, = (1-m)xm', m=
0,0.1,...,0.9.

3.2.2. Case 2. Consider systems (1)-(2) with periodT = 2
and

(4B, C,) <[o.5 o.zHo.sHo.z 0.5})

ere N\ L0604 03] 01 02])
07 017017 [0.1 0.1

(Al’Bl’Cl)z > s .
0302]104] 04 06

The optimal values of problem (23) are

(26)
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y2

*  Output reachable set
N

=0

*  Output reachable set
R

— 1=0
(b)

*

Output reachable set
.
=0

(c)

FiGURE 2: Estimation of the output reachable set with 9 € 27 .

6, = 0.854,
0, = 0.935,

oo
s}

The bounding hyperpyramids are shown in Figure 2 with
exogenous inputs defined by (a) 9, = rand (¢t), (b) 9, = 0.7,
and (¢) 9, = [sin(¢)].

0.171
(27)

0.317
0.531

1 =
0.182

4. Conclusion

In this work, we have studied the estimation of the output
reachable set for positive periodic systems. Results (Theorem
1 and Theorem 2) have been found for two exogenous
disturbance classes, and optimization techniques have been
used to minimize the volume of bounding hyperpyramids.
Numerical examples have been used to verify the theoretical
results.
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