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Hydrodynamic interactions of a two-solid microspheres system in a viscous incompressible fluid at low Reynolds number is
investigated analytically. One of the spheres is conducting and assumed to be actively in motion under the action of an external
oscillator field, and as the result, the other nonconducting sphere moves due to the induced flow oscillation of the surrounding
fluid.,e fluid flow past the spheres is described by the Stokes equation and the governing equation in the vector form for the two-
sphere system is solved asymptotically using the two-timing method. For illustrations, applying a simple oscillatory external field,
a systematic description of the average velocity of each sphere is formulated.,e trajectory of the sphere was found to be inversely
proportional to the frequency of the external field. ,e results demonstrated that no collisions occur between the spheres as the
system moves in a circular motion with a fixed separation distance.

1. Introduction

Dynamics of microparticles in a viscous fluid play important
roles in many applications in medicine and technology, such
as minimising surgical invasion and controlling drug de-
livery, see, e.g., [1] and [2]. ,e study of the motion of small
particles in suspension has been of interest to scientists for
many years and is still an active area of research, see, e.g.,
[3–8]. ,e movement of a particle due to the oscillatory
external forces in a viscous fluid represents a classical
problem of fluid dynamics. ,is motion represents a model
problem for the use of the dynamical approach in fluid
dynamics and for the studies of turbulence.

A conducting or active microsphere suspended in an
external oscillatory force tends to accelerate in the direction
of the applied external field. Although this type of inter-
action is classical in character, there are certain features that
do not seem to be widely understood. Interactions of a
system of two microspheres are two-fold: first, the active
sphere moves in the direction of the external field, and
second, the other nonconducting sphere moves due to the
local surrounding fluid velocity generated by the motion of

the active sphere. ,ere is, however, a secondary effect
arising from the fact that the active sphere has not solely
moved due to the external field, but its motion is also
distorted by the presence of the other sphere. ,e key
question is how does the surrounding fluid influence the
motion of a nonconducting sphere; will it also change the
direction the active sphere moves, and if so, what trajectory
does the active sphere follow? Does the size of the micro-
spheres have any effects on the motion of the active sphere?
In an attempt to answer these questions, we develop an
analytical framework to study the motion of a system of two
microspheres in Stokes flow driven by an external oscillatory
force. ,is analytical theory serves as a preliminary inves-
tigation on the effect of an external oscillatory field on the
motion of a suspension of conducting particles.

,e purpose of this paper is to provide a systematic and
explicit description of the interaction of two rigid micro-
spheres of radii R] < 10−6 meter in a viscous incompressible
fluid and to determine their average velocities.,is is a high-
frequency asymptotic problem at low Reynolds number,
Re≪ 1, powered by an external oscillator field. We consider
that one sphere is nonconducting and passive and the other
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is conducting and active which is accelerated by an external
oscillatory field such as a magnetic field, see, e.g., [6, 9–11] an
electric field, see, e.g., [12]; or molecular Brownian forces,
see, e.g., [13]. ,e asymptotic formulation of the problem
leads us to study the motion of the spheres with a time-
periodic external force, as described by the Stokes equation,
where the fluid inertial effects are neglected. We solved the
resulting equations of successive approximations by
employing the two-timingmethod, see, e.g., [14].We present
our results in the general vector form and discuss them in
details through an example. Our analytical treatments are
simple, but it can be considered as the basis for the de-
velopment of a full theory of particle suspension.

2. Formulation of Problem

We consider the motion of a system of two microspheres of
equal density and different radii R] in a viscous incom-
pressible quiescent fluid at low Reynolds number. One of the
spheres x(1) is conducting and actively moving under the
influence of an external field which oscillates periodically with
constant frequency ω, and the other x(2) is nonconducting
and its movement is due to the fluid disturbance generated by
the first sphere. In the Cartesian coordinates, the position
vector of the centre of the microspheres and the unit vector n
along the displacement vector r are described by

x(])
� x

(])
1 , x

(])
2 , x

(])
3􏼐 􏼑, n ≡

r
r
, r � x(1)

− x(2)
, (1)

where the distance r � |r| is relatively large in comparison
with R], see Figure 1. We use the subscripts i, j, k � 1, 2, 3 for
the Cartesian components of the vectors and tensors and
superscripts μ, ] � 1, 2 for the spheres.

,e oscillatory motions of the microspheres are pre-
scribed as a three-dimensional transitional spatial dis-
placement vector 􏽥ξ(τ) � (ξ1(τ), ξ2(τ), ξ3(τ)), τ � ωt,
through the related induced acceleration 􏽥ξtt � ω2􏽥ξττ , where
the subscripts t and τ stand for the associated derivatives.
,is problem is classified as an oscillating (noninertial)
system of reference, in which a fluid at infinity is termed in a
state of rest. In this frame of motion, according to Einstein’s
principle of equivalence which states that there is an
equivalence of gravitational and inertial mass, there is no
influence of gravity field on the microspheres, and thus the
equations of fluid motion are standard, see, e.g., [15]. Hence,
the microspheres float in the fluid due to the buoyancy force

f(])
b � −M

(])
􏽥g(τ), (2)

where M � (−4/3)πR3
](ρp − ρf); ρp is the density of the

microsphere; ρf the density of the fluid; and 􏽥g(τ) is
equivalent to the induced acceleration

􏽥g(τ) � ω2􏽥ξττ . (3)

,roughout the paper, a ‘tilde’ above a function denotes
a 2π-periodic function with zero mean value.

We consider the separation distance r between the
centres of the two microspheres which is less than the
thickness of the Stokes boundary layer (υ/ω)1/2, where υ is
the kinetic viscosity of the fluid. Hence, the explicit ex-
pressions for the Stokes friction force f(])

h exerted on each
sphere during the motion, see. e.g., [16], is defined as

f(])
h � 6πηR] x(])

t − uμ]􏼐 􏼑, μ≠ ], (4)

where η is the dynamic viscosity of the fluid and u is the
induced velocity due to the movement of the other sphere,
see, e.g., [2], defined as

uμ] �
3Rμ

4
x(μ)

t + n x(μ)
t · n􏼐 􏼑

r
⎛⎝ ⎞⎠, (5)

such that u12 represents the velocity generated by the
movement of the first sphere on the second, and similarly,
u21 is the velocity due to the movement of the second sphere
on the first.

,e fluid flow past the microspheres is described by the
Stokes equation

f(])
h + f(])

b � 0, (6)

where all inertial terms are neglected. ,e use of (2) and (4)
and (5) into (6) yields the equation of motion:

6πηR] x(])
t −

3Rμ

4r
x(μ)

t + n x(μ)
t · n􏼐 􏼑􏼐 􏼑􏼠 􏼡 � M

(])
􏽥g. (7)

As shown in Figure 1, the geometric configuration of the
problem contains two characteristic lengths: the distance
between the centres of microspheres L and the mean radius
of the microspheres R. For illustrations, we choose the
following reference scales:

0

r

x(2)

x(1)

x3

R2

R1

x1

x2

g~

Figure 1: Diagram of a system of two microspheres in a viscous
fluid.
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R �
R1 + R2

2
,

T �
L

U
,

G � max|􏽥g(τ)|,

F �
6πηRL

T
,

(8)

where T, G, M, and F are the characteristic time, magnitudes
of induced acceleration, mass, and Stokes friction force,
respectively. ,e dimensionless variables (marked with as-
terisks) are chosen as

x � x
∗
L,

R] � RR
∗
] ,

t � Tt
∗
,

􏽥g � G􏽥g∗,

f
(])
h � Ff

∗ (])
h ,

ω∗ � ωT.

(9)

,ree independent small parameters of the problem are

ϵ �
1
ω∗

,

δ �
3R

4L
,

m �
MG

F
; ϵ, δ≪ 1.

(10)

Substituting (8)–(10) into (7), and after simplification,
yields the dimensionless form (all asterisks are omitted for
brevity) of the equation

x(])
t − δRμSx

(μ)
t � mR

2
]􏽥g(τ), μ≠ ], (11)

where

S � Sij(r) ≡
1
r

δij + ninj􏽨 􏽩, (12)

where m � (MG/F) � ((2R2(ρp − ρf)G)/9ηU) � const �

O(1) and δij is the Kronecker delta; δij � 1 when i � j and
δij � 0 when i≠ j.

An approximate solution to equation (11) is presented in
the next section using the two-timingmethod, an asymptotic
procedure involving fast and slow times.

3. Two-Timing Method and
Asymptotic Procedure

3.1. Definition and Asymptotic Procedure. Two-timing
method constructs an asymptotic solution to the equation of
motion (11) by introducing two dependent time scales s and
τ as mutually independent variables, called slow and fast
times, respectively, see Figure 2. ,is method converts an

ODE (11) with one independent variable t into a PDE with
two independent variables s and τ.

,e proper relations between s, τ, and t, see, e.g., [17], are
defined by

τ � ωt,

s �
t

ωα,

α> −1,

(13)

so that a given value α will lead to a path for the asymptotic
solution. In a rigorous asymptotic procedure as ω⟶∞,
there is a unique path that leads to a valid solution. If such a
limit brings valid an asymptotic result, then it is called a
distinguished limit. In this paper, we have chosen α � 1;
hence, the two time scales,

τ � ωt,

s �
t

ω
,

(14)

will lead to a valid solution through an asymptotic procedure
of successive approximations. ,is choice can be justified by
the distinguished limit arguments as in [14].

3.2. Functions and Notation. For making further progress
analytically, we introduce a few convenient notations. We
assume that any dimensionless function f(s, τ), which
represents either a scalar, vector, or tensor, see, e.g., [14], has
the following properties:

(i) Subscripts τ and s stand for the related partial time
derivatives.

(ii) f � f(s, τ) belongs to class O(1) such that
f � O(1), and all partial s and τ derivatives of f

(required for our consideration) are also O(1).

xt

Fast motion, xτ Slow motion, xs

t

Figure 2: Diagram of the fast and slow motions.
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(iii) We consider only periodic function in τ
f ∈ P: f(s, τ) � f(s, τ + 2π)􏼈 􏼉 where s-depen-
dence is not specified.

(iii) For arbitrary f ∈ P, the averaging-operation is

〈f〉 ≡
1
2π

􏽚
τ0+2π

τ0
f(s, τ)dτ ≡ f(s), ∀τ0. (15)

(iv) ,e bar-function f � f(s) (or mean-function) does
not depend on τ.

(v) ,e tilde-function, 􏽥f(τ) (or purely oscillating
function), represents a special case of P-function
with zero average

〈􏽥f〉 � 0. (16)

A unique decomposition is valid

f � f + 􏽥f. (17)

(vi) A special notation 􏽥f
τ is the tilde-integration of

􏽥f(τ),

􏽥f
τ

� 􏽚
τ

0
􏽥f(s, σ)dσ −

1
2π

􏽚
2π

0
􏽚
μ

0
􏽥f(s, σ)dσ􏼒 􏼓dμ. (18)

,e tilde-integration is the inverse of τ-differentiation

􏽥f
τ

􏼐 􏼑τ ≡
􏽥fτ􏼐 􏼑

τ
≡ 􏽥f. (19)

3.3. Successive Approximations. ,e choice (14) of τ � ωt

and s � t/ω leads to the following derivative:

d
dt

� ω
z

zτ
+
1
ω

z

zs

� ω
z

zτ
+ ϵ2

z

zs
􏼠 􏼡; ϵ �

1
ω

.

(20)

,is suggests that we should consider a series of ex-
pansions in ϵ terms to at most O(ϵ2) and keeping at most
linear in δ terms. ,e unknown x(]) is therefore written as

x(])
(s, τ) � x(])

0 + 􏽥x(])
0􏼐 􏼑 + ε x(])

1 + 􏽥x(])
1􏼐 􏼑

+ ε2 x(])
2 + 􏽥x(])

2􏼐 􏼑 + O ϵ2􏼐 􏼑.
(21)

Differentiating (21) with respect to t gives

x(])
t � x(])

0t + 􏽥x(])
0t􏼐 􏼑 + ε x(])

1t + 􏽥x(])
1t􏼐 􏼑 + ε2 x(])

2t + 􏽥x(])
2t􏼐 􏼑 + O ϵ2􏼐 􏼑.

(22)

,e use of (20) into (22) yields to

x(])
t � ω x(])

0τ + ϵ2x(])
0s􏼐 􏼑 + 􏽥x(])

0τ + ϵ2􏽥x(])
0s􏼐 􏼑􏼐 􏼑

+ ωϵ x(])
1τ + · · ·􏼐 􏼑 + 􏽥x(])

1τ + · · ·􏼐 􏼑􏼐 􏼑

+ ωϵ2 x(])
2τ + · · ·􏼐 􏼑 + 􏽥x(])

2τ + · · ·􏼐 􏼑􏼐 􏼑 + · · · .

(23)

,e two-timing method studies only the class of solu-
tions with

􏽥x0(s, τ) � 0, whilex0(s, τ)≠ 0. (24)

Physically, this constraint means that the amplitude of
oscillations is small compared with the amplitude of the
averaged solution such that when 􏽥x0(s, τ)≠ 0, the main term
of velocity grows to infinity as ω⟶∞.

Hence, (23) can be simplified in the form

x(])
t � ω ϵ􏽥x(])

1τ + ϵ2 􏽥x(])
2τ + x(])

0s􏼐 􏼑 + O ϵ2􏼐 􏼑􏼐 􏼑. (25)

Next, Taylor series expansion of the tensor Sij in (12)
about r � r0 takes the form

Sij(r) � Sij r0( 􏼁 + Sij
′ r0( 􏼁 r − r0( 􏼁 + O ϵ2􏼐 􏼑, (26)

where r − r0 � ϵr1 + ϵ2r2 + O(ϵ2). Hence, (26) can be sim-
plified and written as

Sij(r) � Sij r0( 􏼁 + ϵr1k

zSij r0( 􏼁

zxk

+ O ϵ2􏼐 􏼑, (27)

where r0, r1k, Sij(r0), and zSij(r0)/zxk are given by

r0 � x(1)
0 − x(2)

0 ,

r1k � x(1)
1k − x(2)

1k ,

Sij r0( 􏼁 �
1
r0

δij + n0in0j􏽨 􏽩, n0 �
r0
r0

; r0 � r0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

zSij r0( 􏼁

zxk

�
1
r20

−δijn0k + δikn0j + δjkn0i − 3n0in0jn0k􏼐 􏼑.

(28)

For the future use, we write the first and second terms in
(27) as

S0 � Sij r0( 􏼁,

S1 � S1ij r0( 􏼁 � r1k

zSij r0( 􏼁

zxk

.

(29)

Substituting (25) and (27) into the equation of motion
(11) yields

ϵ􏽥x(1)
1τ + ϵ2 􏽥x(1)

2τ + x(1)
0s􏼐 􏼑 + O ϵ2􏼐 􏼑 − δR2 S0 + ϵS1 + O ϵ2􏼐 􏼑􏼐 􏼑

· ϵ􏽥x(2)
1τ + ϵ2 􏽥x(2)

2τ + x(2)
0s􏼐 􏼑 + O ϵ2􏼐 􏼑􏼐 􏼑 � ϵmR

2
1􏽥g,

(30)

ϵ􏽥x(2)
1τ + ϵ2 􏽥x(2)

2τ + x(2)
0s􏼐 􏼑 + O ϵ2􏼐 􏼑 − δR1 S0 + ϵS1 + O ϵ2􏼐 􏼑􏼐 􏼑

· ϵ􏽥x(1)
1τ + ϵ2 􏽥x(1)

2τ + x(1)
0s􏼐 􏼑 + O ϵ2􏼐 􏼑􏼐 􏼑 � ϵmR

2
2􏽥g.

(31)

,e successive approximations of (30) and (31) lead to
the following:

,e terms of order ϵ0 give the identity 0� 0.,e terms of
order ϵ yield the equations
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􏽥x(1)
1τ − δR2S0􏽥x

(2)
1τ � mR

2
1􏽥g,

􏽥x(2)
1τ − δR1S0􏽥x

(1)
1τ � mR

2
2􏽥g.

(32)

Integrating (32) using the properties of periodic func-
tions, and keeping at most linear in δ terms, yields

􏽥x(1)
1 � m δR

3
2S0 + R

2
1􏼐 􏼑􏽥gτ ,

􏽥x(2)
1 � m δR

3
1S0 + R

2
2􏼐 􏼑􏽥gτ .

(33)

Next, the terms of order ϵ2 give the equations

􏽥x(1)
2τ + x(1)

0s − δR2 S0 􏽥x(2)
2τ + x(2)

0s􏼐 􏼑 + S1􏽥x
(2)
1τ􏼐 􏼑 � 0, (34)

􏽥x(2)
2τ + x(2)

0s − δR1 S0 􏽥x(1)
2τ + x(1)

0s􏼐 􏼑 + S1􏽥x
(1)
1τ􏼐 􏼑 � 0. (35)

Applying the averaging procedures (15) and (16),
equations (34) and (35) are simplified to

x(1)
0s − δR2S0x

(2)
0s − δR2〈S1􏽥x

(2)
1τ 〉 � 0,

x(2)
0s − δR1S0x

(1)
0s − δR1〈S1􏽥x

(1)
1τ 〉 � 0.

(36)

Expressions (36) still contain unknown functions
〈S1􏽥x

(2)
1τ 〉 and〈S1􏽥x

(1)
1τ 〉, which can be determined from (39).

Hence, by rewriting,

δR1〈S1􏽥x
(1)
1τ 〉 � δR1〈􏽥r1k

zS0ij r0( 􏼁

zxk

􏽥x(1)
1τ 〉 � δR1

zS0ij r0( 􏼁

zxk

〈􏽥r1k􏽥x(1)
1τ 〉

� δR1
zS0ij r0( 􏼁

zxk

〈 x(1)
1k − x(2)

1k􏼐 􏼑􏽥x(1)
1τ 〉.

(37)

,e use of (32) and (33) into (37) yields to

δR1〈􏽥S1􏽥x
(1)
1τ 〉 � δ

m
2
R
3
1
􏽢R

r
2
0

n0jGij,

δR2〈S1􏽥x
(2)
1τ 〉 � δ

m
2
R
3
2
􏽢R

r
2
0

n0jGij,

(38)

where Gij � 〈􏽥gτi 􏽥gj〉 and 􏽢R � R2
2 − R2

1.
Substituting (38) into (36), keeping at most linear in δ

terms, leads to

x(1)
0is � δ

m
2
R
3
2
􏽢R

r
2
0

n0jGij,

x(2)
0is � δ

m
2
R
3
1
􏽢R

r
2
0

n0jGij.

(39)

,e relationship between dual tensor Gi and Gkl, see,
e.g., [18], is defined as

Gi ≡ 2eijkGjk, (40)
where the notation eijk � 0, 1, −1, if any two of i, j, k are the
same, if i, j, k, is an even permutation of 1, 2, 3, and if i, j, k is
an odd permutation of 1, 2, 3, respectively. Using (40), (39)
can be written as

x(1)
0is � δ

m
2
R
3
2
􏽢R

r
3
0

r0 × G( 􏼁i,

x(2)
0is � δ

m
2
R
3
1
􏽢R

r
3
0

r0 × G( 􏼁i.

(41)

,e general vectorial notation of (41) is the solution of
(11) written as

x(])
s � δ

m
2
R
3
μ
􏽢R

r
3 (r × G), μ≠ ], (42)

where x(1)
0is and r0 are replaced with x(1)

s and r. ,is is the
main outcome of the paper.

From the main result (42), we obtain the relationship
between the velocities of microspheres

x(2)
s � λ3x(1)

s , where λ �
R1

R2
. (43)

Moreover, the vector form of the separation distance
between the centres of microspheres is given by

rs � δ
m

2􏽢R R
3
2 − R

3
1􏼐 􏼑

r
3 (r × G). (44)

,is result shows that the two microspheres x(1)
s and x(2)

s

move along a circular path (or along an arc of a circle) of
radius r.

,e result (42), which is due to the prescribed induced
acceleration 􏽥g(τ), has the following interesting cases:

(i) If the two microspheres are identical with R1 � R2,
or in the limit as r⟶∞, the microspheres do not
interact at all, then (42) becomes

x(])
s � 0, (45)

which indicates that there is no translation motion for
the system of two microspheres. Mathematically, it
means that as the large separation, r⟶∞, only the
active sphere ismoving on oscillatorymotion along the
direction of the applied external field, while the other
nonconducting sphere remains stationary. However,
when R1 � R2, both spheres move on an oscillatory
motion along the direction of the applied external field,
which agrees with the findings of the classical studies of
the motion of equal spheres in a viscous fluid at low
Reynolds number, see, e.g., [19] and [5].

(ii) For R1 ≠R2, multiplying both sides of (44) by r yields

r · rs � δ
m

2􏽢R R
3
2 − R

3
1􏼐 􏼑

r
3 r · (r × G) � 0, (46)

which leads to rs � 0, and hence r is a constant.
Physically, it means that trajectories of the micro-
spheres cannot overlap each other.

It is important to note that the average velocity can be
arranged by appropriate choice of the induced acceleration,
􏽥g(τ). Let us consider a particular example
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􏽥g(τ) �

a sin τ

b cos τ

c sin 2τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (47)

where a, b, and c are constants. ,e tilde-integration of (47)
is required in calculating 􏽥gτi 􏽥gk. Hence,

􏽥gτ(τ) �

−a cos τ

b sin τ

−c

2
􏼒 􏼓cos 2τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽥gτi 􏽥gk �

a
2 sin τ cos τ −ab cos2 τ −ac sin 2τ cos τ

ab sin2 τ b
2 sin τ cos τ bc sin 2τ sin τ

−ac

2
cos 2τ sin τ

−bc

2
cos 2τ cos τ

−c
2

2
sin 2τ cos 2τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(48)

Using the averaging process (15), and the definition of
dual tensor (40), we calculate Gik � 〈􏽥gτi 􏽥gj〉,

Gik �
ab

2

0 −1 0

1 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G � −ab

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(49)

Hence,

r × G �

r1

r2

r3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×

0

0

−ab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ab

−r2

r1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (50)

,e substitution of (50) into (42) yields

x(])
s � δ

m
2
R
3
μ
􏽢R

r
3 ab

−r2

r1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (51)

Using the definition (1), we write (51) as

x(])
s � δ

m
2
R
3
μ
􏽢R

r
3 ab

− x
(1)
2 − x

(2)
2􏼐 􏼑

x
(1)
1 − x

(2)
1􏼐 􏼑

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (52)

which gives

x(1)
s �

x
(1)
1s

x
(1)
2s

x
(1)
3s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� δA1

− x
(1)
2 − x

(2)
2􏼐 􏼑

x
(1)
1 − x

(2)
1􏼐 􏼑

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x(2)

s �

x
(2)
1s

x
(2)
2s

x
(2)
3s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� δA2

− x
(1)
2 − x

(2)
2􏼐 􏼑

x
(1)
1 − x

(2)
1􏼐 􏼑

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (53)
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where A1 � m2R3
2
􏽢Rab/r3 and A2 � m2R3

1
􏽢Rab/r3 are con-

stant. ,e above equations (53) can be written as the system
of linear differential equations

x
(1)
1s � δA1 x

(2)
2 − x

(1)
2􏼐 􏼑,

x
(1)
2s � δA1 x

(2)
2 − x

(1)
2􏼐 􏼑,

x
(1)
3s � 0,

(54)

x
(2)
1s � δA2 x

(2)
2 − x

(1)
2􏼐 􏼑,

x
(2)
2s � δA2 x

(2)
2 − x

(1)
2􏼐 􏼑,

x
(2)
3s � 0.

(55)

,is system of equations with four unknown functions
(54) and (55) can be solved analytically using the elimination
method to give

x
(1)
1s + Bx

(1)
2 � 0,

Bx
(1)
1 − x

(1)
2s � 0,

(56)

where B � δabm2􏽢R(R3
2 − R3

1)/r
3 is constant.

After differentiation, we obtain the system of equations

x
(1)
1ss + B

2
x

(1)
1 � 0,

x
(1)
2ss + B

2
x

(1)
2 � 0.

(57)

,e related solutions of the first part of equation (57) are

x(1)
�

c1 cos(Bs) + c2 sin(Bs)

c3 cos(Bs) + c4 sin(Bs)

c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (58)

,e slow time scale s � t/ω implies that in order to
obtain physical dimensionless trajectory of the spheres, we
have to multiply x(2) and x(1) by 1/ω.

In this paper, we consider the motion defined by (11)
with large ω where all the associated functions and its de-
rivatives belong to class O(1), see, e.g., [20], such that in the
asymptotic limit as ω⟶∞,

max |􏽥x| ∼ 1,

max 􏽥xτ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ∼ 1,

max 􏽥xττ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ∼ 1,

(59)

max |x| ∼
1
ω

,

max xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ∼ 1,

max xtt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ∼ ω.

(60)

Applying (59) and (60) into (58) gives

c1 + c2 � a,

c3 + c4 � b.
(61)

Differentiate (58) with respect to s, and then applying
(59) and (60) yields

−Bc1 + Bc2 � 1,

−Bc3 + Bc4 � 1.
(62)

Solving (61) and (62), we obtain

c1 �
aB − 1
2B

,

c2 �
aB + 1
2B

,

c3 �
bB − 1
2B

,

c4 �
bB − 1
2B

.

(63)

Substituting (63) into (58) yields

x(1)
�

aB − 1
2B

􏼒 􏼓cos(Bs) +
aB + 1
2B

􏼒 􏼓sin(Bs)

bB − 1
2B

􏼠 􏼡cos(Bs) +
bB + 1
2B

􏼠 􏼡sin(Bs)

c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (64)

Similarly, we can derive the solution of second part of
(57), and thus, we can show that

x(2)
� λ3x(1)

. (65)

Figures 3 and 4 show the trajectory (64) of the first
sphere x(1) and (65) of the second sphere x(2) for different
frequencies when the value of λ is significantly different from
1. ,e trajectories indicate that the microspheres move in a
circular path, which means the oscillatory external field
drives the two microspheres to perform a circulation motion
about this fulcrum, and each sphere moves in an arc like
orbit through the fluid. Qualitative shape of the micro-
spheres trajectories was found to be inversely proportional
to the frequency; a similar result can also be found in [21]
and [22]. Moreover, when λ< 1, the distance traveled by the
active sphere x(1) is greater than the distance traveled by the
nonconducting sphere x(2), which means the distance
traveled by the active sphere x(1) gets longer as the radius of
the sphere x(2) gets bigger.
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4. Conclusion

In this paper, we studied analytically the motion of a system
of twomicrospheres (one conducting and the other is not) in
a Stokes flow driven by an external oscillator field. We
constructed an asymptotic procedure with the dimensionless
inverse frequency ϵ � 1/ω and derived the average velocity of
the system using the two-timing method. Our choice of slow
time s � ϵt and fast time τ � t/ϵ led to a result that agrees
with the experimental studies of an oscillating sphere in a
viscous fluid, see, e.g., [23] and [21].

,e result shows that the microspheres system moves in
a circular motion with a fixed separation distance and travels
a shorter distance as the frequency increases. We have
demonstrated the ability of a conducting microsphere in a
viscous fluid to influence the movement of other noncon-
ducting microspheres in the neighboring area when an
external oscillatory field is present. It is worth noting that the
average velocities of the two microspheres and the vector of
separation distance are given in the most general form,
which can be applied to the ready-made formula by an
appropriate choice of 􏽥g(τ). ,e general procedure described
here is likely applicable to other problems concerning the
effect of microspheres interactions in viscous fluids that have
the same properties and conditions of motion.
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