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In this study, two new distributions are developed by compounding Sine-Weibull and zero-truncated geometric distributions.�e
quantile and ordinary moments of the distributions are obtained. Plots of the hazard rate functions of the distributions show that
the distributions exhibit nonmonotonic failure rates. Also, plots of the densities of the distributions show that they exhibit
decreasing, skewed, and approximately symmetric shapes, among others. Mixture and nonmixture cure rate models based on
these distributions are also developed. �e estimators of the parameters of the cure rate models are shown to be consistent via
simulation studies. Covariates are introduced into the cure rate models via the logit link function. Finally, the performance of the
distributions and the cure rate and regression models is demonstrated using real datasets. �e results show that the developed
distributions can serve as alternatives to existing models for survival data analyses.

1. Introduction

Parametric distributions play an important role in modeling
survival data. Awell-known classical distribution is theWeibull
distribution. �ough the Weibull distribution, including other
classical distributions, is very common and has much use-
fulness in di�erent �elds, it is not able to model data that
exhibit nonmonotonic failure rates. Because of this, several
extensions of this distribution have been developed by re-
searchers to accommodate the shortcomings of classical dis-
tributions. In this study, the sine-G family of distributions
proposed by Kumar et al. [1] is used to modify the Weibull
distribution. �is is also a special case of exponentiated sine-
Weibull (ESW) distribution proposed byMuhammad et al. [2].

Let a random variable X follow the sine-G family of
distributions proposed by Kumar et al. [1]. Its cumulative
distribution function (CDF) is given by

F(x) � sin
π
2
G(x)[ ], x ∈ R, (1)

where G(x) is the CDF of the baseline distribution. In this
study, the Weibull distribution is taken as the baseline
distribution with CDF

G(x) � 1 − e−αx
c

, x> 0, α> 0, c> 0. (2)

Substituting the CDF of the Weibull distribution in
equation (2) into equation (1) gives the CDF of the sine-
Weibull (SW) distribution as

F(x) � sin
π
2

1 − e−αx
c

( )[ ], x> 0, α> 0, c> 0. (3)

Compounding continuous distributions with discrete
distributions is among the methods of generating new
distributions and making them more �exible and useful.
Among these methods of generating new distributions is the
power series method. In this study, two extensions of the SW
distribution are developed using the zero-truncated geo-
metric distribution.
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In modeling survival data, is it important to be able to
model the proportions of individuals who are cured, known
as cured fraction, and whomay not remain susceptible to the
event of interest. Cure rate models are very popular for this
purpose as they allow more information to be used for
analyzing survival data. )ere are two main cure rate models
known as mixture and nonmixture cure rate models. )e
mixture cure rate model was introduced by Boag [3] and
further developed by Berkson and Gage [4].)e nonmixture
cure rate model was introduced by Klebanov et al. [5]. For
both models, parametric, semiparametric, and nonpara-
metric methods have been used to estimate the cure fraction
[6]. )ere are several research studies on both types of cure
rate models and their extensions to include covariates. Some
of these include generalized log-gamma regression models
with cure fraction [7], cure fraction models using mixture
and nonmixture models based on Weibull distribution [8],
mixture and nonmixture cure fraction models based on
generalized modified Weibull distribution [9], expo-
nentiated exponential mixture and nonmixture cure rate
model with covariates [10], nonmixture cure model with
Fréchet distribution [6], cure models based on expo-
nentiatedWeibull exponential distributions [11], destructive
power series curemodel with covariates [12], and curemodel
based on generalized Weibull distribution with covariates
[13]. In this study, mixture and nonmixture cure rate models
are developed based on the SW geometric distributions.
Furthermore, regression models are developed based on
these mixture and nonmixture models to accommodate
covariates.

)e rest of the paper is organized as follows: Section 2
presents the Sine-Weibull geometric distribution for the first
and last activation schemes. Mixture and nonmixture cure
rate models with simulation studies to assess the estimators
of the parameters of the models are presented in Sections 3
and 4, respectively. )e regression models based on the cure
rate models are presented in Section 5. )e applications of
the developed SW geometric distributions, the cure rate, and
regressionmodels are presented in Section 6.)e conclusion
of the research is presented in Section 7.

2. Sine-Weibull Geometric Distribution

)e SW geometric (SWG) distribution under the first and
last activation schemes is presented in this section. Suppose
that Yi􏼈 􏼉

N
i�1, representing the failure times of a subsystem, are

independent and identically distributed (iid) SW random
variables with CDF given by equation (3) and N follows the
zero-truncated geometric distribution. )en,
X1 � min( Yi􏼈 􏼉

N

i�1) and Xn � max( Yi􏼈 􏼉
N

i�1) follow the SW
geometric I (SWGI) and SW geometric II (SWGII) distri-
butions, respectively. )e CDFs of SWGI and SWGII dis-
tributions are defined, respectively, as

G1(x) � 1 −
C θ[1 − F(x)]{ }

C(θ)
, x ∈ R, (4)

G2(x) �
C θF(x){ }

C(θ)
, x ∈ R, (5)

where F(x) is the CDF of SW distribution and
C(θ) � θ(1 − θ)− 1, 0< θ< 1. It is worth noting that the
distributions are well defined for θ ∈ (−∞, 1). Substituting
the CDF of the SW distribution in equation (3) and the
definition of C(θ) into equation (4) gives the CDF of the
SWGI distribution as

G1(x) � 1 −
(1 − θ) 1 − sin (π/2) 1 − e

−αxc

􏼐 􏼑􏽨 􏽩􏽮 􏽯

1 − θ 1 − sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩􏽮 􏽯
,

x> 0, α> 0, c> 0, 0< θ< 1.

(6)

)e corresponding probability density function (PDF)
obtained by differentiating equation (6) is given as

g1(x) �
αcπx

c− 1
(1 − θ)e

−αxc

cos (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩

2 1 − θ 1 − sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩􏼐 􏼑􏽮 􏽯
2 , x> 0.

(7)

Also, the hazard rate function (HRF) of the SWGI
distribution is given as

h1(x) �
αcπx

c− 1
(1 − θ)e

−αxc

cos (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩

2 (1 − θ) 1 − sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩􏽮 􏽯􏽨 􏽩 1 − θ 1 − sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩􏼐 􏼑􏽮 􏽯
, x> 0. (8)

)e quantile function of the SWGI distribution is useful
for the generation of random numbers from the distribution.
)e quantile function of SWGI distribution is obtained as
the inverse function of the CDF of SWGI distribution given
in equation (6). )e quantile function of the SWGI distri-
bution is obtained as

Q1(u) � −
1
α
log 1 −

2
π
arcsin

u(1 − θ)

1 − uθ
􏼢 􏼣􏼨 􏼩􏼠 􏼡

r/c

, u ∈ (0, 1).

(9)

Figure 1 shows plots of some possible shapes of PDF and
HRF of the SWGI distribution. It can be observed that the
PDF can assume decreasing, right and left-skewed, and
approximately symmetric shapes. Also, the HRF function
can assume decreasing, increasing, J-shape, and modified
bathtub shapes.

)e PDF of the SWGI distribution can be written in a
mixture form as

g1(x) � αc 􏽘
∞

n�1
ξnmklqsx

c− 1
e

− α(s+1)xc

, (10)
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where ξnmklqs � 􏽐
n−1
m�0 􏽐

∞
k�0 􏽐
∞
l�0 􏽐
∞
q�0 􏽐

2q+l
s�0

n − 1
m

􏼠 􏼡
k

l
􏼠 􏼡

2q + l

s
􏼠 􏼡(π/2)2q+1(n(1 − θ)(−1)m+k+q+s/θ1−n(2q)!)ak, ak �

((−1)k/k!)W(k)(x), and W(k)(x) is the kth derivative of
W(x) � sinm((π/2)x).

Similarly, the CDF of the SWGII distribution is obtained
by substituting the CDF of the SW distribution in equation

(3) and the definition of C(θ) into equation (5). )is gives
the CDF of the SWGII distribution as

G2(x) �
(1 − θ)sin (π/2) 1 − e

−αxc

􏼐 􏼑􏽨 􏽩

1 − θ sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩
,

x> 0, α> 0, c> 0, 0< θ< 1.

(11)

)e corresponding PDF and HRF are given, respectively,
as

g2(x) �
αcπx

c− 1
(1 − θ)e

−αxc

cos (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩

2 1 − θ sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩􏽮 􏽯
2 , x> 0, (12)

h2(x) �
αcπx

c− 1
(1 − θ)e

−αxc

cos (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩

2 1 − sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩􏽮 􏽯 1 − θ sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩􏽮 􏽯
, x> 0. (13)

)e quantile function of the SWGII distribution is also
obtained as

Q2(u) � −
1
α
log 1 −

2
π
arcsin

u

1 + θ(u − 1)
􏼢 􏼣􏼨 􏼩􏼠 􏼡

r/c

, u ∈ (0, 1). (14)

Possible shapes of the PDF and HRF of SWGII distri-
bution are given in Figure 2. It can be observed that the PDF
of the SWGII distribution can assume decreasing, left and

right-skewed, and approximately symmetric shapes. Also,
the HRF of the distribution show increasing, decreasing,
J-shape, and upside-down bathtub shapes.
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Figure 1: (a) PDF and (b) HRF plots of the SWGI distribution.
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)e PDF of the SWGII distribution can be written as

g2(x) � αc 􏽘
∞

n�1
ξ∗nklqsx

c− 1
e

− α(s+1)xc

, (15)

where ξ∗nklqs � 􏽐
∞
k�0 􏽐

k
l�0 􏽐
∞
q�0 􏽐

2q+l
s�0

k

l
􏼠 􏼡

2q + l

s
􏼠 􏼡 (π/2)2q+1

(n(−1)k+q+s/(2q)!)ak and ak is as defined in equation (10).
)e rth ordinary moment of a distribution is defined as

μr
′ � 􏽒
∞
−∞ xrg(x)dx. Substituting the mixture representa-

tions of the SWGI and SWGII distributions in equations (10)
and (15) into the definition gives the rth ordinary moment as

μr
′ � 􏽘
∞

n�1

ξ
(s + 1)

[α(s + 1)]
− r/cΓ

r

c
+ 1􏼠 􏼡, r � 1, 2, . . . , (16)

where Γ(α) � 􏽒
∞
0 xα− 1e− xdx and ξ is defined as ξnmklqs and

ξ∗nklqs in equations (10) and (15) for the SWGI and SWGII
distributions, respectively.

3. Mixture Cure Rate Models

Cure in a population occurs when the level of mortality in a
cohort of patients returns to the expected level in a pop-
ulation. Cure rate models are used to model the time-to-
event of various types of datasets of different kinds of
conditions, especially cancer. )e cohort is divided into two
groups, an individual that is either cured with probability p

and those with proper survival function S0(x) with prob-
ability 1 − p. )is gives an improper population survival
function expressed in a mixture form as

S(t) � p +(1 − p)S0(t), p ∈ (0, 1). (17)

Let F0(t) � 1 − S0(t) be the CDF of SWGI and SWGII
distributions; then, we obtain SWGI and SWGII mixture
cure rate models. Substituting equations (6) and (11) into
equation (16) gives the survival function of the SWGI and
SWGII cure rate models, respectively, as

S t1( 􏼁 � p + (1 − p)
(1 − θ) 1 − sin (π/2) 1 − e

− αt
c

1􏼒 􏼓􏼔 􏼕􏼚 􏼛

1 − θ 1 − sin (π/2) 1 − e
−αt

c

1􏼒 􏼓􏼔 􏼕􏼚 􏼛

, t1 > 0, α> 0, c> 0, 0< θ< 1, 0≤p≤ 1, (18)

S t2( 􏼁 � p + (1 − p)
1 − sin (π/2) 1 − e

− αt
c

2􏼒 􏼓􏼔 􏼕

1 − θ sin (π/2) 1 − e
−αt

c

2􏼒 􏼓􏼔 􏼕

, t2 > 0, α> 0, c> 0, 0< θ< 1, 0≤p≤ 1. (19)
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Figure 2: (a) PDF and (b) HRF plots of the SWGII distribution.
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Also, the PDF of the SWGI and SWGII mixture cure rate
models is given, respectively, as

f t1( 􏼁 �
αcπt

c−1
1 (1 − p)(1 − θ)e

− αt
c

1 cos (π/2) 1 − e
− αt

c

1􏼒 􏼓􏼔 􏼕

2 1 − θ 1 − sin (π/2) 1 − e
−αt

c

1􏼒 􏼓􏼔 􏼕􏼒 􏼓􏼚 􏼛
2 , t1 > 0, (20)

f t2( 􏼁 �
αcπt

c−1
2 (1 − p)(1 − θ)e

− αt
c

2 cos (π/2) 1 − e
− αt

c

2􏼒 􏼓􏼔 􏼕

2 1 − θ sin (π/2) 1 − e
−αt

c

2􏼒 􏼓􏼔 􏼕􏼚 􏼛
2 , t2 > 0. (21)

Consider n pairs of time and censoring indicators
(t1, δ1), . . . , (tn, δn), where δi � 1 if ti is a time-to-event and
δi � 0 if ti is censored for i � 1, 2, . . . , n. )e log-likelihood
function is given by

ℓ(ξ) � 􏽘
n

i�1
δilog (1 − p)f0 ti( 􏼁􏼂 􏼃

+ 􏽘
n

i�1
1 − δi( 􏼁log p + (1 − p)S0 ti( 􏼁􏼂 􏼃.

(22)

To obtain the log-likelihood function of the SWGI
mixture cure rate model, equations (6) and (7) are substituted
into equation (22). Similarly, substituting equations (11) and
(12) into equation (22) gives the log-likelihood function of the
SWGII mixture cure rate model. )e estimates of the pa-
rameters of the models are obtained directly by maximizing
the log-likelihood function given in equation (22).

3.1. Simulation Studies. Simulation studies are conducted in
this section to assess the performance of the maximum likeli-
hood estimators for the parameters of the mixture cure fraction
models. )e steps used to achieve this are given as follows:

(I) Generate a sample of size n of u1, u2, . . . , un from
U ∼ (0, 1).

(II) Given that pi is the cure fraction,

ti
′ �

Q ui( 􏼁, ui ≤ 1 − pi,

∞, otherwise,
􏼨 (23)

where Q(ui) is the quantile function of SWGI and
SWGII distributions.

(III) Generate censored samples c1, c2, . . . , cn from the
exponential distribution with a rate equal to 0.2.

(IV) Obtain the right-censored data as ti � min(ti
′, ci).

(V) Obtain the pairs (ti, δi), where δi � 1 if ti ≤ ci and
0 otherwise.

(VI) Obtain the maximum likelihood estimates of the
parameters using equation (22) and obtain the
average estimates (AE), absolute bias (AB), and

the root mean square error (RMSE) of the esti-
mates. Also, the censoring rate (CR) is computed.

(VII) Repeat steps I–VI 5000 times for sample sizes
n � 50, 100, 300, 500, 800.

(VIII) Steps I and VII are repeated for parameter set
(α, c, θ) � (1.2, 0.8, 0.3) and cure fraction p of
1%, 2%, and 3%.

)e results of the simulation studies for SWGI and
SWGII are given in Tables 1 and 2, respectively. It can be
observed that all the parameters are consistent as the ABs
and RMSEs decrease with increasing sample size for all the
different cure fractions considered. It can also be observed
that as the cure fraction increases, the censored rate also
increases. )e AEs of the parameters are close to the true
parameter values.

4. Nonmixture Cure Rate Models

Suppose that a cancer patient has M number of cancer cells
after treatment. Assume that M is distributed as a Poisson
random variable with mean λ due to rapid growth which
may lead to later production of detectable cancer disease. If
Xi is the random time for the ith cancer to produce a de-
tectable cancer mass, then the relapse time
T � min Xi, i � 1, 2, . . . , M􏼈 􏼉. Given that Xi are indepen-
dently and identically distributed with CDF and survival
function F(·) and S(·), respectively, then the survival
function T is defined as

S(t) � P[no cancer by time t]

� P[M � 0] + P X1 > t, X2 > t, . . . , XM > t, M≥ 1􏼂 􏼃

� e
− λ

+ 􏽘
∞

M�1
S

M
0 (t)

λM
e

− λ

M!

� e
− λ 1− S0(t)( )

� e
− λF0(t)

� p
F0(t)

,

(24)

where p � e− λ. Alternatively,
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Table 1: Simulation results of SWGI distribution for parameter values (α, c, θ) � (1.2, 0.8, 0.3).

Parameter
p � 1% p � 2% p � 3%

AE AB RMSE AE AB RMSE AE AB RMSE
n� 50, CR� 7.16% n� 50, CR� 7.48% n� 50, CR� 31.82%

α 1.2449 0.3155 0.3947 1.3335 0.3274 0.4073 1.4220 0.3477 0.4380
c 0.8833 0.1358 0.1867 0.8899 0.1333 0.1834 0.8885 0.1317 0.1829
θ 0.3171 0.3016 0.3314 0.2894 0.2907 0.3196 0.2507 0.2868 0.3115
p 0.0099 0.0135 0.0169 0.0177 0.0186 0.0226 0.0289 0.0221 0.0273

n� 100, CR� 6.99% n� 100, CR� 7.68% n� 100, CR� 31.77%
α 1.2698 0.2467 0.3014 1.3794 0.2639 0.3154 1.4790 0.3198 0.3736
c 0.8485 0.0934 0.1270 0.8436 0.0850 0.1146 0.8522 0.0859 0.1191
θ 0.2703 0.2645 0.2912 0.2164 0.2542 0.2768 0.1820 0.2500 0.2709
p 0.0090 0.0095 0.0112 0.0183 0.0130 0.0159 0.0281 0.0155 0.0192

n� 300, CR� 7.00% n� 300, CR� 7.68% n� 300, CR� 31.83%
α 1.3139 0.1832 0.2139 1.4221 0.2430 0.2744 1.5163 0.3197 0.3453
c 0.8148 0.0538 0.0698 0.8144 0.0484 0.0646 0.8206 0.0456 0.0609
θ 0.2154 0.2120 0.2374 0.1559 0.2206 0.2439 0.1179 0.2254 0.2469
p 0.0092 0.0055 0.0069 0.0189 0.0075 0.0094 0.0285 0.0087 0.0109

n� 500, CR� 6.95% n� 500, CR� 7.68% n� 500, CR� 31.84%
α 1.3374 0.1741 0.2014 1.4390 0.2456 0.2701 1.5385 0.3392 0.3552
c 0.8053 0.0426 0.0545 0.8092 0.0367 0.0487 0.8111 0.0343 0.0467
θ 0.1877 0.1964 0.2224 0.1371 0.2054 0.2305 0.0827 0.2384 0.2563
p 0.0093 0.0044 0.0054 0.0190 0.0059 0.0073 0.0285 0.0067 0.0085

n� 800, CR� 6.97% n� 800, CR� 7.63% n� 800, CR� 31.76%
α 1.3428 0.1648 0.1908 1.4571 0.2587 0.2760 1.5461 0.3461 0.3561
c 0.8023 0.0364 0.0458 0.8025 0.0297 0.0386 0.8053 0.0254 0.0345
θ 0.1822 0.1801 0.2090 0.1137 0.2084 0.2330 0.0652 0.2430 0.2587
p 0.0091 0.0034 0.0042 0.0189 0.0046 0.0057 0.0286 0.0055 0.0068

Table 2: Simulation results of SWGII distribution for parameter values (α, c, θ) � (1.2, 0.8, 0.3).

Parameter
p � 1% p � 2% p � 3%

AE AB RMSE AE AB RMSE AE AB RMSE
n� 50, CR� 9.96% n� 50, CR� 10.32% n� 50, CR� 11.32%

α 1.4750 0.3891 0.6201 1.5055 0.3807 0.5869 1.5808 0.4311 0.6532
c 0.7942 0.1461 0.1858 0.8063 0.1449 0.1820 0.8079 0.1527 0.1908
θ 0.3414 0.3206 0.3577 0.3517 0.3205 0.3553 0.3789 0.3207 0.3616
p 0.0099 0.0140 0.0175 0.0182 0.0189 0.0227 0.0302 0.0231 0.0289

n� 100, CR� 9.86% n� 100, CR� 10.56% n� 100, CR� 11.19%
α 1.4346 0.3242 0.5118 1.4648 0.3216 0.5087 1.5293 0.3586 0.5273
c 0.7866 0.1234 0.1562 0.7980 0.1203 0.1528 0.8005 0.1208 0.1518
θ 0.3589 0.2982 0.3363 0.3598 0.2934 0.3322 0.4001 0.2849 0.3259
p 0.0091 0.0097 0.0117 0.0181 0.0137 0.0167 0.0274 0.0159 0.0196

n� 300, CR� 9.90% n� 300, CR� 10.51% n� 300, CR� 11.13%
α 1.3306 0.2055 0.3099 1.4027 0.2336 0.3195 1.4675 0.2802 0.3636
c 0.7995 0.0801 0.1036 0.8027 0.0768 0.0970 0.8037 0.0773 0.0963
θ 0.3304 0.2337 0.2699 0.3820 0.2256 0.2608 0.4067 0.2312 0.2684
p 0.0087 0.0058 0.0071 0.0183 0.0079 0.0098 0.0285 0.0091 0.0113

n� 500, CR� 9.92% n� 500, CR� 10.49% n� 500, CR� 11.15%
α 1.3114 0.1740 0.2350 1.3854 0.2067 0.2655 1.4648 0.2706 0.3271
c 0.8024 0.0664 0.0821 0.8020 0.0642 0.0790 0.8020 0.0629 0.0779
θ 0.3333 0.2081 0.2413 0.3843 0.2017 0.2336 0.4264 0.2050 0.2406
p 0.0090 0.0044 0.0055 0.0185 0.0062 0.0076 0.0284 0.0071 0.0088

n� 800, CR� 9.90% n� 800, CR� 10.53% n� 800, CR� 11.16%
α 1.3078 0.1523 0.2013 1.3855 0.1979 0.2456 1.4498 0.2523 0.2926
c 0.8003 0.0543 0.0675 0.8018 0.0526 0.0658 0.8057 0.0515 0.0640
θ 0.3447 0.1772 0.2103 0.3966 0.1748 0.2081 0.4256 0.1802 0.2120
p 0.0090 0.0035 0.0043 0.0187 0.0049 0.0061 0.0283 0.0058 0.0072
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S(t) � p
F0(t)

� e
F0(t)log(p)

.
(25)

)us, SWGI and SWGII nonmixture cure rate models
are given, respectively, as

S t1( 􏼁 � exp 1 −
(1 − θ) 1 − sin (π/2) 1 − e

− αt
c

1􏼒 􏼓􏼔 􏼕􏼚 􏼛

1 − θ 1 − sin (π/2) 1 − e
−αt

c

1􏼒 􏼓􏼔 􏼕􏼚 􏼛

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
log(p)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, t1 > 0, (26)

S t2( 􏼁 � exp
(1 − θ)sin (π/2) 1 − e

−αxc

􏼐 􏼑􏽨 􏽩log(p)

1 − θ sin (π/2) 1 − e
−αxc

􏼐 􏼑􏽨 􏽩
⎛⎝ ⎞⎠, t2 > 0. (27)

It should be noted that f(t) � h(t)S(t), where h(t) �

−f0(t)log(p) is the hazard rate function. )erefore, the log-
likelihood function of a nonmixture cure rate model is given
as

ℓ � 􏽘
n

i�1
δilog −f0 ti( 􏼁log p( 􏼁 + 􏽘

n

i�1
1 − S0 ti( 􏼁( 􏼁log p. (28)

)e estimates of the parameters are obtained by maxi-
mizing equation (28) directly.

4.1. Simulation Studies. )e steps for the simulation studies
are similar to the steps for the simulation studies in the
SWGI and SWGII mixture cure rate models. However,
equation (28) is used for the estimation of the parameters of
the model. Tables 3 and 4 show the simulation results for
SWGI and SWGII nonmixture cure rate models, respec-
tively. )e ABs and RMSEs again decrease as the sample size
increases affirming that the maximum likelihood estimators
for the parameters of the nonmixture cure rate models are
also consistent.

5. Regression

In survival analysis, regression models with cure fraction are
useful. In this section, a regression model in which the time-
to-event of competing causes of the event of interest follows
the SWGI and SWGII distributions is considered. If the
lifetimes are affected by covariates, then we develop a re-
gression model considering the covariates. To achieve this,
we relate the cure fraction p to the covariates using the logit
link function given as

pi �
e

XT
i
β

1 + e
XT

i
β
, i � 1, 2, . . . , n, (29)

where XT
i � (1, xi1, xi2, . . . , xik) is the ith vector of cova-

riates and β � (β0, β1, β2, . . . , βk) is the vector of regression
coefficients. )is gives the regression model structure as

log
pi

1 − pi

􏼠 􏼡 � X
T
i β, i � 1, 2, . . . , n. (30)

)e log-likelihood functions for the mixture cure rate
and nonmixture cure rate regression models are obtained by
substituting pi into equations (22) and (28), respectively.
)us, the estimates of the regression parameters can be
obtained via the maximum likelihood method.

6. Applications

In this section, the applications of the developed distribu-
tions and their correspondingmixture cure rate, nonmixture
cure rate, and regression models are demonstrated.

6.1. Application of SWGI and SWGII Distribution. )e
usefulness of the SWGI and SWGII distributions is dem-
onstrated in this section. )e performance of the distribu-
tions is compared with the performance of the sine-Topp-
Leone exponentiated exponential (STLEE) [14], sine-Wei-
bull (SW), and Weibull (W) distributions. )e distributions
are compared using the Akaike information criterion (AIC),
Bayesian information criterion (BIC), Hannan–Quinn in-
formation criterion (HQIC), Cramér–von Mises (CVM),
and Anderson–Darling (AD) goodness-of-fit measures. )e
distribution with the least value of these measures and the
highest of the pvalues of CVM and AD measures is con-
sidered the best distribution that fits the data.

)e data used consist of remission times of 128 bladder
cancer patients. )e data are obtained from Lee and Wang
[15] and are given as follows: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66,
13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,
3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26,
9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64,
3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59,
10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62,
43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 1.46, 18.10, 11.79, 4.40, 5.85,
8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02,
13.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 12.07, 6.76,
21.73, 2.07, 3.36, 6.93, 8.65, 12.63, and 22.69.

Table 5 shows the parameter estimates of all the com-
peting distributions with their corresponding standard er-
rors and p values.
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Table 3: Simulation results of SWGI distribution for parameter values (α, c, θ) � (0.2, 0.1, 0.2).

Parameter
p � 1% p � 2% p � 3%

AE AB RMSE AE AB RMSE AE AB RMSE
n� 50, CR� 63.86% n� 50, CR� 64.80% n� 50, CR� 64.57%

α 0.3824 0.3811 0.5255 0.4009 0.3913 0.5691 0.4026 0.3906 0.5602
c 0.1493 0.0527 0.0699 0.1499 0.0519 0.0696 0.1480 0.0507 0.0676
θ 0.5209 0.4926 0.5763 0.5088 0.4870 0.5701 0.4969 0.4775 0.5625
p 0.4510 0.4411 0.4797 0.4534 0.4341 0.4726 0.4443 0.4164 0.4606

n� 100, CR� 64.59% n� 100, CR� 64.58% n� 100, CR� 64.50%
α 0.2875 0.2768 0.3605 0.2604 0.2670 0.3400 0.2743 0.2729 0.3498
c 0.1313 0.0329 0.0428 0.1315 0.0333 0.0432 0.1313 0.0332 0.0432
θ 0.4744 0.4684 0.5549 0.5210 0.4964 0.5802 0.4986 0.4820 0.5656
p 0.3876 0.3779 0.4178 0.3927 0.3739 0.4121 0.3870 0.3591 0.4014

n� 300, CR� 64.35% n� 300, CR� 64.35% n� 300, CR� 64.48%
α 0.1997 0.1768 0.2109 0.1985 0.1829 0.2160 0.1910 0.1760 0.2089
c 0.1166 0.0181 0.0223 0.1174 0.0185 0.0227 0.1166 0.0178 0.0220
θ 0.3839 0.4158 0.5035 0.4335 0.4390 0.5258 0.4185 0.4326 0.5208
p 0.2938 0.2846 0.3278 0.2991 0.2808 0.3249 0.2902 0.2635 0.3076

n� 500, CR� 64.47 n� 500, CR� 64.34% n� 500, CR� 64.34%
α 0.1779 0.1415 0.1669 0.1833 0.1571 0.1838 0.1710 0.1439 0.1680
c 0.1124 0.0134 0.0166 0.1133 0.0140 0.0174 0.1119 0.0130 0.0161
θ 0.3038 0.3655 0.4513 0.3513 0.3917 0.4781 0.3530 0.3922 0.4775
p 0.2451 0.2364 0.2826 0.2533 0.2360 0.2860 0.2458 0.2218 0.2658

n� 800, CR� 64.37% n� 800, CR� 64.24% n� 800, CR� 64.37%
α 0.1526 0.1217 0.1419 0.1716 0.1235 0.1470 0.1636 0.1315 0.1521
c 0.1097 0.0106 0.0133 0.1093 0.0102 0.0127 0.1096 0.0105 0.0131
θ 0.2536 0.3369 0.4167 0.2347 0.3211 0.3974 0.2625 0.3404 0.4199
p 0.2031 0.1951 0.2432 0.2153 0.1996 0.2475 0.2120 0.1905 0.2401

Table 4: Simulation results of SWGII distribution for parameter values (α, c, θ) � (0.2, 0.1, 0.2).

Parameter
p � 1% p � 2% p � 3%

AE AB RMSE AE AB RMSE AE AB RMSE
n� 50, CR� 74.50% n� 50, CR� 73.86% n� 50, CR� 74.20%

α 1.1240 0.9399 1.2111 1.1576 0.9724 1.2717 1.1615 0.9759 1.3094
c 0.1381 0.0467 0.0675 0.1382 0.0463 0.0656 0.1362 0.0471 0.0694
θ 0.2914 0.3305 0.3948 0.2988 0.3341 0.3970 0.4456 0.3940 0.4490
p 0.6266 0.6169 0.6433 0.6189 0.5995 0.6273 0.6125 0.5836 0.6104

n� 100, CR� 73.80% n� 100, CR� 73.91% n� 100, CR� 73.75%
α 0.8759 0.7036 0.9915 0.9451 0.7675 1.0829 0.9516 0.7733 1.0696
c 0.1194 0.0303 0.0401 0.1163 0.0294 0.0392 0.1181 0.0303 0.0397
θ 0.2903 0.3296 0.3911 0.3192 0.3468 0.4125 0.3999 0.3751 0.4310
p 0.5545 0.5450 0.5819 0.5688 0.5500 0.5831 0.5745 0.5456 0.5764

n� 300, CR� 73.75% n� 300, CR� 73.74% n� 300, CR� 73.68%
α 0.7390 0.5713 0.8735 0.7613 0.5936 0.8785 0.7146 0.5503 0.8284
c 0.1064 0.0198 0.0252 0.1044 0.0181 0.0232 0.1055 0.0178 0.0229
θ 0.3717 0.3701 0.4309 0.3871 0.3780 0.4390 0.3720 0.3672 0.4257
p 0.4903 0.4811 0.5230 0.4991 0.4813 0.5217 0.4858 0.4590 0.5011

n� 500, CR� 73.68 n� 500, CR� 73.64% n� 500, CR� 73.72%
α 0.6365 0.4759 0.7193 0.6663 0.4986 0.7645 0.6388 0.4803 0.7312
c 0.1033 0.0145 0.0188 0.1024 0.0153 0.0201 0.1031 0.0147 0.0190
θ 0.3861 0.3698 0.4255 0.4064 0.3801 0.4364 0.3216 0.3468 0.4128
p 0.4588 0.4498 0.4945 0.4632 0.4456 0.4866 0.4479 0.4222 0.4688

n� 800, CR� 73.63% n� 800, CR� 73.69% n� 800, CR� 73.75%
α 0.5494 0.3972 0.5762 0.5618 0.4112 0.6121 0.5889 0.4250 0.6446
c 0.1028 0.0122 0.0149 0.1022 0.0123 0.0156 0.1011 0.0121 0.0160
θ 0.4241 0.3814 0.4363 0.4284 0.3822 0.4351 0.3058 0.3398 0.4026
p 0.4093 0.4012 0.4565 0.4114 0.3957 0.4496 0.4269 0.4031 0.4495
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Table 6 shows the information criteria and goodness-of-
fit measures of the estimated distributions. It can be ob-
served that SWGI distribution has the least value of the
information criteria and the goodness-of-fit measures and
the highest of the corresponding p values of the goodness-
of-fit measures. )is is followed by SWGII distribution.

)e performance of the models is illustrated graphically
using the estimated densities of the fitted distribution plotted
over the histogram of the bladder cancer data. )is is shown
in Figure 3. It can be observed that SWGI and SWGII
distributions best describe the histogram of the data as
compared to the other distributions.

Probability-probability (P-P) plots of the fitted distri-
butions are shown in Figure 4. It can be observed that SWGI
and SWGII distributions have points clustering more along
the diagonal line. )us, these confirm that the SWGI and
SWGII distributions best describe the bladder cancer data
and can be used as alternative distributions to model lifetime
data.

6.2. Cure Rate Models without Covariates. )e usefulness of
the cure rate models developed in this study is demonstrated
in this section. )e data used for the demonstration are the
melanoma data from Eastern Cooperative Oncology Group
(ECOG) phase III clinical trial e1684. )e data are available
in R package smcure [16]. )e study was conducted from
1984 to 1990 and consisted of 286 patients. About 69% of the
data are censored. A total of 284 observations are used for
this analysis after missing data were deleted.

)e mixture and nonmixture cure rate models based on
SWGI and SWGII distributions are fitted to the data. Also,
Weibull and exponentiated exponential (EE) mixture and
nonmixture cure fraction models [10] are fitted to the data.
)e models are compared using AIC, BIC, and HQIC.
Table 7 shows the parameter estimates of the fitted models
with their corresponding standard errors.

Table 8 shows the goodness-of-fit measures of the fitted
models. It can be observed that the SWGII mixture and
nonmixture models provide a better fit to the data as they
have the least of −ℓ, AIC, BIC, and HQIC as compared to the
other competing models.

To illustrate how the models fit the data, the fitted
survival curves of the models are obtained and overlaid with
the Kaplan–Meier survival curve. )e mixture and non-
mixture cure rate models are overlaid with the
Kaplan–Meier survival curve for each distribution.)ese are
shown in Figure 5. It can be observed that the survival curves
for the mixture and nonmixture SWGII cure rate models,
shown in Figure 5, are closer to the Kaplan–Meier estimates
as compared to the other survival curves. )is confirms the
results in Table 8.

6.3. Cure FractionModels with Covariates. )e usefulness of
the cure rate regression model developed in this research is
also demonstrated. )e data used are the melanoma data
from Eastern Cooperative Oncology Group (ECOG) phase
III clinical trial e1684. )e data are available in R package
smcure. Again, about 69% of the data are censored and a total
of 284 observations are used for this analysis after missing
data were deleted. )e dependent variable is defined as the
survival times, while the covariates are age and gender.)us,
the regression structure used is of the form

log
pi

1 − pi

􏼠 􏼡 � β0 + β1xi1 + β2xi2, n � 1, 2, . . . , 284, (31)

where xi1 and xi2 represent the age and gender of the subject
i, respectively. Mixture and nonmixture regressions models
for SWGI and SWGII distributions are fitted to the data. )e
performances of these models are compared with Weibull
and EE mixture and nonmixture models. Table 9 shows the
parameter estimates with their corresponding standard er-
rors and pvalues for all the fitted regression models. It can be
observed that the covariates, age and gender, are not sig-
nificant for all the regression models fitted at the 5% sig-
nificance level, with gender being highly insignificant with a
pvalue greater than 0.9.

Table 10 shows the goodness-of-fit measures of the fitted
regression models. It can be observed that the mixture and
nonmixture regression models of SWGII distribution per-
formed better than all the other competing regression
models as they have the least of the information criteria.

Table 5: Parameter estimates of bladder cancer remission data.

Distribution Parameter Estimates Std. error p value

SWGI
α 0.0044 0.0077 0.5648
c 1.4666 0.2717 6.750 × 10− 08

θ 0.8865 0.1598 2.880 × 10− 08

SWGII
α 0.0059 0.0014 4.460 × 10− 05

c 1.4248 0.0874 < 2.200 × 10− 16

θ −5.9560 0.0026 < 2.200 × 10− 16

STLEE
α 0.1384 0.0553 0.0123
c 52.5569 9.5266 3.450 × 10− 08

θ 16.0576 10.2150 0.1160

SW α 0.0598 0.0117 3.600 × 10− 07

c 0.9967 0.0655 < 2.200 × 10− 16

W α 0.0919 0.0188 1.03 × 10− 06

c 1.0527 0.0680 < 2.200 × 10− 16
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Table 6: Information criteria and goodness-of-fit measures of bladder cancer data.

Distribution −ℓ AIC BIC HQIC
CVM AD

Statistic p-value Statistic p-value
SWGI 411.7916 829.5833 838.1394 833.0597 0.0389 0.9395 0.2656 0.9615
SWGII 412.0238 830.0476 838.6037 833.5240 0.0456 0.9032 0.3026 0.9361
STLEE 412.4204 830.8409 839.3970 834.3173 0.0492 0.8822 0.3289 0.9148
SW 415.3127 834.6254 840.3295 836.9430 0.1386 0.4266 0.8994 0.4144
W 415.0984 834.1968 839.9009 836.5144 0.1380 0.4287 0.8743 0.4302
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Figure 3: Histogram and estimated densities of distributions for bladder cancer data.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
SWGI Distribution

Observed probability

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
SWGII Distribution

Observed probability

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
STLEE Distribution

Observed probability

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
SW Distribution

Observed probability

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
W Distribution

Observed probability

Ex
pe

ct
ed

 p
ro

ba
bi

lit
y

Figure 4: P-P plots of fitted distributions.
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Table 7: Parameter estimates of mixture and nonmixture cure fraction models.

Distribution
Mixture Nonmixture

Parameter Estimates Std. error Estimates Std. error

SWGI

α 3.1470 0.0702 2.8694 0.0748
c 0.2334 0.0157 0.2472 0.0167
θ −245.5800 0.0001 −257.8200 1.4396 × 10− 4

p 0.2943 0.0286 0.2960 0.0284

SWGII

α 338.2900 0.0050 0.0277 0.0046
c 1.3115 0.0915 1.2846 0.0915
θ −32.039 3.9303 × 10− 5 −20.5410 4.2625 × 10− 5

p 0.2808 0.0297 2.8309 0.0303

W
α 0.9348 0.0750 0.6345 0.0619
c 0.9132 0.0528 1.0145 0.0581
p 0.2990 0.0279 0.2934 0.0279

EE
α 0.9466 0.0913 1.0891 0.0956
c 0.8665 0.0923 0.6952 0.0887
p 0.3007 0.0277 0.2933 0.0277

Table 8: Goodness-of-fit measures of mixture and nonmixture fraction models.

Distribution
Mixture Nonmixture

−ℓ AIC BIC HQIC −ℓ AIC BIC HQIC
SWGI 382.6185 773.2369 787.8328 779.0887 383.8670 775.7340 790.3299 781.5858
SWGII 373.1199 754.2398 768.8357 760.0916 373.5363 755.0727 769.6686 760.9245
W 381.3963 768.7926 779.7395 773.1814 378.4050 762.8100 773.7570 767.1989
EE 382.5494 771.0989 782.0458 775.4877 377.9704 761.9407 772.8877 766.3296
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Figure 5: Fitted survival curves of melanoma data.
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Table 9: Parameter estimates of the regression models.

Distribution Parameter
Mixture Nonmixture

Estimate Std. error p value Estimate Std. error p value

SWGI

α 3.0161 0.0700 < 2.2 × 10− 16 2.9542 0.0751 < 2.2 × 10− 16

c 0.2422 0.0163 < 2.2 × 10− 16 0.2411 0.0162 < 2.2 × 10− 16

θ −187.8864 0.0002 < 2.2 × 10− 16 −306.5762 0.0001 < 2.2 × 10− 16

β0 −0.8744 0.1758 6.6 × 10− 7 −0.8717 0.1691 2.6 × 10− 7

β1 −0.0098 0.0105 0.3511 −0.0086 0.0095 0.3626
β2 0.0051 0.2774 0.9852 −0.0008 0.2538 0.9976

SWGII

α 0.0621 0.0545 0.2548 0.0268 0.0045 1.9 × 10− 9

c 1.2884 0.0961 < 2.2 × 10− 16 1.2824 0.0917 < 2.2 × 10− 16

θ −16.5358 16.1429 0.3057 −21.0240 0.0003 < 2.2 × 10− 16

β0 −0.9146 0.1866 9.5 × 10− 7 −0.9390 0.1809 2.1 × 10− 7

β1 −0.0129 0.0107 0.2273 −0.0087 0.0096 0.3655
β2 0.0108 0.2828 0.9696 0.0016 0.2586 0.9949

W

α 0.9339 0.0751 < 2.2 × 10− 16 0.6329 0.0619 < 2.2 × 10− 16

c 0.9127 0.0528 < 2.2 × 10− 16 1.0145 0.0582 < 2.2 × 10− 16

β0 −0.8671 0.1720 4.6 × 10− 7 −0.8796 0.1679 1.6 × 10− 7

β1 −0.0123 0.0103 0.2305 −0.0088 0.0095 0.3518
β2 0.0225 0.2720 0.9339 −0.0028 0.2544 0.9912

EE

α 0.9460 0.0913 < 2.2 × 10− 16 1.0889 0.0956 < 2.2 × 10− 16

c 0.8652 0.0924 < 2.2 × 10− 16 0.6933 0.0887 5.6 × 10− 15

β0 −0.8588 0.1707 4.9 × 10− 7 −0.8796 0.1671 1.4 × 10− 7

β1 −0.0122 0.0102 0.2336 −0.0088 0.0095 0.3527
β2 0.0234 0.2703 0.9311 −0.0033 0.2545 0.9897

Table 10: Goodness-of-fit measures of fitted regression models.

Distribution
Mixture Nonmixture

−ℓ AIC BIC HQIC −ℓ AIC BIC HQIC
SWGI 382.3936 776.7871 798.6810 787.6973 383.1229 778.2458 800.1397 789.1561
SWGII 372.5206 757.0413 778.9351 767.9515 373.1204 758.2407 780.1346 769.1509
W 380.6557 771.3114 789.5562 780.4032 377.9691 765.9382 784.1831 775.0301
EE 381.8187 773.6373 791.8822 782.7292 377.5365 765.0729 783.3178 774.1648
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Figure 6: Cox–Snell residuals of fitted regression models.
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)e assessment of the adequacy of the regression models
is performed via Cox–Snell residual analysis [17]. Given the
CDF F(x) of a distribution, the ith Cox–Snell residual is
given as 􏽢ei � −log(1 − F(xi)). If the model fits the data, the
Cox–Snell residuals are approximately standard exponen-
tially distributed. A P-P plot of the empirical probabilities of
the residuals against the theoretical probabilities from
standard exponential distribution can be used to check the
behavior of the Cox–Snell residual. Figure 6 shows the P-P
plots for all the fitted regression models. It can be observed
that the plotted points for the mixture and nonmixture cure
rate SWGII regression models are closer to the diagonal as
compared to the other regression models. )is confirms the
results in Table 10.

7. Conclusion

In this study, two new distributions based on Sine-Weibull
geometric distribution known as SWGI and SWGII distri-
butions were developed. Some properties including the
quantile and ordinary moments are obtained. Also, plots of
the hazard rate functions of the distributions show that the
distributions exhibit nonmonotonic failure rates. )e plots
of the density functions of the distributions also show that
they exhibit various desirable shapes. Mixture and non-
mixture cure rate models based on these distributions were
also developed. Simulation studies were performed to assess
the estimators of the models. )e results show that the
estimators were consistent. Again, regression models based
on the cure rate models were developed. Finally, the per-
formance of the distributions and the cure rate and re-
gression models is demonstrated using real datasets. )e
results show that the developed distributions can serve as an
alternative to existing models for fitting lifetime data. Also,
the developed mixture and nonmixture cure rate and re-
gression models can be used to perform survival analyses.
Future work may consider using Bayesian methods to es-
timate the parameters of the sine-Weibull geometric dis-
tribution. Also, other zero-truncated distributions may be
considered in describing the number of occurrence of the
cases instead of the zero-truncated geometric distribution,
with sine-Weibull distribution describing the failure times.
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