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Sterile insect technology (SIT) is an environmental-friendly method which depends on the release of sterile male mosquitoes
that compete with the wild male mosquitoes and mate with wild female mosquitoes, which leads to the production of no
o�spring and as such reduces the population of Zika virus vector population over time, thereby eliminating the spread of
Zika virus in a population. �e fractional order sterile insect technology (SIT) model to reduce the spread of Zika virus
disease is considered in this present work. We employed the use Laplace–Adomian decomposition method (LADM) to
determine an analytical (approximate) solution of the model. �e Laplace–Adomian decomposition method (LADM)
produced a solution in form of an in�nite series that further converges to the exact value. We compared solutions of the
fractional model with the classical case using our plots and discovered that the fractional order has more degree of freedom
and as such the system can be varied to get many preferred responses of the di�erent classes of the model as the fraction (β)
could be varied to the desired rate, say 0.7, 0.4, etc. We have been able to show that LADM can be used to solve an SITmodel
which has never been done before in literature.

1. Introduction

Zika is a viral infection that is usually spread in human
population by the bite of infected mosquitoes. It was dis-
covered in 1947 in Uganda [1]. �e most common way to
contact Zika virus is from the bites of an infected mosquito.
Two species of mosquitoes spread the virus to people; the
yellow fever mosquitoes (Aedes aegypti) and the Asian tiger
mosquitoes (Aedes albopictus). Both are native to Texas
[1, 2]. �e sterile insect technology is an environmental-
friendly insect pest control method involving the mass
rearing and sterilization using radiation, of a target pest,

followed by the systematic area-wide release of the sterile
males by air over de�ned areas, where they mate with wild
females, resulting in no o�spring and a declining pest
population [3, 4]. Mathematical modeling of disease
transmission dates back to 1766 as was �rst presented by
D. Bernoulli. �is has metamorphosed to a deep study of
disease transmission and control especially with infectious
diseases like HIV/AIDS, Lassa fever, cholera, malaria, and
others [5–10]. In recent years, fractional calculus has
attracted great attention from researchers and di�erent
aspects of the said subject are under consideration for re-
search; this is due to the fact that the fractional derivative is
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an important tool to explain the dynamical behaviour of
various physical systems [11]. +e strength of these differ-
ential operator as presented in [11] is their nonlocal char-
acteristics which do not exist in the integer order differential
operators and that fractional order models are more realistic
and practical than the classical integer order model.

+e technique of Laplace–Adomian decomposition
method (LADM) involves the combination of the Adomian
decomposition method (ADM) and the Laplace transforms.
Adomian’s is an effective technique for obtaining solutions
of model or a system of ordinary differential equations.
Laplace transform is an efficient method used in engineering
and applied sciences. +e coupling of these two methods
leads to the Laplace–Adomian decomposition method
(LADM).+e Laplace–Adomian decomposition method has
been applied to many problems in physics, biology, ap-
plied mathematics, and engineering [11]. +e basic idea of
this method is to assume an infinite solution of the kind:
q � 􏽐

∞
n�0 qn, then apply Laplace transformation to the

differential equation. +e nonlinear terms of the model
are then decomposed in terms of the Adomian poly-
nomials, and then an iterative procedure is formulated for
the determination of the (qn) in a recursive form. +is
method can be used for a system of linear and nonlinear
ordinary and partial differential equations of the classical
and fractional order. +e method does not require any
perturbation and also has no need for a predefined step
size. +e method is an effective method for numerical and
explicit solutions of a system of differential equations
representing physical problems [11].

Fazal et al. [11] presented a numerical solution of the
fractional order smoking model via the Laplace–Adomian
decomposition method; the model solution was obtained in
form of an infinite series which converges rapidly to its exact
value. Ogun [12] presented the Laplace–Adomian de-
composition method to solve a model for HIV infection
where the approximate solution of the model was de-
termined. Adejoh and Mbah [13] also presented the
application of fractional differential equations to obtain
an approximate and numerical solution of a cancer dis-
ease model incorporating control measures. +e Lap-
lace–Adomian decomposition method was also used by
Fazal et al. [14] to determine a numerical solution of
a fractional order epidemic model of a childhood disease.
+e Laplace–Adomian decomposition method unlike
other numerical methods requires no discretization and
linearization and as such the results obtained from it are
more effective and realistic. In fact, models such as the
ones in [11–14] are veritable tools toward studying the
application of LADM in solving linear and nonlinear
differential equations.

+e fractional order model gives a better description of
the entire space of a system; unlike the integer model that
describes only the local properties of a system, it also gives
a better description of a real system with memory effects

[15–18]. +e Caputo derivative and the Riemann–Liouville
derivative are regarded as singular kernels fractional
derivative relative to biological problems, we also
have others which are nonsingular such as Mittag-Leffler
and the Atangana–Baleanu operators [17, 19]. +e frac-
tional order and classical derivatives have been used in
studying transmission dynamics in SIR models and the
like, but it has not been adopted in an SITmodel. Also, an
SIT model solution has not been determined using the
LADM. So, in this work, we consider a fractional order
model (using the Caputo derivative), which is an ex-
tension of the classical order sterile insect technology
model for the control of Zika virus disease presented by
Atokolo et al. [1], whose approximate solution would be
determined using the Laplace–Adomian decomposition
method (LADM).

2. Model Formulation and Procedures

+emosquito life cycle is generally divided into two stages, the
aquatic and nonaquatic class. +e aquatic class is denoted by
a single compartment (A). +e nonaquatic mosquito class is
divided into seven compartments consisting of the male
mosquitoes (MM), female mosquitoes not yet laying eggs
(FM), female nonsterile mosquitoes, (FNM), female sterile
mosquitoes (FSM), sterile male mosquitoes (MS), female in-
fected nonsterile mosquitoes, (FINM), and female infected
sterile mosquitoes (FISM). +e human population is divided
into susceptible human (SH), exposed human (EH), infected
human (IH), infected human but on treatment (IHT), and
recovered human (RH). +e aquatic stage of the mosquitoes
which consists of eggs, larva, and pupae population increases
from the oviposition by reproductive mosquitoes. It reduces
due to natural death of the mosquitoes at the rate of (μA) and
by density dependence death rate of (μρ). +e female mos-
quitoes (FM) are recruited at the rate of (Aϕc), where (c) is
the maturity rate of aquatic mosquitoes to adult mosquitoes
and (ϕ) is the proportion of emerging females; it is reduced by
the mating rate at the level of (β) for female mosquitoes to be
with wild male mosquitoes or sterile male mosquitoes with
mating probabilities (ρω) and (ρs), respectively. +e pop-
ulation is reduced by death induced due to the attempt to seek
for blood meals at the rate of (δM) and finally reduced by
natural death at the rate of (μF). +e male mosquitoes (MM)

are recruited by the proportion of the emerging male mos-
quitoes (1 − ϕ) that mature to adult mosquitoes at the rate of
(c) which also reduces by natural death at the rate of (μM).+e
female nonsterile mosquito (FNM) population is increased by
the female mosquitoes’ probability to mate with the wild male
mosquitoes which is given by the rate (MM/MM + MS), with
a mating rate of (β1). +is population is reduced by (ω1), the
rate at which the female nonsterile mosquitoes (FNM) are
infected and moved to the female infected nonsterile mos-
quitoes class (FINM). It is also reduced by the death induced
due to the attempt to seek for blood meals at the rate of (δM);
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this class is finally reduced by natural death rate at the rate
of (δM). +e female sterile mosquito (FSM) population is
increased by the wild female mosquitoes’ probability to mate
with the sterile mosquitoes which is given by the rate
(MS/MM + MS), with a mating rate of (β2). +e class reduces
by (ω2), the rate at which the (FSM) becomes infected and
moves to the (FISM) class. +e class reduces by death
induced due to the attempt to seek for blood meals at
the rate of (δM) and reduces finally by natural death at
the rate of (μF). +e population of female infected
nonsterile mosquitoes (FINM) is recruited at the rate at
which the female nonsterile mosquitoes (FNM) are
infected at the rate of (ω1) +e population is reduced by
death induced due to the attempt to seek for blood
meals at the rate of (δM) and finally reduced by natural
death at the rate of (μF). +e population of female
infected sterile mosquitoes (FISM) is recruited at the
rate at which the female sterile mosquitoes (FSM) are
infected at the rate of (ω2). +e population is reduced
by death induced due to the attempt to seek for blood
meals at the rate of (δM) and finally by natural death at
the rate of (μF). +e sterile male mosquitoes (MS) are
released into the population at the rate (Λ2). However,
due to some environmental and geographical factors
that may affect the mixing of sterile and wild mos-
quitoes, such as location of mosquitoes breeding site, it
is convenient to assume that only a fraction (p) of the
released mosquitoes will join wild mosquitoes pop-
ulation. Second, because of the differences in physi-
ology of wild and sterile mosquitoes, a parameter (q) is
used to capture the mean mating competitiveness of
sterile mosquitoes, so that the actual number of sterile
male mosquitoes competing with wild mosquitoes is
(pqMS), and as such, the available injected sterile male
mosquitoes (MS) into the wild population of mos-
quitoes that can competitively mate with wild female
mosquitoes is (pqΛ2). +is population is reduced by
natural death at the rate of (μS). +e susceptible human
population is recruited at the level of (Λ3), of which
a fraction (l) of those infected at birth joined the in-
fectious human population. +e population reduces by
the rate at which infectious mosquitoes (female in-
fected nonsterile mosquitoes (FINM) or female infected
sterile mosquitoes (FISM)) infects susceptible human at
the levels of (α1) and (α2), respectively. Also, it reduces
by the rate at which the infectious human (infected
class (IH), recovered class (RH) or infected but on
treatment class (IHT)](IHT) infects susceptible human
through sex at the level of or (α3) or (α4), (α5), re-
spectively. +is is in line with the clinical studies that
high viral load was found in the semen and saliva of

recovered patients weeks after recovery, (WHO, 2016),
which means, Zika can be transmitted sexually. +e
population finally reduces by natural death at the rate
of (μH). +e population of the exposed human (EH) is
generated by infection of susceptible individuals at the
rate of (α). +is population reduces by natural death at
the of rate (μH) and by the rate at which the exposed are
finally infectious at the rate of (σ). +e infected human
(IH) class is generated by the incoming of infected
babies from infected mothers at the rate of (Λ3), due to
vertical transmission. In addition, the population in-
creases at the rate by which the exposed become in-
fected at the level (σ). +e class reduces at the rate (θ)

by which the infected are taken for treatment and by
natural recovery rate of (τ1). +is class reduces finally
by both natural and disease-induced death rates at the
levels of (μH) and (δ1), respectively. +e infected but on
treatment class (IHT) is recruited by the incoming of
the infected who are taken for treatment at the rate of
(θ); this class reduces at the rate by which the infected
but on treatment class recovers due to supportive
treatment at the rate of (τ2). It reduces finally by
natural death and disease induced death at the rates of
(μH) and (δ2), respectively, where (δ2) is assumed to be
less than (δ1). +e recovered human is recruited at the
rate by which the infected human recovers naturally at
the rate of (τ1) or due to supportive treatment at the
rate of (τ2). +e population reduces by natural death at
the rate of (μH).

2.1. Assumptions of the Model

(1) Zika virus can be transmitted through the bite of
Aedes mosquitoes or through sexual activities with
an infected human.

(2) +ere is both vertical and horizontal transmission.
(3) +e mating competitiveness of the sterile and

nonsterile mosquitoes are not equal.
(4) Mosquitoes do not recover from infection.
(5) Aquatic mosquitoes have a density dependent

death rate which is a nonlinear decreasing
function.

(6) Aquatic and nonaquatic mosquitoes do not have the
same death rate.

(7) Female mosquitoes do not have the same death rate
with male mosquitoes.

(8) +ere is a disease-induced death rate by the female
mosquitoes seeking blood meals.
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2.2. Mathematical Model. +e mathematical equations that
incorporate the above formulations, assumptions, and from
Figure 1, we have the following:

dA

dt
� Λ1 FNM + FINM( 􏼁 − (1 − ϕ)cA − ϕcA − μAA − μρA

2
,

dFM

dt
� ϕcA −

β1MM

MM + MS

+
β2MS

MM + MS

􏼢 􏼣FM − δMFM − μFFM,

dMM

dt
� (1 − ϕ)cA − μMMM,

dFSM

dt
�

β1MM

MM + MS

FM − ω1FNM − δMFNM − μFFNM,

dFINM

dt
�

β2MM

MM + MS

FM − ω2FSM − δMFSM − μFFSM,

dFISM

dt
� ω1FNM − δMFINM − μFFINM,

dMS

dt
� ω2FSM − δMFISM − μFFISM,

dSH

dt
� pqΛ2 − μSMS,

dEH

dt
� (1 − ℓ)Λ3 − αSH − μHSH,

dEH

dt
� αSH − σEH − μHEH,

dIH

dt
� ℓΛ3 + σEH − τ1IH − θIH − z1IH − μHIH,

dIHT

dt
� θIH − τ2IHT − z2IHT − μHIHT,

dRH

dt
� τ1IH − τ2IHT − μHRH,

(1)

where

α �
α1FINM + α2FISM + α3IH + α4IHT + α5RH(

NH

,

ω �
λ1IH + α2IHT

NH

,

ω � ω1, � ω2.

(2)

From the earlier assumption, the mating competitive-
ness of both sterile and nonsterile mosquitoes are not equal,
that is, (β1)≠ (β2).

Also, from (1), we let MS/(MM + MS) � ρS and
MM/(MM + MS) � ρω.

+erefore, from the second equation of (1), we have as
follows:

β1MM

MM + MS

+
β2MS

MM + MS

� β1ρω + β2ρs, (3)

where (ρs) is the female mating probability with the sterile
mosquitoes and (ρω) is the female mating probability
with the wild male mosquitoes. Moreso, the rate of
infection of FNM and FSM after biting an infectious
human and then moving to the FINM and FISM classes,
respectively, is equal, that is, to say ω � ω1 � ω2. We also
decoupled the sterile male mosquitoes population (MS)

equation from the entire system since it is independent
of other compartments and the size of its population is
controlled by human intervention. Hence, we can re-
write the mathematical equations that represent the
sterile insect technology (SIT) model for the control of
Zika virus disease as presented by Atokolo et al. in [1] as
follows:
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dA

dt
� Λ1 FNM + FINM( 􏼁 − (1 − ϕ)cA − ϕcA − μAA − μρA

2
,

dFM

dt
� ϕcA −

β1MM

MM + MS

+
β2MS

MM + MS

􏼢 􏼣FM − δMFM − μFFM,

dMM

dt
� (1 − ϕ)cA − μMMM,

dFSM

dt
�

β1MM

MM + MS

FM − ω1FNM − δMFNM − μFFNM,

dFINM

dt
�

β2MM

MM + MS

FM − ω2FSM − δMFSM − μFFSM,

dFISM

dt
� ω1FNM − δMFINM − μFFINM,

dMS

dt
� ω2FSM − δMFISM − μFFISM,

dSH

dt
� pqΛ2 − μSMS,

dEH

dt
� (1 − ℓ)Λ3 − αSH − μHSH,

dEH

dt
� αSH − σEH − μHEH,

dIH

dt
� ℓΛ3 + σEH − τ1IH − θIH − z1IH − μHIH,

dIHT

dt
� θIH − τ2IHT − z2IHT − μHIHT,

dRH

dt
� τ1IH − τ2IHT − μHRH,

(4)

where

α �
α1FINM + α2FISM + α3IH + α4IHT + α5RH

NH

,

ω �
λ1IH + λ2IHT

NH

.

(5)

+e model variables and parameters descriptions are
presented in Appendix.

2.3. Fractional Order Zika Model. +e Caputo derivative is
considered as a differential operator in our model. In a Caputo
fractional initial value problem, the initial condition can be
expressed with an initial integer order, whose physical in-
terpretation is very easy for real life interpretation, and hence is

suitable for the Zika virusmodel.We nowpresent in this section,
some well known definitions and results that we will use
throughout this paper.

Definition 1. +e Caputo fractional order derivative of
a function (f) on the interval [0, T] is defined as follows:

c
D

β
0f(t)􏼔 􏼕 �

1
Γ(n − β)

􏽚
t

0
(t − s)

n− β− 1
f

(n)
(s)ds, (6)

where n � [β] + 1 and [β] represent the integer parts of β. In
particularly, for 0< β< 1, the Caputo derivative becomes as
follows:

c
D

β
0f(t)􏼔 􏼕 �

1
Γ(n − β)

􏽚
t

0

f(s)

(t − s)
β ds. (7)
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De­nition 2. Laplace transform of Caputo derivatives is
de�ned as follows:

L
cDβq(t)[ ] � Sβh(S) − ∑

n

k�0
Sβ− i− 1yk(0), n − 1< β< n, n ∈ N,

(8)

for arbitrary ci ∈ R, i � 0, 1, 2, . . . , n − 1, where n � [β] + 1
and [β] represent the noninteger parts of β.

Lemma 1. �e following result holds for fractional di�er-
ential equations:

Iβ cDβh[ ](t) � h(t) +∑
n− 1

i�0

h(i)(0)
i!

ti, (9)

for arbitrary β> 0, i � 0, 1, 2, . . . , n − 1, where n � [β] + 1
and [β] represent the integer parts of β.

Introducing the fractional order into the model (4), we
now present a new model described by the following set of
fractional di�erential equations of order (β), for 0< β< 1

FISM

FSM

A

FNM

FINM

FM

RH

IH

EH

SH

MS

IHT

MM

Λ1 (FNM + F1NM)

(1 + IH) Λ3

Λ3

pqΛ2

μA

μM μF

μS

μH

μH

μH
μFμF μH

μF

μF

μH

α1

(α1 + α2 + α3 + α4 + α5)

α3

α5

α4
τ1

λ1

λ2

λ2
ω2ω1

λ1

τ2

θ

σα2

∂M

∂M

∂M∂M

∂M

∂1

∂2

μρA

(1–ϕ) γ ϕγ

β1MM

MM + MS

β2MM

MM + MS

Figure 1: Flow diagram.
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Figure 2: .Population of aquatic mosquitoes and male mosquitoes with variations in values of β. (a) Population of aquatic mosquitoes with
variation of β. (b) Population of male mosquitoes with di�erent values of β.
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Figure 3: .Population of female mosquitoes not yet laying eggs and female nonsterile mosquitoes with variation in β. (a) Population of
female mosquitoes not yet laying eggs with variation of β. (b) Population of female nonsterile mosquitoes with di�erent values of β.
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Figure 4: population of female sterile mosquitoes and female infected nonsterile mosquitoes with variation in β. (a) Population of female
sterile mosquitoes with variation of β. (b) Population of female infected nonsterile mosquitoes with di�erent values of β.
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Figure 6: Population of susceptible humans and exposed humans with variation in β. (a) Population of susceptible humans with variation of
β. (b) Population of exposed humans with di�erent values of β.
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Figure 7: Population of infected humans and infected humans on treatment with variation in β. (a) Population of infected humans with
variation of β. (b)Population of infected humans on treatment with di�erent values of β.
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Table 1: Variables of the model (2) and their meanings.

S/N Variables Descriptions
1 A Aquatic mosquito
2 MM Male mosquitoes(wild)
3 FM Female mosquitoes not yet laying eggs
4 FNM Female non-sterile mosquitoes(can lay and hatch eggs)
5 FSM Female sterile mosquitoes(can lay but do not hatch)
6 MS Sterile male mosquitoes
7 FINM Female infected non-sterile mosquitoes
8 FISM Female infected sterile mosquitoes
9 SH Susceptible human
10 EH Exposed human
11 IH Infected human
12 IHT Infected but on treatment human
13 RH Recovered human

Table 2: Parameters of the model (2) and their meanings.

Parameters Meanings
Λ1 Oviposition level of fertilized female mosquitoes
ϕ Proportion of emerging female mosquitoes
1 − ϕ Male mosquitoes emerging population
βi Mating rate, where i � 1, 2
c Maturity rate of mosquitoes
μM Natural death rate of wild male mosquitoes
μS Natural death rate of sterile mosquitoes
μρ Density dependent death rate of the aquatic mosquitoes class
μH Natural death rate of human
μA Natural death rate for aquatic mosquitoes
μF Natural death rate for female mosquitoes
δM Death induced rate due to attept by female mosquitoes seeking for blood
ρω Female mosquitoes probability to mate with wild male
ρs Female mosquitoes probability to mate with sterile male
z1 Disease induced death rate for infected class
z2 Disease induced death rate for infected but on treatment class
τ1 Natural recovery rate for human
θ Rate at which the infected human are taken for treatment
τ2 Recovery rate of the infected but on treatment due to supportive treatment
ℓ Fraction of infected at birth that joined the susceptible class
σ Rate at which the exposed becomes infectious
Λ3 Recruitment level into the susceptible human class
p Fraction of the released sterile mosquitoes that joined the wild male
q Mean mating competitiveness of the sterile male mosquitoes
α Force of infection for human population
α1 & α2 Rate at which the (FINM) and the (FISM) infects susceptible humans, respectively.
α3 Rate at which the infected human infects susceptible human through sex
α4 Rate at which the recovered human infects susceptible human through sex
α5 Rate at which the infected human infects susceptible human through sex
ω Force of infection for mosquito population
ω1 & ω2 Rate at which the FNM moves to FINM and rate at which the FSM moves to FISM, respectively.
λ1 Rate at which (IH) humans infects susceptible mosquitoes (FSM

λ2 Rate at which (IHT) humans infects susceptible mosquitoes (FSM and FNM).
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D
β
(A) � Λ1 FNM + FINM( 􏼁 − cA − μAA − μρA

2
,

D
β

FM( 􏼁 � ϕcA − β1ρω + β2ρs􏼂 􏼃FM − δMFM − μFFM,

D
β

MM( 􏼁 � (1 − ϕ)cA − μMMM,

D
β

FNM( 􏼁 � β1ρωFM − ωFNM − δMFNM − μFFNM,

D
β

FSM( 􏼁 � β2ρsFM − ωFSM − δMFSM − μFFSM,

D
β

FINM( 􏼁 � ωFNM − δMFINM − μFFINM,

D
β

FISM( 􏼁 � ωFSM − δMFISM − μFFISM,

D
β

SH( 􏼁 � (1 − ℓ)Λ3 − αSH − μHSH,

D
β

EH( 􏼁 � αSH − σEH − μHEH,

D
β

IH( 􏼁 � ℓΛ3 + σEH − τ1IH − θIH − z1IH − μHIH,

D
β

IHT( 􏼁 � θIH − τ2IHT − z2IHT − μHIHT,

D
β

RH( 􏼁 � τ1IH − τ2IHT − μHRH,

(10)

where

α �
α1FINM + α2FISM + α3IH + α4IHT + α5RH( 􏼁

NH

,

ω �
λ1IH + λ2IHT

NH

.

(11)

3. Laplace–Adomian Decomposition
Method(LADM) Implementation

In this section, we discuss the general procedure of this
method with the given initial conditions. Applying the
Laplace transform to both sides of (10), we obtain the
following:

S
β
L(A) − S

β− 1
A(0) � L Λ1 FNM + FINM( 􏼁 − cA − μAA − μρA

2
􏽨 􏽩,

S
β
L FM( 􏼁 − S

β− 1
FM( 􏼁(0) � L ϕcA − β1ρω + β2ρs􏼂 􏼃FM − δMFM − μFFM􏼂 􏼃,

S
β
L MM( 􏼁 − S

β− 1
MM( 􏼁(0) � L (1 − ϕ)cA − μMMM􏼂 􏼃,

S
β
L FNM( 􏼁 − S

β− 1
FNM( 􏼁(0) � L β1ρωFM −

λ1IH + λ2IHT( 􏼁

NH

FNM − δMFNM − μFFNM􏼢 􏼣,

S
β
L FSM( 􏼁 − S

β− 1
FSM( 􏼁(0) � L β2ρsFM −

λ1IH + λ2IHT( 􏼁

NH

FSM − δMFSM − μFFSM􏼢 􏼣,

S
β
L FINM( 􏼁 − S

β− 1
FINM( 􏼁(0) � L

λ1IH + λ2IHT( 􏼁

NH

FNM − δMFINM − μFFINM􏼢 􏼣,

S
β
L FISM( 􏼁 − S

β− 1
FISM( 􏼁(0) � L

λ1IH + λ2IHT( 􏼁

NH

FSM − δMFISM − μFFISM􏼢 􏼣,

S
β
L SH( 􏼁 − S

β− 1
SH( 􏼁(0) � L (1 − ℓ)Λ3 −

α1FINM + α2FISM + α3IH + α4IHT + α5RH( 􏼁

NH

SH − μHSH􏼢 􏼣,

S
β
L EH( 􏼁 − S

β− 1
EH( 􏼁(0) � L

α1FINM + α2FISM + α3IH + α4IHT + α5RH( 􏼁

NH

SH − σEH − μHEH􏼢 􏼣,

S
β
L IH( 􏼁 − S

β− 1
IH( 􏼁(0) � L ℓΛ3 + σEH − τ1IH − θIH − z1IH − μHIH􏼂 􏼃,

S
β
L IHT( 􏼁 − S

β− 1
IHT( 􏼁(0) � L θIH − τ2IHT − z2IHT − μHIHT􏼂 􏼃,

S
β
L RH( 􏼁 − S

β− 1
RH( 􏼁(0) � L τ1IH − τ2IHT − μHRH􏼂 􏼃,

(12)
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with initial conditions

A(0) � n1,

FM(0) � n2,

MM(0) � n3,

FNM(0) � n4,

FSM(0) � n5,

FINM(0) � n6,

FISM(0) � n7,

SH(0) � n8,

EH(0) � n9,

IH(0) � n10,

IHT(0) � n11,

RH(0) � n12.

(13)

Table 3: Numerical values of variables and parameters used for implementation of LADM.

Variables/parameters Value Source
A 2500 [1]
MM 160 [1]
FM 500 [1]
FISM 40 [1]
SH 1000 [1]
EH 30 [1]
μρ 0.00002da y− 1 [15]
ϕ 0.6 day− 1 [16]
β1 0.4 day− 1 Assumed
ρs 0.4 day− 1 [3]
μF 0.27 day− 1 Assumed
μM 0.26 day− 1 Assumed
z1 0.002 day− 1 [1]
δM 0.03 day− 1 [1]
θ 0.002 day− 1 Assumed
ℓ 0.05 day− 1 Assumed
Λ3 40day− 1 [1]
α2 0.0001 day− 1 [1]
α4 0.07 day− 1 [1]
λ1 0.09 day− 1 [21]
FNM 250 [1]
FSM 120 [1]
FINM 125 [1]
IH 20 [1]
IHT 15 [1]
RH 0 [1]
Λ1 120 day− 1 [16]
c 0.06 day− 1 [17]
ρω 0.6 day− 1 [1]
β2 0.6 day− 1 [3]
μA 0.25 day− 1 [18]
μH 0.00005 day− 1 [18]
z2 0.001 day− 1 [1]
τ1 0.14 day− 1 [19]
τ1 0.16 day− 1 [19]
σ 0.03 day− 1 [20]
α1 0.0002 day− 1 [1]
α3 0.09 day− 1 [16]
α5 0.05 day− 1 Assumed
λ2 0.07 day− 1 [1]
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Dividing (12) by (Sβ) yields

L(A)(t) �
n1

S
+

1
S
β L Λ1 FNM + FINM( 􏼁 − cA − μAA − μρA

2
􏽨 􏽩,

L FM( 􏼁(t) �
n2

S
+

1
S
β L ϕcA − β1ρω + β2ρs􏼂 􏼃FM − δMFM − μFFM􏼂 􏼃,

L MM( 􏼁(t) �
n3

S
+

1
S
β L (1 − ϕ)cA − μMMM􏼂 􏼃,

L FNM( 􏼁(t) �
n4

S
+

1
S
β L β1ρωFM −

λ1IH + λ2IHT( 􏼁

NH

FNM − δMFNM − μFFNM􏼢 􏼣,

L FSM( 􏼁(t) �
n5

S
+

1
S
β L β2ρsFM −

λ1IH + λ2IHT( 􏼁

NH

FSM − δMFSM − μFFSM􏼢 􏼣,

L FINM( 􏼁(t) �
n6

S
+

1
S
β L

λ1IH + λ2IHT( 􏼁

NH

FNM − δMFINM − μFFINM􏼢 􏼣,

L FISM( 􏼁(t) �
n7

S
+

1
S
β L

λ1IH + λ2IHT( 􏼁

NH

FSM − δMFISM − μFFISM􏼢 􏼣,

L SH( 􏼁(t) �
n8

S
+

1
S
β L (1 − ℓ)Λ3 −

α1FINM + α2FISM + α3IH + α4IHT + α5RH( 􏼁

NH

SH − μHSH􏼢 􏼣,

L EH( 􏼁(t) �
n9

S
+

1
S
β L

α1FINM + α2FISM + α3IH + α4IHT + α5RH( 􏼁

NH

SH − σEH − μHEH􏼢 􏼣,

L IH( 􏼁(t) �
n10

S
+

1
S
β L ℓΛ3 + σEH − τ1IH − θIH − z1IH − μHIH􏼂 􏼃,

L IHT( 􏼁(t) �
n11

S
+

1
S
β L θIH − τ2IHT − z2IHT − μHIHT􏼂 􏼃,

L RH( 􏼁(t) �
n12

S
+

1
S
β L τ1IH − τ2IHT − μHRH􏼂 􏼃.

(14)
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We now decompose the nonlinear terms of system (9),
we assume that the solutions of A(t), FM(t), MM(t),
FNM(t), FSM(t), FINM(t), FISM(t), SH(t), EH(t), IH(t),
IHT(t), RH(t) are in the form of infinite series given by:

A(t) � 􏽘
∞

n�0
A(n),

FM(t) � 􏽘

∞

n�0
FM(n),

MM(t) � 􏽘

∞

n�0
MM(n),

FNM(t) � 􏽘
∞

n�0
FNM(n),

FSM(t) � 􏽘
∞

n�0
FSM(n),

FINM(t) � 􏽘

∞

n�0
FINM(n),

FISM(t) � 􏽘
∞

n�0
FISM(n),

SH(t) � 􏽘
∞

n�0
SH(n),

EH(t) � 􏽘

∞

n�0
EH(n),

IH(t) � 􏽘
∞

n�0
IH(n),

IHT(t) � 􏽘
∞

n�0
IHT(n),

RH(t) � 􏽘

∞

n�0
RH(n).

(15)

Moreover, the nonlinear terms involved in the models
are as follows:

A(t)A(t), FINM(t)SH(t), FISM(t)SH(t),

IH(t)SH(t), IHT(t)SH(t),

RH(t)SH(t), IH(t)FNM(t), IHT(t)FNM(t),

IH(t)FSM(t), IHT(t)FSM(t).

(16)

+e nonlinear terms in (16) are decomposed by the
Adomian polynomial as follows:

A(t)A(t) � 􏽘
∞

n�0
B(n),

FINM(t)SH(t) � 􏽘
∞

n�0
C(n),

FISM(t)SH(t) � 􏽘
∞

n�0
D(n),

IH(t)SH(t) � 􏽘
∞

n�0
E(n),

IHT(t)SH(t) � 􏽘

∞

n�0
F(n),

RH(t)SH(t) � 􏽘
∞

n�0
G(n),

IH(t)FNM(t) � 􏽘
∞

n�0
H(n),

I(t)FNM(t) � 􏽘
∞

n�0
I(n),

IH(t)FSM(t) � 􏽘
∞

n�0
J(n),

IHT(t)FSM(t) � 􏽘
∞

n�0
K(n).

(17)

where B(n), C(n), D(n), E(n), F(n), G(n), H(n), I(n), J(n),
K(n) are the Adomian polynomial defined as follows:
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B(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

A(k) 􏽘
n

k�0
λk

A(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0,

C(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

FINM(k) 􏽘
n

k�0
λk

SH(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0,

D(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

FISM(k) 􏽘
n

k�0
λSH(k)

k
⎧⎨

⎩

⎫⎬

⎭|λ�0,

E(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

IH(k) 􏽘
n

k�0
λk

FH(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0.

F(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

IHT(k) 􏽘
n

k�0
λk

FH(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0.

G(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

IH(k) 􏽘

n

k�0
λk

FH(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0.

H(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

IH(k) 􏽘
n

k�0
λk

FNM(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0.

I(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

IHT(k) 􏽘
n

k�0
λk

FNM(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0,

J(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

IH(k) 􏽘
n

k�0
λk

FSM(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0.

I(n) �
1
Γ(n + 1)

d
n

dλn 􏽘

n

k�0
λk

IHT(k) 􏽘
n

k�0
λk

FSM(k)
⎧⎨

⎩

⎫⎬

⎭|λ�0.

(18)

We substitute (14) for n � 0 into (15) and (17) to have the
following:

LA(0) �
n1

s
,

LFM(0) �
n2

s
,

LMM(0) �
n3

s
,

LFNM(0) �
n4

s
,

LFSM(0) �
n5

s
,

LFINM(0) �
n6

s
,

LFISM(0) �
n7

s
,

LSH(0) �
n8

s
,

LEH(0) �
n9

s
,

LIH(0) �
n10

s
,

LIHT(0) �
n11

s
,

LRH(0) �
n12

s
.

(19)

Similarly, for n � 1 to n � n + 1, we have as follows:
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L(A)(1) �
1
S
β L Λ1 FNM(0) + FINM(0)( 􏼁 − cA(0) − μAA(0) − μρB(0)􏽨 􏽩􏽮 􏽯,

L FM( 􏼁(1) �
1
S
β L ϕcA(0) − β1ρω + β2ρs( 􏼁FM(0) − δMFM(0) − μFFM(0)􏼂 􏼃􏼈 􏼉,

L MM( 􏼁(1) �
1
S
β L (1 − ϕ)cA(0) − μMMM(0)􏼂 􏼃􏼈 􏼉,

L FNM( 􏼁(1) �
1
S
β L β1ρωFM(0) −

1
NH

λ1H(0) + λ2I(0)􏼂 􏼃 − δMFNM(0) − μFFNM(0)􏼢 􏼣􏼨 􏼩,

L FSM( 􏼁(1) �
1
S
β L β2ρsFM(0) −

1
NH

λ1J(0) + λ2K(0)􏼂 􏼃 − δMFSM(0) − μFFSM(0)􏼢 􏼣􏼨 􏼩,

L FINM( 􏼁(1) �
1
S
β L

1
NH

λ1H(0) + λ2I(0)􏼂 􏼃 − δMFINM(0) − μFFINM(0)􏼢 􏼣􏼨 􏼩,

L FISM( 􏼁(1) �
1
S
β L

1
NH

λ1J(0) + λ2K(0)􏼂 􏼃 − δMFISM(0) − μFFISM(0)􏼢 􏼣􏼨 􏼩,

L SH( 􏼁(1) �
1
S
β L (1 − ℓ)Λ3 −

1
NH

α1C(0) + α2D(0) + α3E(0) + α4F(0) + α5G(0)(􏼂 􏼃 − μHSH(0)􏼢 􏼣􏼨 􏼩,

L EH( 􏼁(1) �
1
S
β L

1
NH

α1C(0) + α2D(0) + α3E(0) + α4F(0) + α5G(0)(􏼂 􏼃 − σEH(0) − μHEH(0)􏼢 􏼣􏼨 􏼩,

L IH( 􏼁(1) �
1
S
β L ℓΛ3 + σEH(0) − τ1IH(0) − θIH(0) − z1IH(0) − μHIH(0)􏼂 􏼃􏼈 ,

L IHT( 􏼁(1) �
1
S
β L θIH(0) − τ2IHT(0) − z2IHT(0) − μHIHT(0)􏼂 􏼃􏼈 ,

L RH( 􏼁(1) �
1
S
β L τ1IH(0) − τ2IHT(0) − μHRH(0)􏼂 􏼃􏼈 ,

· · · � · · ·

L(A)(n + 1) �
1
S
β L Λ1 FNM(n)t + nFINMq(n)( 􏼁 − cA(n) − μAA(n) − μρB(n)􏽨 􏽩􏽮 􏽯,

L FM( 􏼁(n + 1) �
1
S
β L ϕcA(n) − β1ρω + β2ρs( 􏼁FM(n) − δMFM(n) − μFFM(n)􏼂 􏼃􏼈 􏼉,

L MM( 􏼁(n + 1) �
1
S
β L (1 − ϕ)cA(n) − μMMM(n)􏼂 􏼃􏼈 􏼉,

L FNM( 􏼁(n + 1) �
1
S
β L β1ρωFM(n) −

1
NH

λ1H(n) + λ2I(n)􏼂 􏼃 − δMFNM(n) − μFFNM(n)􏼢 􏼣􏼨 􏼩,

L FSM( 􏼁(n + 1) �
1
S
β L β2ρsFM(n) −

1
NH

λ1J(n) + λ2K(n)􏼂 􏼃 − δMFSM (n) − μFFSM(n)􏼢 􏼣􏼨 􏼩,

L FINM( 􏼁(n + 1) �
1
S
β L

1
NH

λ1H(n) + λ2I(n)􏼂 􏼃 − δMFINM(n) − μFFINM(n)􏼢 􏼣􏼨 􏼩,

L FISM( 􏼁(n + 1) �
1
S
β L

1
NH

λ1J(n) + λ2K(n)􏼂 􏼃 − δMFISM(n) − μFFISM(n)􏼢 􏼣􏼨 􏼩,

L SH( 􏼁(n + 1) �
1
S
β L (1 − ℓ)Λ3 −

1
NH

α1C(n) + α2D(n) + α3E(n) + α4F(n) + α5G(n)(􏼂 􏼃 − μHSH(n)􏼢 􏼣􏼨 􏼩,

L EH( 􏼁(n + 1) �
1
S
β L

1
NH

α1C(n) + α2D(n) + α3E(n) + α4F(n) + α5G(n)(􏼂 􏼃 − σEH(n) − μHEH(n)􏼢 􏼣􏼨 􏼩,

L IH( 􏼁(n + 1) �
1
S
β L ℓΛ3 + σEH(n) − τ1IH(n) − θIH(n) − z1IH(n) − μHIH(n)􏼂 􏼃􏼈 􏼉,

L IHT( 􏼁(n + 1) �
1
S
β L θIH(n) − τ2IHT(n) − z2IHT(n) − μHIHT(n)􏼂 􏼃􏼈 􏼉,

L RH( 􏼁(n + 1) �
1
S
β L τ1IH(n) − τ2IHT(n) − μHRH(n)􏼂 􏼃􏼈 􏼉.

(20)

Taking the inverse Laplace transform of (20), we have the
following:
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A(1) � Λ1 FNM(0) + FINM(0)( 􏼁 − cA(0) − μAA(0) − μρB(0)􏽨 􏽩
t
β

Γ(β + 1)
,

FM(1) � ϕcA(0) − β1ρω + β2ρs( 􏼁FM(0) − δMFM(0) − μFFM(0)􏼂 􏼃
t
β

Γ(β + 1)
,

MM(1) � (1 − ϕ)cA(0) − μMMM(0)􏼂 􏼃
t
β

Γ(β + 1)
,

FNM(1) � β1ρωFM(0) −
1

NH

λ1H(0) + λ2I(0)􏼂 􏼃 − δMFNM(0) − μFFNM(0)􏼢 􏼣
t
β

Γ(β + 1)
,

FSM(1) � β2ρsFM(0) −
1

NH

λ1J(0) + λ2K(0)􏼂 􏼃 − δMFSM(0) − μFFSM(0)􏼢 􏼣
t
β

Γ(β + 1)
,

FINM(1) �
1

NH

λ1H(0) + λ2I(0)􏼂 􏼃 − δMFINM(0) − μFFINM(0)􏼢 􏼣
t
β

Γ(β + 1)
,

FISM(1) �
1

NH

λ1J(0) + λ2K(0)􏼂 􏼃 − δMFISM(0) − μFFISM(0)􏼢 􏼣
t
β

Γ(β + 1)
,

SH(1) � (1 − ℓ)Λ3 −
1

NH

α1C(0) + α2D(0) + α3E(0) + α4F(0) + α5G(0)(􏼂 􏼃 − μHSH(0)􏼢 􏼣
t
β

Γ(β + 1)
,

EH(1) �
1

NH

α1C(0) + α2D(0) + α3E(0) + α4F(0) + α5G(0)(􏼂 􏼃 − σEH(0) − μHEH(0)􏼢 􏼣
t
β

Γ(β + 1)
,

IH(1) � ℓΛ3 + σEH(0) − τ1IH(0) − θIH(0) − z1IH(0) − μHIH(0)􏼂 􏼃
t
β

Γ(β + 1)
,

IHT(1) � θIH(0) − τ2IHT(0) − z2IHT(0) − μHIHT(0)􏼂 􏼃
t
β

Γ(β + 1)
,

RH(1) � τ1IH(0) − τ2IHT(0) − μHRH(0)􏼂 􏼃
t
β

Γ(β + 1)
,

· · · � · · ·

A(n + 1) � Λ1 FNM(n) + FINM(n)( 􏼁 − cA(n) − μAA(n) − μρB(n)􏽨 􏽩,

FM(n + 1) � ϕcA(n) − β1ρω + β2ρs( 􏼁FM(n) − δMFM(n) − μFFM(n)􏼂 􏼃
t
β

Γ(β + 1)
,

MM(n + 1) � (1 − ϕ)cA(n) − μMMM(n)􏼂 􏼃
t
β

Γ(β + 1)
,

FNM(n + 1) � β1ρωFM(n) −
1

NH

λ1H(n) + λ2I(n)􏼂 􏼃 − δMFNM(n) − μFFNM(n)􏼢 􏼣
t
β

Γ(β + 1)
,

FSM(n + 1) � β2ρsFM(n) −
1

NH

λ1J(n) + λ2K(n)􏼂 􏼃 − δMFSM (n) − μFFSM(n)􏼢 􏼣
t
β

Γ(β + 1)
,

FINM(n + 1) �
1

NH

λ1H(n) + λ2I(n)􏼂 􏼃 − δMFINM(n) − μFFINM(n)􏼢 􏼣
t
β

Γ(β + 1)
,

FISM(n + 1) �
1

NH

λ1J(n) + λ2K(n)􏼂 􏼃 − δMFISM(n) − μFFISM(n)􏼢 􏼣
t
β

Γ(β + 1)
,

SH(n + 1) � (1 − ℓ)Λ3 −
1

NH

α1C(n) + α2D(n) + α3E(n) + α4F(n) + α5G(n)(􏼂 􏼃 − μHSH(n)􏼢 􏼣
t
β

Γ(β + 1)
,

EH(n + 1) �
1

NH

α1C(n) + α2D(n) + α3E(n) + α4F(n) + α5G(n)(􏼂 􏼃 − σEH(n) − μHEH(n)􏼢 􏼣
t
β

Γ(β + 1)
,

IH(n + 1) � ℓΛ3 + σEH(n) − τ1IH(n) − θIH(n) − z1IH(n) − μHIH(n)􏼂 􏼃
t
β

Γ(β + 1)
,

IHT(n + 1) � θIH(n) − τ2IHT(n) − z2IHT(n) − μHIHT(n)􏼂 􏼃
t
β

Γ(β + 1)
,

RH(n + 1) � τ1IH(n) − τ2IHT(n) − μHRH(n)􏼂 􏼃
t
β

Γ(β + 1)
.

(21)

International Journal of Mathematics and Mathematical Sciences 17



Recalling the earlier stated initial conditions and
substituting these conditions into (15), we have equation
(22) as follows:

A(0) � n1, FM(0) � n2, MM(0) � n3, FNM(0) � n4,
FSM(0) � n5, FINM(0) � n6, FISM(0) � n7, SH(0) � n8,
EH(0) � n9, IH(0) � n10, IHT(0) � n11, RH(0) � n12.

A(t) � n1 + Λ1 n4 + n6( 􏼁 − cn1 − μAn1 − μρn1n1􏽨 􏽩
t
β

Γ(β + 1)
􏼨 􏼩 + Λ1 β1ρωn2 − λ1n10n4 − λ2n11n4( 􏼁􏼈 ,

− δMn4 − μFn4 + λ1n10n4 + λ2n11n4 − δMn6 − μFn6􏼁
t
β

Γ(β + 1)
− c + μA􏼁Λ1 n4 + n6( 􏼁 − cn1 − μAn1􏼂 ,

− μρn1n1􏽩
t
β

Γ(β + 1)
− μρ2n1 Λ1 n4 + n6( 􏼁 − cn1 − μAn1 − μρn1n1􏽨 􏽩

t
β

Γ(β + 1)
􏼩

t
β

Γ(β + 1)
,

FM(t) � n2 + ϕcn1 − β1ρω + β2ρs( 􏼁n2 − δMn2 − μFn2􏼂 􏼃
t
β

Γ(β + 1)
􏼨 􏼩 ϕcΛ1 n4 + n6( 􏼁 − cn1 − μAn1􏼂􏼈 − μρn1n1􏽩

t
β

Γ(β + 1)

− β1ρω + β2ρs( 􏼁 ϕcn1 − β1ρω − β2ρs( 􏼁n2 − δMn2 − μFn2(􏼂 􏼃
t
β

Γ(β + 1)
,

− δM + μF( 􏼁 β1ρω + β2ρs( 􏼁􏼂 ϕcn1 − β1ρω + β2ρs( 􏼁n2 − δMn2 − μFn2( 􏼃
t
β

Γ(β + 1)
􏼩

t
β

Γ(β + 1)
,

MM(t) � n3 + (1 − ϕ)cn1 − μMn3􏼂 􏼃
t
β

Γ(β + 1)
􏼨 􏼩 + (1 − ϕ)cΛ1 n4 + n6( 􏼁 − cn1 − μAn1􏼈

− μρn1n1􏽩
t
β

Γ(β + 1)
− μM (1 − ϕ)cn1 − μMn3􏼂 􏼃

t
β

Γ(β + 1)
􏼩

t
β

Γ(β + 1)
,

FNM(t) � n4 + β1ρωn2 −
1

NH

λ1n10n4 + λ2n11n4􏼂 􏼃 − δMn4 − μFn4􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩 + β1ρω ϕcn1 − β1ρω􏼂 􏼃n􏼂 2􏼈

− δMn2 − μFn2􏼃
t
β

Γ(β + 1)
− λ1 n10 + n4( 􏼁 β1ρωn2 − λ1n10n4 − λ2n11n4 − δMn4 − μFn4􏼂 􏼃

t
β

Γ(β + 1)
,

− λ2 n11 + n4( 􏼁 β1ρωn2 − λ1n10n4 − λ2n11n4 − δMn4 − μFn4􏼂 􏼃
t
β

Γ(β + 1)
− δM + μF( 􏼁 β1ρωn2􏼂 ,

− λ1n10n4 − λ2n11n4 − δMn4 − μFn4􏼃− δMn4 − μFn4􏼃
t
β

Γ(β + 1)
􏼩

t
β

Γ(β + 1)
,

FSM(t) � n5 + β2ρsn2 −
1

NH

λ1n10n5 + λ2n11n5􏼂 􏼃 − δMn5 − μFn5􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩 + β2ρs β1ρωn2􏼂􏼈

− λ1n10n4 − λ2n11n4 − δMn4􏼃
t
β

Γ(β + 1)
− λ1 n10 + n5( 􏼁 β1ρωn2 − λ1n10n4 − λ2n11n4 − δMn4􏼂 ,

− μFn4􏼃
t
β

Γ(β + 1)
− λ2 n11 + n5( 􏼁 β2ρsn2 − λ1n10n5 − λ2n11n5 − δMn5 − μFn5􏼂 􏼃

t
β

Γ(β + 1)
,

− δM + μF( 􏼁 β2ρsn2 − λ1n10n5 + λ2n11n5 − δMn6 − μFn6􏼂 􏼃
t
β

Γ(β + 1)
􏼩

t
β

Γ(β + 1)
,

FINM(t) � n6 +
1

NH

λ1n10n4 + λ2n11n4􏼂 􏼃 − δMn6 − μFn6􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩 +

1
NH

λ1 n10 + n4( 􏼁 β1ρωn2􏼂􏼂􏼢􏼨

− λ2n11n5 − δMn5 − μFn5􏼃
t
β

Γ(β + 1)
+ λ2n11 + n5( 􏼁 β2ρsn2 − λ1n10n5 − λ2n11n5 − δMn4􏼂 ,

− δMn4 − μFn4􏼃
t
β

Γ(β + 1)
− δM + μF( 􏼁 λ1n10n5 + λ2n11n5 − δMn6 − μFn6􏼂 􏼃

t
β

Γ(β + 1)
􏼣􏼩

t
β

Γ(β + 1)
,

FISM(t) � n7 +
1

NH

λ1n10n5 + λ2n11n5􏼂 􏼃 − δMn7 − μFn7􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩 +

1
NH

λ1 n10 + n5( 􏼁 β2ρsn2 − λ1n10n5􏼂􏼈􏼢􏼨

− λ2n11n5 − δMn5 − μFn5􏼉
t
β

Γ(β + 1)
+ λ2n11 + n5( 􏼁 β2ρsn2 − λ1n10n5 − λ2n11n5 − δMn4􏼂 ,

− μFn5􏼃
t
β

Γ(β + 1)
− δM + μF( 􏼁 λ1n10n5 + λ2n11n5 − δMn6 − μFn6􏼂 􏼃

t
β

Γ(β + 1)
􏼣􏼩

t
β

Γ(β + 1)
,
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SH(t) � n8 + (1 − ℓ)Λ3 −
1

NH

α1n6n8 + α2n7n8 + α3n10n8 + α4n11n8 + α5n12n8(􏼂 􏼃 − μHn8􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩

+ (1 − ℓ)Λ3 −
1

NH

α1 n6 + n8( 􏼁 λ1n10n4 + λ2n11n4 − δMn6 − μFn6􏼂 􏼃(􏼂􏼨

−
t
β

Γ(β + 1)
α2 n7 + n8( 􏼁 λ1n10n5 + λ2n11n5 − δMn7 − μFn7􏼂 􏼃

−
t
β

Γ(β + 1)
α3 (1 − ℓ)Λ3 − α1 n10 + n8( 􏼁n6n8 − α2n7n8 − α3n10n8 − α4n11n8 − α5n12n8 − μHn8􏼂 􏼃

−
t
β

Γ(β + 1)
α4 n11 + n8( 􏼁n6n8 − α2n7n8 − α3n10n8 − α4n11n8 − α5n12n8 − μHn8􏼃

t
β

Γ(β + 1)
− α5 n8 + n10( 􏼁 τ1n10 − τ2n11 − μHn12􏼂 􏼃 − μH 1 − ℓ)Λ3 − α1n6n8 − α2n7n8 − α3n10n8 − α4n11n8 − α5n12n8􏼂 􏼃􏼉

t
β

Γ(β + 1)
,

EH(t) � n9 +
1

NH

α1n6n8 + α2n7n8 + α3n10n8 + α4n11n8 + α5n12n8 − σn9 − μHn9(􏼂 􏼃
t
β

Γ(β + 1)
􏼩􏼢􏼨

+
1

NH

α1 n6 + n8( 􏼁 λ1n10n4 + λ2n11n4 − δMn6 − μFn6􏼂 􏼃 +
t
β

Γ(β + 1)
α2 n7 + n8( 􏼁 λ1n10n5 + λ2n11n5 − δMn7 − μFn7􏼂 􏼃􏼠􏼨

+
t
β

Γ(β + 1)
α3 (1 − ℓ)Λ3 − α1 n10 + n8( 􏼁n6n8 − α2n7n8 − α3n10n8 − α4n11n8 − α5n12n8 − μHn8􏼂 􏼃

t
β

Γ(β + 1)
+ α4 n11 + n8( 􏼁n6n8 − α2n7n8 − α3n10n8 − α4n11n8 + α5n12n8 − μHn8􏼣 + α5 n8 + n10( 􏼁τ1n10

− τ2n11 − μHn12􏼃 − σ + μH( 􏼁 α1n6n8 + α2n7n8 + α3n10n8 + α4n11n8 + α5n12n8 − σn9 − μHn9􏼂 􏼃􏼉
t
β

Γ(β + 1)
,

IH(t) � n10 + ℓΛ3 + σn9 − τ1n10 − θn10 − z1n10 − μHn10􏼂 􏼃
t
β

Γ(β + 1)
􏼨 􏼩 + ℓΛ3 + σα1n6n8 + α2n7n8 + α3n10n8􏼉􏼈

+α4n11n8 + α5n12n8 − σn9 − μHn9􏼃 − τ1 + θ + z1 + μH( 􏼁 ℓΛ3 + σn9 − n10 τ1 + θ + z1 + μH( 􏼁􏼂 􏼃􏼉
t
β

Γ(β + 1)
,

IHT(t) � n11 + n10 − τ2n11 − z2n11 − μHn11􏼂 􏼃􏼈 􏼉
t
β

Γ(β + 1)
+ θ Λ3 + σn9 − τ1n10 − θn10 − z2n10 − μHn10􏼈 􏼉􏼂 􏼃􏼈

− τ2 + z2 + μH( 􏼁 ϕn10 − τ2n11 − z2n11 − μHn11􏼂 􏼃􏼉
t
β

Γ(β + 1)
,

RH(t) � n12 + τ1n10 − τ2n11 − μHn12􏼂 􏼃􏼈 􏼉
t
β

Γ(β + 1)
+ τ1 ℓΛ3 + σn9 − τ1n10 − θn10 − z2n10 − μHn10􏼂 􏼃􏼂􏼈

− τ2 ϕn10 − τ2n11 − z2n11 − μHn11􏼂 􏼃 − μH τ1n10 − τ2n11 − μHn12􏼂 􏼃􏼉
t
β

Γ(β + 1)
.

(22)
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Equation (22) can be further expressed as follows:

A(t) �n1 + Λ1 n4 + n6( 􏼁 − cn1 − μAn1 − μρn1n1􏽨 􏽩
t
β

Γ(β + 1)
􏼨 􏼩 + Λ1 β1ρωn2 − λ1n10n4 − λ2n11n4( 􏼁􏼈 ,

− δMn4 − μFn4 + λ1n10n4 + λ2n11n4 − δMn6 − μFn6􏼁 − c + μA􏼁Λ1 n4 + n6( 􏼁 − cn1 − μAn1􏼂 ,

− μρn1n1􏽩 − μρ2n1 Λ1 n4 + n6( 􏼁 − cn1 − μAn1 − μρn1n1􏽨 􏽩􏽯
t
2β

Γ(2β + 1)
,

FM(t) �n2 + ϕcn1 − β1ρω + β2ρs( 􏼁n2 − δMn2 − μFn2􏼂 􏼃
t
β

Γ(β + 1)
􏼨 􏼩 ϕcΛ1 n4 + n6( 􏼁 − cn1 − μAn1􏼂􏼈

− μρn1n1􏽩 − β1ρω + β2ρs( 􏼁 ϕcn1 − β1ρω − β2ρs( 􏼁n2 − δMn2 − μFn2(􏼂 􏼃,

− δM + μF( 􏼁 β1ρω + β2ρs( 􏼁􏼂 ϕcn1 − β1ρω + β2ρs( 􏼁n2 − δMn2 − μFn2( 􏼃􏼈
t
2β

Γ(2β + 1)
,

MM(t) �n3 + (1 − ϕ)cn1 − μMn3􏼂 􏼃
t
β

Γ(β + 1)
􏼨 􏼩 + (1 − ϕ)cΛ1 n4 + n6( 􏼁 − cn1 − μAn1􏼈

− μρn1n1􏽩 − μM (1 − ϕ)cn1 − μMn3􏼂 􏼃􏽯
t
2β

Γ(2β + 1)
,

FNM(t) �n4 + β1ρωn2 −
1

NH

λ1n10n4 + λ2n11n4􏼂 􏼃 − δMn4 − μFn4􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩 + β1ρω ϕcn1 − β1ρω􏼂 􏼃n􏼂 2􏼈

− δMn2 − μFn2􏼃 − λ1 n10 + n4( 􏼁 β1ρωn2 − λ1n10n4 − λ2n11n4 − δMn4 − μFn4􏼂 􏼃
t
β

Γ(β + 1)
,

− λ2 n11 + n4( 􏼁 β1ρωn2 − λ1n10n4 − λ2n11n4 − δMn4 − μFn4􏼂 􏼃 − δM + μF( 􏼁 β1ρωn2􏼂 ,

− λ1n10n4 − λ2n11n4 − δMn4 − μFn4􏼃− δMn4 − μFn4􏼃􏼉
t
2β

Γ(2β + 1)
,

FSM(t) �n5 + β2ρsn2 −
1

NH

λ1n10n5 + λ2n11n5􏼂 􏼃 − δMn5 − μFn5􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩 + β2ρs β1ρωn2􏼂􏼈

− λ1n10n4 − λ2n11n4 − δMn4􏼃 − λ1 n10 + n5( 􏼁 β1ρωn2 − λ1n10n4 − λ2n11n4 − δMn4􏼂 ,

− μFn4􏼃 − λ2 n11 + n5( 􏼁 β2ρsn2 − λ1n10n5 − λ2n11n5 − δMn5 − μFn5􏼂 􏼃
t
β

Γ(β + 1)
,

− δM + μF( 􏼁 β2ρsn2 − λ1n10n5 + λ2n11n5 − δMn6 − μFn6􏼂 􏼃􏼉
t
2β

Γ(2β + 1)
,

FINM(t) �n6 +
1

NH

λ1n10n4 + λ2n11n4􏼂 􏼃 − δMn6 − μFn6􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩 +

1
NH

λ1 n10 + n4( 􏼁 β1ρωn2􏼂􏼂􏼢􏼨

− λ2n11n5 − δMn5 − μFn5􏼃 + λ2n11 + n5( 􏼁 β2ρsn2 − λ1n10n5 − λ2n11n5 − δMn4􏼂 ,
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− δMn4 − μFn4􏼃 − δM + μF( 􏼁 λ1n10n5 + λ2n11n5 − δMn6 − μFn6􏼂 􏼃􏼃􏼉
t
2β

Γ(2β + 1)
,

FISM(t) �n7 +
1

NH

λ1n10n5 + λ2n11n5􏼂 􏼃 − δMn7 − μFn7􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩 +

1
NH

λ1 n10 + n5( 􏼁 β2ρsn2 − λ1n10n5􏼂􏼈􏼢􏼨

− λ2n11n5 − δMn5 − μFn5􏼃 + λ2n11 + n5( 􏼁 β2ρsn2 − λ1n10n5 − λ2n11n5 − δMn4􏼂 ,

− μFn5􏼃 − δM + μF( 􏼁 λ1n10n5 + λ2n11n5 − δMn6 − μFn6􏼂 􏼃􏼃􏼉
t
2β

Γ(2β + 1)
,

SH(t) �n8 + (1 − ℓ)Λ3 −
1

NH

α1n6n8 + α2n7n8 + α3n10n8 + α4n11n8 + α5n12n8􏼂􏼂 􏼃 − μHn8􏼢 􏼣
t
β

Γ(β + 1)
􏼨 􏼩

+ (1 − ℓ)Λ3 −
1

NH

α1 n6 + n8( 􏼁 λ1n10n4 + λ2n11n4 − δMn6 − μFn6􏼂 􏼃 − α2 n7 + n8( 􏼁 λ1n10n5 + λ2n11n5􏼂􏼂􏼂􏼨

− δMn7 − μFn7􏼃 − α3 (1 − ℓ)Λ3 − α1 n10 + n8( 􏼁n6n8 − α2n7n8 − α3n10n8 − α4n11n8 − α5n12n8􏼂

− μHn8􏼃 − α4 n11 + n8( 􏼁n6n8 − α2n7n8 − α3n10n8 − α4n11n8 − α5n12n8 − μHn8􏼃

− α5 n8 + n10( 􏼁 τ1n10 − τ2n11 − μHn12􏼂 􏼃 − μH 1 − ℓ)Λ3 − α1n6n8 − α2n7n8 − α3n10n8 − α4n11n8 − α5n12n8􏼂 􏼃􏼉
t
2β

Γ(2β + 1)
,

EH(t) �n9 +
1

NH

α1n6n8 + α2n7n8 + α3n10n8 + α4n11n8 + α5n12n8 − σn9 − μHn9􏼈􏼂 􏼃
t
β

Γ(β + 1)
􏼩􏼢􏼨

+
1

NH

α1 n6 + n8( 􏼁 λ1n10n4 + λ2n11n4 − δMn6 − μFn6􏼂 􏼃 + α2 n7 + n8( 􏼁 λ1n10n5 + λ2n11n5 − δMn7􏼂􏼈􏼈

− μFn7􏼃 + α3 (1 − ℓ)Λ3 − α1 n10 + n8( 􏼁n6n8 − α2n7n8 − α3n10n8 − α4n11n8 − α5n12n8 − μHn8􏼂 􏼃

+α4 n11 + n8( 􏼁n6n8 − α2n7n8 − α3n10n8 − α4n11n8 + α5n12n8 − μHn8􏼃 + α5 n8 + n10( 􏼁τ1n10

− τ2n11 − μHn12􏼃 − σ + μH( 􏼁 α1n6n8 + α2n7n8 + α3n10n8 + α4n11n8 + α5n12n8 − σn9 − μHn9􏼂 􏼃􏼉
t
2β

Γ(2β + 1)
,

IH(t) �n10 + ℓΛ3 + σn9 − τ1n10 − θn10 − z1n10 − μHn10􏼂 􏼃
t
β

Γ(β + 1)
􏼨 􏼩 + ℓΛ3 + σ α1n6n8 + α2n7n8 + α3n10n8􏼂􏼈

+α4n11n8 + α5n12n8 − σn9 − μHn9􏼃 − τ1 + θ + z1 + μH( 􏼁 ℓΛ3 + σn9 − n10 τ1 + θ + z1 + μH( 􏼁􏼂 􏼃􏼉
t
2β

Γ(2β + 1)
,

IHT(t) �n11 + n10 − τ2n11 − z2n11 − μHn11􏼂 􏼃􏼈 􏼉
t
β

Γ(β + 1)
+ θ ℓΛ3 + σn9 − τ1n10 − θn10 − z2n10􏼈􏼂􏼈

− μHn10􏼃 − τ2 + z2 + μH( 􏼁 ϕn10 − τ2n11 − z2n11 − μHn11􏼂 􏼃􏼉
t
2β

Γ(2β + 1)
,

RH(t) �n12 + τ1n10 − τ2n11 − μHn12􏼂 􏼃􏼈 􏼉
t
β

Γ(β + 1)
+ τ1 ℓΛ3 + σn9 − τ1n10 − θn10 − z2n10 − μHn10􏼂􏼈􏼈

− τ2 ϕn10 − τ2n11 − z2n11 − μHn11􏼂 􏼃 − μH τ1n10 − τ2n11 − μHn12􏼂 􏼃􏼉
t
2β

Γ(2β + 1)
.

(23)

3.1. Numerical Solution of the Laplace–Adomian De-
composition Method (LADM). In this section, we shall con-
sider the numerical solution of the model. Using the initial

conditions presented in Appendix, the Laplace–Adomian de-
composition method (LADM) gives us an approximate solution
in terms of an infinite series presented as follows:
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A(t) � 2500 + 44100.3
t
β

Γ(β + 1)
− 37045.1

t
2β

Γ(2β + 1)
. . .

FM(t) � 500 + 332
t
β

Γ(β + 1)
+ 1864.39

t
2β

Γ(2β + 1)
. . .

MM(t) � 160 + 18.43
t
β

Γ(β + 1)
+ 1053.16

t
2β

Γ(2β + 1)
. . .

FNM(t) � 250 + 74.331
t
β

Γ(β + 1)
− 175.22

t
2β

Γ(2β + 1)
. . .

FSM(t) � 120 + 83.82
t
β

Γ(β + 1)
− 100

t
2β

Γ(2β + 1)
. . .

FINM(t) � 125 − 36.835
t
β

Γ(β + 1)
+ 11.21

t
2β

Γ(2β + 1)
. . .

FISM(t) � 40 − 11.672
t
β

Γ(β + 1)
+ 3.910

t
2β

Γ(2β + 1)
. . .

SH(t) � 1000 + 35.310
t
β

Γ(β + 1)
+ 36.46

t
2β

Γ(2β + 1)
. . .

EH(t) � 30 + 0.3052
t
β

Γ(β + 1)
+ 0.19

t
2β

Γ(2β + 1)
. . .

IH(t) � 20 + 0.020
t
β

Γ(β + 1)
+ 2.032

t
2β

Γ(2β + 1)
. . .

IHT(t) � 15 − 2.3752
t
β

Γ(β + 1)
− 3.824

t
2β

Γ(2β + 1)
. . .

RH(t) � 0.412
t
β

Γ(β + 1)
+ 0.3848

t
2β

Γ(2β + 1)
. . .

(24)

+e solution of the model for β � 1 is given as follows:

A(t) � 2500 + 44100.3t − 18522t
2

· · ·

FM(t) � 500 + 332t − 932.19t
2

· · ·

MM(t) � 160 + 18.42t + 526.58t
2

· · ·

FNM(t) � 250 + 74.331t − 87.61t
2

· · ·

FSM(t) � 120 + 83.82t − 50t
2

· · ·

FINM(t) � 125 − 36.835t + 5.6t
2

· · ·

FISM(t) � 40 − 11.672t + 1.96t
2

· · ·

SH(t) � 1000 + 35.310t + 18.23t
2

· · ·

EH(t) � 30 + 0.3052t + 0.095t
2

· · ·

IH(t) � 20 + 0.020t + 1.016t
2

· · ·

IHT(t) � 15 − 2.3752t + 1.91t
2

· · ·

RH(t) � 0.412t + 0.1924t
2

· · ·

(25)
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3.2. Numerical Simulation. Here, we present the numerical
simulation of our fractional order sterile insect technology
model so as to compare with the classical order. All the
variables of our model are presented from Figures 2–7 with
variation in the value of the fractional order β. Figures 2–7,
shows that the fractional order sterile insect technology
model has more degrees of freedom as such the order β can
be varied to determine various degrees of responses of the
different classes that makes up the model. +is is seen when
we compared the fractional order (ie β � 0.4, 0.7) with the
classical case where β � 1.0. +e effect of the sterile mos-
quitoes on the female mosquitoes are shown earlier when
β< 1 than when β � 1, which agrees with our earlier result
that the fractional order allows for determination of re-
sponses at different levels when compared with the classical
case. +e fractional order indeed helps us to get different
responses in real time of the different classes of our model as
shown in Figures 2–7. We also carefully chose our initial
values and time to avoid having negative population of
mosquitoes or human which might not be biologically
meaningful.

3.3. Convergence Analysis for the Laplace–Adomian De-
composition Method (LADM). +e solution of (17) is
expressed in forms of infinite series as presented in equation
(18) which converges uniformly to its exact solution. To
verify the convergence of the series (17), we employ the
method used in [20]. For sufficient conditions of conver-
gence of the LADM, we present the following theorem:

Theorem 1 (see [11]). Let X be a Banach space and
T: X⟶ X be a constructive nonlinear operator such that
for all
(x), (x)′ ∈ X, ‖T(x) − T(x′)‖≤ k‖(x) − (x)′‖, 0< k< 1.
9en, T has a unique point x such that Tx � x, where x �

(A, FM, MM, FNM, FSM, FINM, FISM, SH, EH, IH, IHT, RH).
9e series given in (?) can be written by applying the

Adomian decomposition method as follows:

xn � Txn− 1, xn− 1,

� 􏽘

n− 1

i�1
xi, n � 1, 2, 3, . . .

(26)

and we assume that x0 ∈ Br(x), where Br(x)� x′∈ X: ‖􏼚

x′ − x‖< r}; then, we have as follows:

(i) xn ∈ Br(x).
(ii) limn⟶∞xn � x.

Proof. For condition (i), invoking mathematical induction
for n � 1, we have as follows:

x0 − x
����

���� � T x0( 􏼁 − T(x)
����

����≤ x0 − x
����

����. (27)

If this is true for m − 1, then

x0 − x
����

����≤ k
m− 1

x0 − x
����

����. (28)

+is gives the following:

xm − x
����

���� � T xm− 1( 􏼁 − T(x)
����

����≤ k xm− 1 − x
����

����≤ k
n

x0 − x
����

����.

(29)

+erefore,

xm − x
����

����≤ k
n

x0 − x
����

����≤ k
n
r< r. (30)

+is directly implies that xn ∈ Br(x).
Also, for (ii), we have that since ‖xm − x‖≤ kn‖x0 − x‖

and limn⟶∞kn � 0, we can write limn⟶∞xn � x. □

4. Conclusion

In this work, we extended the work of Atokolo et al. [1] by
formulating a fractional order sterile insect technology
model. To solve this model, we developed a numerical
scheme that gives an analytical (approximate) solution of
our model using the Laplace–Adomian decomposition
method. Our solution showed quantitative agreement with
other numerical solutions. We also showed that our ap-
proximate solution converges to an exact solution. Finally,
we showed from our numerical simulation that the frac-
tional order gives more degrees of freedom as the order can
be varied to show responses by the different classes in real
time. It is also seen that reduction of the fractional order β
gives a corresponding reduction in the population value of
each of the classes considered, which implies that the
fractional order has a direct implication in our model which
is aimed at reducing the mosquito population.We have been
able to show that the LADM can be used to solve an SIT
model which has never been done before in literature. We
also hope to apply the homotopy perturbation method in
solving our model and compare the result with the LADM so
as to make strong recommendation on the best method to
use and why.

We therefore conclude that the fractional order model
solved via the Laplace–Adomian decomposition method
gives a higher degree of freedom as compared to the integer
order model, and as such, linear and nonlinear ordinary and
partial differential equations of classical and fractional or-
ders can be solved using the Laplace–Adomian de-
composition method [21–27].

Appendix

Here, we present Table 1 showing definition of variables used
in our model, Table 2 showing definition of parameters as
used in our model equations, and Table 3 that shows initial
conditions for our model variables and parameter values,
respectively.
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