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Sterile insect technology (SIT) is an environmental-friendly method which depends on the release of sterile male mosquitoes
that compete with the wild male mosquitoes and mate with wild female mosquitoes, which leads to the production of no
offspring and as such reduces the population of Zika virus vector population over time, thereby eliminating the spread of
Zika virus in a population. The fractional order sterile insect technology (SIT) model to reduce the spread of Zika virus
disease is considered in this present work. We employed the use Laplace-Adomian decomposition method (LADM) to
determine an analytical (approximate) solution of the model. The Laplace-Adomian decomposition method (LADM)
produced a solution in form of an infinite series that further converges to the exact value. We compared solutions of the
fractional model with the classical case using our plots and discovered that the fractional order has more degree of freedom
and as such the system can be varied to get many preferred responses of the different classes of the model as the fraction ()
could be varied to the desired rate, say 0.7, 0.4, etc. We have been able to show that LADM can be used to solve an SIT model

which has never been done before in literature.

1. Introduction

Zika is a viral infection that is usually spread in human
population by the bite of infected mosquitoes. It was dis-
covered in 1947 in Uganda [1]. The most common way to
contact Zika virus is from the bites of an infected mosquito.
Two species of mosquitoes spread the virus to people; the
yellow fever mosquitoes (Aedes aegypti) and the Asian tiger
mosquitoes (Aedes albopictus). Both are native to Texas
[1, 2]. The sterile insect technology is an environmental-
friendly insect pest control method involving the mass
rearing and sterilization using radiation, of a target pest,

followed by the systematic area-wide release of the sterile
males by air over defined areas, where they mate with wild
females, resulting in no offspring and a declining pest
population [3, 4]. Mathematical modeling of disease
transmission dates back to 1766 as was first presented by
D. Bernoulli. This has metamorphosed to a deep study of
disease transmission and control especially with infectious
diseases like HIV/AIDS, Lassa fever, cholera, malaria, and
others [5-10]. In recent years, fractional calculus has
attracted great attention from researchers and different
aspects of the said subject are under consideration for re-
search; this is due to the fact that the fractional derivative is
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an important tool to explain the dynamical behaviour of
various physical systems [11]. The strength of these differ-
ential operator as presented in [11] is their nonlocal char-
acteristics which do not exist in the integer order differential
operators and that fractional order models are more realistic
and practical than the classical integer order model.

The technique of Laplace-Adomian decomposition
method (LADM) involves the combination of the Adomian
decomposition method (ADM) and the Laplace transforms.
Adomian’s is an effective technique for obtaining solutions
of model or a system of ordinary differential equations.
Laplace transform is an efficient method used in engineering
and applied sciences. The coupling of these two methods
leads to the Laplace-Adomian decomposition method
(LADM). The Laplace-Adomian decomposition method has
been applied to many problems in physics, biology, ap-
plied mathematics, and engineering [11]. The basic idea of
this method is to assume an infinite solution of the kind:
q=Y:2q, then apply Laplace transformation to the
differential equation. The nonlinear terms of the model
are then decomposed in terms of the Adomian poly-
nomials, and then an iterative procedure is formulated for
the determination of the (g,) in a recursive form. This
method can be used for a system of linear and nonlinear
ordinary and partial differential equations of the classical
and fractional order. The method does not require any
perturbation and also has no need for a predefined step
size. The method is an effective method for numerical and
explicit solutions of a system of differential equations
representing physical problems [11].

Fazal et al. [11] presented a numerical solution of the
fractional order smoking model via the Laplace-Adomian
decomposition method; the model solution was obtained in
form of an infinite series which converges rapidly to its exact
value. Ogun [12] presented the Laplace-Adomian de-
composition method to solve a model for HIV infection
where the approximate solution of the model was de-
termined. Adejoh and Mbah [13] also presented the
application of fractional differential equations to obtain
an approximate and numerical solution of a cancer dis-
ease model incorporating control measures. The Lap-
lace-Adomian decomposition method was also used by
Fazal et al. [14] to determine a numerical solution of
a fractional order epidemic model of a childhood disease.
The Laplace-Adomian decomposition method unlike
other numerical methods requires no discretization and
linearization and as such the results obtained from it are
more effective and realistic. In fact, models such as the
ones in [11-14] are veritable tools toward studying the
application of LADM in solving linear and nonlinear
differential equations.

The fractional order model gives a better description of
the entire space of a system; unlike the integer model that
describes only the local properties of a system, it also gives
a better description of a real system with memory effects

[15-18]. The Caputo derivative and the Riemann-Liouville
derivative are regarded as singular kernels fractional
derivative relative to biological problems, we also
have others which are nonsingular such as Mittag-Leftler
and the Atangana-Baleanu operators [17, 19]. The frac-
tional order and classical derivatives have been used in
studying transmission dynamics in SIR models and the
like, but it has not been adopted in an SIT model. Also, an
SIT model solution has not been determined using the
LADM. So, in this work, we consider a fractional order
model (using the Caputo derivative), which is an ex-
tension of the classical order sterile insect technology
model for the control of Zika virus disease presented by
Atokolo et al. [1], whose approximate solution would be
determined using the Laplace-Adomian decomposition
method (LADM).

2. Model Formulation and Procedures

The mosquito life cycle is generally divided into two stages, the
aquatic and nonaquatic class. The aquatic class is denoted by
a single compartment (A). The nonaquatic mosquito class is
divided into seven compartments consisting of the male
mosquitoes (M,,), female mosquitoes not yet laying eggs
(F,), female nonsterile mosquitoes, (Fy,), female sterile
mosquitoes (Fg,,), sterile male mosquitoes (M), female in-
fected nonsterile mosquitoes, (F;y,), and female infected
sterile mosquitoes (Fig). The human population is divided
into susceptible human (Sy;), exposed human (E;), infected
human (I;), infected human but on treatment (I;), and
recovered human (Ry). The aquatic stage of the mosquitoes
which consists of eggs, larva, and pupae population increases
from the oviposition by reproductive mosquitoes. It reduces
due to natural death of the mosquitoes at the rate of (y,) and
by density dependence death rate of (u,). The female mos-
quitoes (F,,) are recruited at the rate of (A¢y), where (y) is
the maturity rate of aquatic mosquitoes to adult mosquitoes
and (¢) is the proportion of emerging females; it is reduced by
the mating rate at the level of (/) for female mosquitoes to be
with wild male mosquitoes or sterile male mosquitoes with
mating probabilities (p,) and (p,), respectively. The pop-
ulation is reduced by death induced due to the attempt to seek
for blood meals at the rate of (§,,) and finally reduced by
natural death at the rate of (y). The male mosquitoes (M ;)
are recruited by the proportion of the emerging male mos-
quitoes (1 — ¢) that mature to adult mosquitoes at the rate of
(y) which also reduces by natural death at the rate of (y,,). The
female nonsterile mosquito (Fy,,) population is increased by
the female mosquitoes’ probability to mate with the wild male
mosquitoes which is given by the rate (M,,/M,, + M), with
a mating rate of (f3;). This population is reduced by (w,), the
rate at which the female nonsterile mosquitoes (Fy,) are
infected and moved to the female infected nonsterile mos-
quitoes class (Fyyy)- It is also reduced by the death induced
due to the attempt to seek for blood meals at the rate of (§,,);
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this class is finally reduced by natural death rate at the rate
of (&,). The female sterile mosquito (Fg,,) population is
increased by the wild female mosquitoes’ probability to mate
with the sterile mosquitoes which is given by the rate
(Mg/M,; + Mj), with a mating rate of (3,). The class reduces
by (w,), the rate at which the (Fg,;) becomes infected and
moves to the (Fjg,,) class. The class reduces by death
induced due to the attempt to seek for blood meals at
the rate of (J,,) and reduces finally by natural death at
the rate of (up). The population of female infected
nonsterile mosquitoes (F;y,,) is recruited at the rate at
which the female nonsterile mosquitoes (Fy,,) are
infected at the rate of (w;) The population is reduced by
death induced due to the attempt to seek for blood
meals at the rate of (J,,) and finally reduced by natural
death at the rate of (uj). The population of female
infected sterile mosquitoes (Fjg),) is recruited at the
rate at which the female sterile mosquitoes (Fg,,) are
infected at the rate of (w,). The population is reduced
by death induced due to the attempt to seek for blood
meals at the rate of (d,,) and finally by natural death at
the rate of (up). The sterile male mosquitoes (M) are
released into the population at the rate (A,). However,
due to some environmental and geographical factors
that may affect the mixing of sterile and wild mos-
quitoes, such as location of mosquitoes breeding site, it
is convenient to assume that only a fraction (p) of the
released mosquitoes will join wild mosquitoes pop-
ulation. Second, because of the differences in physi-
ology of wild and sterile mosquitoes, a parameter (g) is
used to capture the mean mating competitiveness of
sterile mosquitoes, so that the actual number of sterile
male mosquitoes competing with wild mosquitoes is
(pqMs), and as such, the available injected sterile male
mosquitoes (M) into the wild population of mos-
quitoes that can competitively mate with wild female
mosquitoes is (pgA,). This population is reduced by
natural death at the rate of (yg). The susceptible human
population is recruited at the level of (A;), of which
a fraction (/) of those infected at birth joined the in-
fectious human population. The population reduces by
the rate at which infectious mosquitoes (female in-
fected nonsterile mosquitoes (F;y,,) or female infected
sterile mosquitoes (Fjg,,)) infects susceptible human at
the levels of (&) and (w,), respectively. Also, it reduces
by the rate at which the infectious human (infected
class (Iy), recovered class (Ry) or infected but on
treatment class (I;7)](Igr) infects susceptible human
through sex at the level of or (a3) or (a,), (as), re-
spectively. This is in line with the clinical studies that
high viral load was found in the semen and saliva of

recovered patients weeks after recovery, (WHO, 2016),
which means, Zika can be transmitted sexually. The
population finally reduces by natural death at the rate
of (up). The population of the exposed human (Ey) is
generated by infection of susceptible individuals at the
rate of («). This population reduces by natural death at
the of rate (uy) and by the rate at which the exposed are
finally infectious at the rate of (¢). The infected human
(Iy) class is generated by the incoming of infected
babies from infected mothers at the rate of (A;), due to
vertical transmission. In addition, the population in-
creases at the rate by which the exposed become in-
fected at the level (o). The class reduces at the rate (0)
by which the infected are taken for treatment and by
natural recovery rate of (r,). This class reduces finally
by both natural and disease-induced death rates at the
levels of (uy)and (8,), respectively. The infected but on
treatment class (Iyp) is recruited by the incoming of
the infected who are taken for treatment at the rate of
(0); this class reduces at the rate by which the infected
but on treatment class recovers due to supportive
treatment at the rate of (7,). It reduces finally by
natural death and disease induced death at the rates of
(up) and (6,), respectively, where (J,) is assumed to be
less than (J,). The recovered human is recruited at the
rate by which the infected human recovers naturally at
the rate of (7;) or due to supportive treatment at the
rate of (7,). The population reduces by natural death at
the rate of (up).

2.1. Assumptions of the Model

(1) Zika virus can be transmitted through the bite of
Aedes mosquitoes or through sexual activities with
an infected human.

(2) There is both vertical and horizontal transmission.

(3) The mating competitiveness of the sterile and
nonsterile mosquitoes are not equal.

(4) Mosquitoes do not recover from infection.

(5) Aquatic mosquitoes have a density dependent
death rate which is a nonlinear decreasing
function.

(6) Aquatic and nonaquatic mosquitoes do not have the
same death rate.

(7) Female mosquitoes do not have the same death rate
with male mosquitoes.

(8) There is a disease-induced death rate by the female
mosquitoes seeking blood meals.
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2.2. Mathematical Model. The mathematical equations that
incorporate the above formulations, assumptions, and from
Figure 1, we have the following:
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From the earlier assumption, the mating competitive-
ness of both sterile and nonsterile mosquitoes are not equal,
that is, (31) # (3,).

Also, from (1), we let Mg/(M, + M) =ps and

Therefore, from the second equation of (1), we have as
follows:

BiMy
M+ Mg

BMs
My, + Mg

:ﬁlpw+ﬁ2ps’ (3)

where (p,) is the female mating probability with the sterile
mosquitoes and (p,) is the female mating probability
with the wild male mosquitoes. Moreso, the rate of
infection of Fy,, and Fg,, after biting an infectious
human and then moving to the F;y,, and Fg, classes,
respectively, is equal, that is, to say w = w, = w,. We also
decoupled the sterile male mosquitoes population (M)
equation from the entire system since it is independent
of other compartments and the size of its population is
controlled by human intervention. Hence, we can re-
write the mathematical equations that represent the
sterile insect technology (SIT) model for the control of
Zika virus disease as presented by Atokolo et al. in [1] as
follows:
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The model variables and parameters descriptions are
presented in Appendix.

2.3. Fractional Order Zika Model. The Caputo derivative is
considered as a differential operator in our model. In a Caputo
fractional initial value problem, the initial condition can be
expressed with an initial integer order, whose physical in-
terpretation is very easy for real life interpretation, and hence is

suitable for the Zika virus model. We now present in this section,
some well known definitions and results that we will use
throughout this paper.

Definition 1. The Caputo fractional order derivative of
a function (f) on the interval [0,T] is defined as follows:

1
[(n-p)
where n = [] + 1 and [f3] represent the integer parts of . In

particularly, for 0 < 8 < 1, the Caputo derivative becomes as
follows:
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FIGURe 1: Flow diagram.

Definition 2. Laplace transform of Caputo derivatives is
defined as follows:

n

L[ DPa@)] =Sh(S)- Y ¥ 1Yk (0), n-1<p<nmneN,
k=0

(8)

for arbitrary ¢; € R, i=0,1,2,...,n—1, where n =[] +1
and [f] represent the noninteger parts of f3.

Lemma 1. The following result holds for fractional differ-
ential equations:

n-17p (i)
PO’ =h®)+ ) Oy %)

Al
-0 1.

for arbitrary >0, i=0,1,2,...,n—1, where n= [f] +1
and [f] represent the integer parts of .

Introducing the fractional order into the model (4), we
now present a new model described by the following set of
fractional differential equations of order (f), for 0 <f<1
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TaBLE 1: Variables of the model (2) and their meanings.

S/IN Variables Descriptions

1 A Aquatic mosquito

2 My, Male mosquitoes(wild)

3 Fy Female mosquitoes not yet laying eggs

4 Fym Female non-sterile mosquitoes(can lay and hatch eggs)
5 Foy Female sterile mosquitoes(can lay but do not hatch)
6 Mg Sterile male mosquitoes

7 Finum Female infected non-sterile mosquitoes
8 From Female infected sterile mosquitoes

9 Su Susceptible human

10 Ey Exposed human

11 Iy Infected human

12 Iyr Infected but on treatment human

13 Ry Recovered human

TaBLE 2: Parameters of the model (2) and their meanings.

Parameters Meanings

A, Opviposition level of fertilized female mosquitoes

¢ Proportion of emerging female mosquitoes

1-¢ Male mosquitoes emerging population

B Mating rate, where i = 1,2

y Maturity rate of mosquitoes

Ut Natural death rate of wild male mosquitoes

Us Natural death rate of sterile mosquitoes

Hy Density dependent death rate of the aquatic mosquitoes class

Urr Natural death rate of human

Uy Natural death rate for aquatic mosquitoes

e Natural death rate for female mosquitoes

Sy Death induced rate due to attept by female mosquitoes seeking for blood

Po Female mosquitoes probability to mate with wild male

Ps Female mosquitoes probability to mate with sterile male

0, Disease induced death rate for infected class

0, Disease induced death rate for infected but on treatment class

7, Natural recovery rate for human

0 Rate at which the infected human are taken for treatment

7, Recovery rate of the infected but on treatment due to supportive treatment

4 Fraction of infected at birth that joined the susceptible class

I Rate at which the exposed becomes infectious

A, Recruitment level into the susceptible human class

p Fraction of the released sterile mosquitoes that joined the wild male

q Mean mating competitiveness of the sterile male mosquitoes

o Force of infection for human population

o & a, Rate at which the (F;y,,) and the (Fg,,) infects susceptible humans, respectively.
o Rate at which the infected human infects susceptible human through sex

ay Rate at which the recovered human infects susceptible human through sex

as Rate at which the infected human infects susceptible human through sex

w Force of infection for mosquito population

w, & w, Rate at which the Fy,, moves to Fy,, and rate at which the Fg,; moves to Fg,,, respectively.
M Rate at which (I) humans infects susceptible mosquitoes (Fg),

Rate at which (I) humans infects susceptible mosquitoes (Fg,, and Fy,,)-




International Journal of Mathematics and Mathematical Sciences 11

DF(4) = Ay (Fyy + Fiyu) —vA—pyA - .“pAZ’ where
a F + oy Froy + a3l + ay Iy + asR
Dﬁ(F ) = OVA = [B1py + Baps]Far = OarFar — peFps = (@ Fivas *+ 0o N; i * il + 5Ryr)
DF (M) = (1= $)yA = py My, (11
5 _ My + Ay
D" (Fyy) = BipuF s = @F = O Frns = tpF s w= Ny ’
Df (Fsm) = BopsF g — wFgy = sMFgpy — pFpgs
B . see
D" (Finm) = 0F iy = O Finy = tF i 3. Laplace-Adomian Decomposition
DP (Fig00) = WFgps — 80 Frsas — pFrsaps Method(LADM) Implementation
( 1) =1 =OA; - aSy — uySy In this section, we discuss the general procedure of this
8 method with the given initial conditions. Applying the
D" (Ey) = aSy — 0Ey — py Ey, Laplace transform to both sides of (10), we obtain the
DP (1) = Ay + 0Ey — 1,15 — 015 — 0,1y — Ly, following:
(IHT) =01y — 1ol yr = Ol yr — pipl s
)

(RH =TIy — Ty Iy — ppRys
(10)

SLA) - 1A0) = 3[/\1 (Fxum + Frvm) — YA =ty A - HpA2]>

Sﬁg(FM) - (FM) (0) = g[‘/’)’A - [ﬁle + ﬁzPs]FM = Oy Fp - P‘FFM]»
Sﬁg(MM) - Sﬁil(MM) (0) = Z[(1 = $)pA — up My,

(M Iy + A0 yr)

Sﬁg(FNM) - (FNM) (0) = Z| BipoFu - N
L H

FNM—5MFNM_P‘FFNM]>

My + A0 gr)

Sﬁg(FSM)_Sﬁil(FSM)(O):‘g ﬁZPsFM_ NH FSM_6MFSM_‘uFFSMj|’

[ MiTn + AaTyr)

Sz (FINM) -t (FINM) 0 =2 N Fym = OmFrvm — #FFINM]’
H

(12)

_ [ (M I+ A,
Sﬁg(FISM)_Sﬂ 1(FISM)(O)=$ (IHN—HZHT)FSM— MFISM_/”’FFISM]’
[ F F I I R
Sﬂg(sH)—S‘B—l(SH)(O) =2|1-0n, - (a1 Finm + 0 F sy ;\;"3 o1 &l + &5 H)SH_.“HSH]a
L H
: [ (a,F F I I R
Sﬁff(EH)—Sﬁ H(E)(0) = & (a1 Finm + 0 F sy ‘;\;"3 HT %lyr + &5 H)SH_UEH—[JHEH]’
L H

SFL(Iy) -1 (1,;)(0) = L[eA, + 0Ey — 1,1y — 01, — 8,1y — I ]
Sﬁg(IHT) i (IHT) (0) = 3[9111 = Tyl yr — 03Iy — .“HIHT]:

Sﬂg(RH) - (RH) (0) = g[TIIH - Tlyr - /"HRH]’
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TaBLE 3: Numerical values of variables and parameters used for implementation of LADM.

Variables/parameters Value Source
A 2500 [1]
My, 160 (1]
Fy 500 [1]
From 40 (1]

Sy 1000 (1]
Ey 30 (1]

“, 0.00002 da ! [15]

¢ 0.6day™! [16]

B, 0.4day! Assumed
Ps 0.4day! (3]

Ur 0.27 day! Assumed
7y 0.26day! Assumed
0, 0.002 day! [1]
Sy 0.03day™! 1]

0 0.002day! Assumed
14 0.05day™! Assumed
A, 40day™! [1]

o, 0.0001 day™! 1]
oy 0.07 day™! [1]

A 0.09day! [21]
Fru 250 (1]
Fay 120 (1]
Frau 125 (1]

Iy 20 (1]
Typ 15 (1]
Ry 0 [1]

A, 120day™! [16]

y 0.06day™! (17]
P 0.6day™! [1]

B, 0.6day! (3]

™ 0.25day™! [18]
ry 0.00005 day ™! [18]

0, 0.001 day™! 1]

7 0.14day™! (19]

7, 0.16day! [19]

o 0.03day! [20]

a 0.0002 day! [1]

a, 0.09day™! [16]

as 0.05day! Assumed
A, 0.07 day™! 1]

with initial conditions

A(0) = ny, Fip (0) = 1,
F; (0) = n,, S (0) = ng,
M, (0) = ns, E;; (0) = ny, (13)
Fyu (0) = ny, I (0) = nyy,
Fg (0) = ns, Iyr(0) = nyy,

Finm (0) = N, Ry (0) = ny,.
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Dividing (12) by (S) yields

n 1
ZL(A) () = §1+ST;3[A1 (Fxum + Frwm) _YA_.”AA_P‘,;AZ]>

1
Z(Fy)(t) = %“L S_ﬁg[ﬁb)’A = [Bipo + Bops)Far = OnFar — pFo ],

L (M) () =24 S [0 - A - M),

n 1
Z(Fym) () = §4+S—ﬁ:z

ny 1
Q(FSM)(t)—§+S—ﬁ§Z

n 1
Z (Frnm) (1) :§6+*3

s

1

L (Frp) (1) = %+ e

sP
ng 1
g(SH)(t) =§+—3

sP

1

L (Ey) (1) =%+—3

sP

_ (Mg + A Iyr)

N FNM_‘SMFNM_#FFNM])
H

ﬁlprM

(M Iy + A Iyr)

N Fon — Oy Foum —.“FFSM]’
H

BapsFar =

[((M Iy + A,
%HT)FNM_(SMFINM_HFFINM >
H

[ (A Iy + A0 )
%FSM_ mFrsm = #eFrsa |>
H

_ (o Finm + 0 F sy + a3ly + aylyr + asRy)
Ny

(1-0)A, Sh — .“HSH:|’

(ayFinar + @ F gy + asly + oyl + asRyp)

Ny Sy — 0By — P‘HEH])

1
LIy)(8) = % + = P[eAs + 0By — 1,1y — 01y — 0,1y — uply]s

sP

1

n
Z(Iyr)(t) = % + S_BQ[QIH = Tyl yr = 0,0y — pylyr)s

n 1
Z(Ry)(t) = ?12 + S_ﬁg[TIIH ~ T Iyr — PRyl

13

(14)
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We now decompose the nonlinear terms of system (9),
we assume that the solutions of A(t), F,,(t), M, (1),
FNM (t): FSM (t)) F[NM (t)) F[SM (t)) SH (t)) EH (t)> IH (t);
Iyr (1), Ry (t) are in the form of infinite series given by:

A(t) =) An),
n=0
Fy(t) =) Fp(n),
n=0
My (£) = ) My (n),
n=0

FNM (t) = ZFNM (n),

n=0

Foy (t) = z Foyp (n),

n=0
Finm (t) = Z Finm (n),

"o (15)
From (1) = z Frop (n),

n=0

Sy (t) = Z Sy (n),

n=0

By (1) = ZEHW
10 = Zlm
Lr (8) = ZIHT ()
Ry (1) = ZRHW

Moreover, the nonlinear terms involved in the models
are as follows:

AOA @), Frnpg (OSy (), Frgpg (6)Sg (1),
Iy (S (), Iy (OSy (1),

Ry ()8 (), Iy ()F npg (), Lyyp () F g (1),
Iy (£)Fgpy (£), Ipyp (£)Fgpy (8).

(16)

The nonlinear terms in (16) are decomposed by the
Adomian polynomial as follows:

A(DA(t) = ) B(n),

n=0

Frou (DS (£) = ) C(n),

n=0

From (£)Sy () = Z D(n),

n=0

IH (t)SH (t) = Z E(”):

n=0
Lyp (S (£) = Y F(n),
n=0

(17)

Ry ()8 (1) = ) G(n),
n=0

Iy (t)Fyp (8) = ) H(n),

n=0

I(t)Fyy () = ) I(n),

n=0

Iy ()Fgy (1) = ) T (),
n=0

Tyr ()Fgy () = Z K (n).

n=0

where B(n), C(n), D (n), E(n), F (n), G (n), H(n), I (n), ] (n),
K (n) are the Adomian polynomial defined as follows:
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H(n)—r( T ZAkIH(k)Z/\kFNM(k)}hO

k=0

I(n) = Nlyr () Z NF s () } oo

r( T A | &

J(n) =

B =t dA”{ZAkA(k)kZOAkA(k)}lA o
Cn )—WH) o {;}A"FINM(k);)A"SMk)}u >
D(n >—F(n+1) dAn{éA"mek);)AsH(k) }u_o,
E( >—mdﬂ{;ﬂ‘w(k)ZA"FH(k)}u =
F(n) =5 n+1) M{}(Z:A"IHT(k)ZA"FH(k)}uo
G(n)_l"(n+l) dﬂ{é’m k)ZAkFH(m}u o

8

8

ah

k
md)(’ koAI (k)zl FSM(k)}ho

I(n) =

14
T(n+1)dl" {ZWHT(" 2 N Fs k)}h -

k=0
(18)

We substitute (14) for n = 0 into (15) and (17) to have the
following:

15
FA@0) =1,
S
LFy(0) =2,
F My (0) = ?,
FPFy (0) = %
FFg, (0) = %
P (0) =%,
(19)

n
PF(0) = ?7

78, (0) =2
SE(0) =",
P, (0) =10,
Ll (0) =—

PR, (0) =12
N

Similarly, for n =1 to n = n+ 1, we have as follows:
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ZA)1) = Siﬂ{y[A1 (Fagag (0) + Frgag (0)) = yA(0) = s, A(0) - 1, B(0)] .

Z(Fy)(1) = é{g[(bm(o) = (Bipw + Bape)Far (0) = 83 Far (0) = ppFir (0)]},

1

Z (M) (1) = 5 {ZL[(1 = $)yA(0) — My (O]},

[}

L (Fya) (1) =~ 2| BipuFis (0) - NLH (AL H(0) + 1, (0)] = 8y Fygas (0) — pig Fogag <o>] }

01
=

1

y(FbM)(l) T B

2| BopsFar (0) - NLH [A417(0) + 2,K (0)] = Oy Fops (0) = ppFp (0)] }’

7%}

01
=

1

B Z NL (AT (0) +A,K (0)] = 83, Firspr (0) —.“FFISM(O)] }»

H

S(FISM)(I) =

U}

Z(Fian) (D) = i {3 7Nl [AH (0) +A,1(0)] = 8prFrvaq (0) = p5Fra (0)] })
H
Z(Sy)(1) = ‘[

Z|(1-0A, —Ni [(2,C(0) + a,D(0) + a3 E(0) + oy F (0) + a5G (0)] —stH(o)] }
H

C/)
=

Z(Ey)(1) = ¥ {3 NL [(a,C(0) + a, D (0) + a3 E (0) + ay F (0) + a5G (0)] — 0E; (0) — yHEH(O)] }

H
ZL(Iy)Q) = S%{Z[ZA3 +0E (0) — 7,1 (0) = 0I5 (0) = 0,11 (0) — ppy I (0)],

L (L) (1) = S%{S’[GIH (0) = 731517 (0) = 3,117 (0) i Loy (O],
PRy (1) = é{g[rle(O) —tyI47 (0) - Ry (0],
S (20)
L (A) 1+ 1) = 5 { [ (P (91 (9) = PAG) = A ) = B9
L (Fyg) (1) = UL 8yAW) = (Bipy + Bop)Far 09 = Py () = s Fyg ()],

L(My)(n+1) = Siﬂ{z[u ~ OPA () -y My (]},

ZL(Fyy)(n+1) = ‘% {3 BipoFu (1) ——Nl [MH (n) + A1 (n)] = 8y Fypr (1) — pipF g (n)] },
H
Z(Fgy) (n+1) = il; ‘[3) BopF s (n) = ! [MJ (1) + A, K ()] = 8y Fspg (n) = ppFsy (")] ]”
N Ny
&L (Finy)(n+1) = iﬁ {fZ L [MH (1) + AT (n)] = 8y F s (1) —‘uFF,NM(n)] },
N Ny
& (Fsy)(n+1) = iﬂ ‘[3 ! - [MT (1) + 2, K ()] = 8y Frpg (n) = upF sy (”):| }’
N Ny
ZL(Sy)(n+1) = Siﬁ {3 (1-0)A, ——Nl [(2,C(n) + a,D (n) + azE (n) + a,F (n) + a5G (n)] —yHSH(n)j| ]»,
H
Z(Ey)(n+1) = iﬂ {3 NL [(yC(n) + D (n) + a3E (n) + ayF (n) + asG (n)] — 0Ep; (n) — ,uHEH(n)] },
H

ZL(Iy)(n+1) = Siﬂ{g[l?A3 +0Ey (n) — 11y (n) — 01 (n) — 0,1 (n) — uyly (n)]}
L(Iyr)(n+1) = Si,;{g[mﬂ (n) = Tyl yr (1) = 0,1y () = pyy Iy (W]},
Z(Ry)(n+1) = {3[1 Iy (1) = oIy (0) — py Ry (n)]}

Taking the inverse Laplace transform of (20), we have the
following:



International Journal of Mathematics and Mathematical Sciences 17

#
r(p+1y

#
r(g+1)

A1) =[Ay (Fyar (0) + Fiypg (0)) = yA(0) = 4 A(0) — 1, B(0)]

Fp (1) = [¢yA(0) = (Bipy + Bops)Fpr (0) = 8y Fpy (0) = ppFy (0)]

B

t

(1) = [(1 - ¢)YA(0) —MMMM (0)] m)

Fyy (1) = Fp (0) - ! A H (0) + A,1(0)] = 85Fpyar (0) = upFyypy (0) t
v (1) =1 BipoFur NiH[ 1 +Ay | = OmFnum UrtNm m,

B

Foy (1 I::B2P>FM (0) - [)L J(0) +A,K(0)] = 8y Fspr (0) = pupFy (0)] %’

#

T(B+1)

#

r(B+1)

Frnm ( [MH (0) +A,1(0)] = 8 Finag (0) = upFryy (0)]

[A1T(0) + A,K (0)] = 8, Frspr (0) — ppF g (0)]

2
m

#
L(B+1)
#

T(B+1)

H [
FISM(l) |:
S (1) = [(1 - OAy - — [(oqC(O) +a,D(0) + a3E(0) + a, F (0) + asG (0)] — ppy Sy (0)]

(1) = [NLH [(,C(0) + @, D (0) + a3 E(0) + ayF (0) + asG (0)] = 0Ey; (0) — up Ey (0)]

B
Iy (1) = [€As + 0E (0) = 715 (0) = 01 (0) = 0,15 (0) — pyy I (0)] ﬁ,
#
Iy (1) = [61 15 (0) = 7yI yy (0) = 0,117 (0) _MHIHT(O)]W’
#
Ry (1) = 1,115 (0) = 731 7 (0) = Ry (0)] TR+

An+1)= [Al (Fyar (n) + Fiypr (n) = pA(n) =y An) —ﬂpB(fl)])

Fy(n+1) = [¢pA(n) = (Bip, + Baps)Far (1) = 83 Fpr (1) — upF iy ”)] ,3+1
#

My (n+1) =[(1-¢)yA(n) — up My (n ]r(/}+1

F (n+1):[ﬁpp (1) = —— [\ H (1) + A1 ()] = 8y Faopg (1) — g F (n)}L

NM 1Pt M N, M 2 MmENM FENm T(E+1)

Fo 1) = | By ) =5~ T 09+ 1K (0] = By ()= upFSMw] T

#
r(p+1)

Fiyy(n+1) = 1) + 0,1 ()] = 8y Fryy () = ppFinm (")]

Frgy(n+1) =

B
070 1K (0]~ s )~ s |

Ny |
P
T(p+1)
#

Sy(n+1)= [ - (ocIC(n) +a,D(n) + a;E(n) + a,F (n) + asG (n)] — uy Sy (n)]
[ T+ 1)

= NLH [(,C(n) + a,D (n) + a3E (n) + o, F (n) + a;G (n)] = 0Ey; (n) — pyEy (n ]

#
Iy (n+1) =[€A;5 + 0Ey (n) — 11 (n) = 01 (n) = 0,1 (n) — pyly (n )]F(B*'l)

Iyp(n+1) = [GIH (n) = 11y (n) = 0,1 (n) — Uplyr (”)] ﬁ ¥ 1)

5
Ry (n+ 1) = [1,1; () — 7Ty (1) — iy Ry ()] %
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Recalling the earlier stated initial conditions and A(0) =ny, Fu(0)=n,, M(0)=n; Fyp(0)=ny,
substituting these conditions into (15), we have equation  Fg,,(0) =5, Fyp (0) =ng, Fr,(0) =n,, Sy (0) =ng,
(22) as follows: E; (0) = ny, I (0) =nyq, Iyr (0) =nyy, Ry (0) =ny,.

B
t
At)=n +{ [Al (ny +mg) —yny —pamny = #p”1”1] m} HAL (Bipotty = Mtighy = Aynyny),

B

t

= Syhy — Pty + Mymyohy + Ayny iy — Sy — ppg) m = [y + )M (g +16) = yny — pymy,
t# tf t#

—Hpnlnl] m = thy2m [A1 (ny + 1) = yny — pamy - P‘p“l"l] m]’ ma

B B
Fy () =ny + { [¢y1y = (Bipu + Baps)ny = Syt — ppy | %}{[%’Al (4 + 1) =y, ~ MAnl_ﬂpnlnl] ﬁ
B
~[(Brpw + Baps) ($¥111 = (Bipw = Baps )y = Spatty — ppmy ] ﬁ>

B B
(O + t2) (Brpw + Baps) ($¥111 = (Bipw + Baps)ny = Spatty — ey ] ﬁ}’ r(ﬁt+ 1y

#
My () =y + { [(1 = @)yn; = pagms ] m} HA = QyAs (s +6) —ymy —pamy
—,upnlnl] m =t [(1 = Phyny = ppgms] m} T(B+1)
1 B
Faym () =ny + { [ﬁle”z N, [(Mmony +Aynyynyg] = Syymy — MF”4] ﬁ} +{Bipu [$ym = [Bipu]n
tf i

=0y, = MF"Z] m = Ay (g +1y) [ﬁlpwnZ =My = Aynyyng = Symy — MF”4] m)

B
t
=Xy (g + 1g) [Brpuy = Mimgny = Aynny = Spyny — pgny] m = (Oar + tp) [Brpums

B B
t t
Aoty = Ay ny = Spgmy — HF”‘4]*5M”4 - HF”4] m} m’

Foy (1) = ns + { |:ﬁ2psn2 - NLH [Minighs +Ayny ns] = Oyns — I/‘F”s} #ﬁ—l)} +{Bop:[Brpum:
#
~Mmygng = Aynyyny = Spmy] m = Ay (g +15) [Biputty = Aoy = Agnyyng = Syymy,
th t

_HF"4] m = A, (g +15) [ﬁZpan = Mmygns = Aynyns = Syns — :”F”s] m’

B B
t t
(81 + ug) [Bapsiy = Aytygns + Aytiyyns = Syptig — it m} mr

1 tf 1
Frym (t) = ng + { [NiH [Mitgghy + Ay ] = Sppg — .”F”s} m} + { [NiH [Ay (1140 + 114) [Bipuma

B
t
~Aatiy 15 = Spptis — phpnts] m + (Aanyy +n5) [Bopsty — Mimgns — Aynyyng — Symy,

B B B
t t t
Oy — #F”4] TRe1 (6M + HF) [’11”10“5 + Aty 15 — Opyttg — HF”s] m} } m>

T(B+1)
1 ¢ 1
Fron (1) =n; + { [NiH [Argns + Apny ns] = Syym, — ﬂF”7} m} + { [NiH (A (19 + 15) [Bopstty = Aymggns
B
t
—Ayty s — Syyis — ppnis} m + (Manyy +15) [Bopstt, = Mymghts = Ayny g = Symy,

B B B
t t t
~Hpts] m = (s + o) [Mimons + Aynyyns — Symg — pgng) m} } m’
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1 B
Sy (t) =ng + { [(1 -0, - N [ (1615 + ay115mg + a311015 + 0y11 g + Ashy 1] — .“H”s] }
H

rp+1)

1
+ {(1 —OA; - N [ (o, (ng + ng) [Mymyomy + Ayny 1y — Spgtis — phptig]
H

B
t
-, (1, + 1g) [N 115915 + Aoy s — Syt — Upn
F(ﬂ+1)2(7 8)[1105 2115 — Oty #F7]
#
- m% [(1 —ON; -y (”10 + ”8)”6”8 = QNyhg — A3ty otlg — Gyl g — QstlyHtlg — .”Hns]
#
—————a, (1), + 1) — ANy — Qs gHg — gy g — syt — UpHl
F(ﬂ+1)4(11 g Mgty — Qytiyg — Oy o1y — Oyt Mg — Oisty g — g g
B B
t t
m - Qs (7”8 + ”10) [71”10 — Tty — .”H”lz] _#H[l = O)A; — aynghg — ayn;ng — aznghg — ayny g — “5”12”8]}%’
Eg (8) + ! [( + + + + ] £
=n — [ (ayneng + o119 + 031, Mg + QyHy 1 g + Oty Hg — O — UpHy | —————
H 9 Ny 1NNy + Ayti71g + A3t Mg + Ayt Mg + A5ty oM 9#H9r(ﬁ+1)
#
+ N a (”6 + ”8)”1”10”4 +Aynymy = Oyng — .an6] + 1«(7“2 (”7 + ”8) [’11”10”5 + Ay s — Opymy — !"F”7]
H B+1)
#
+ m% [(1 = O)A; — &) (119 + ng)ngng — ayn,mg — a3y ohg — 01y Mg — Aty Hg — fpg]
4
m +ay (g + ”8)”6”8 — 0NNy — A3hy Mg — Oy My Mg + K5ty g — .“Hns] +as (ng + ”10)71”10

£
~Tynyy = Pty = (0 + pg) [a g + aynsng + ashygig + auny ng + ashyyng — O — || TG+ 1)

P

Iy (t) = myg +9 [€As + ong — 1,9 = Oy — 0111y — gy TB+1) +{EA; + oayngng + aynyng + azngng}

#
+0y Mg + OsTyatg — Oy — ftg] — (Ty + 0+ 0y + py ) [EAs + omg — 1y (11 + 0+ 0y + py) |} TB+1)

P
Iyr (8) = nyy +{[nyo = 1y, = Oymyy — .”Hnll]}m +{[0{As + omg = 7ymy5 = Onyg = Oymy0 — iy}
#
= (72 + 0y + py) [ — Tomyy = Oy — HH”U]}W’
P
Ry () = nyy +{[1ymyg — 151, - #Hnu]}m +{[71[6As + ong — Tym1g — By — 0ymyg — ppy]

B
t
) [‘/5”10 = Ty — Oy — P‘H”u] ~Uu [71”10 — Ty — .“HnIZ]} m

(22)
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Equation (22) can be further expressed as follows:

B

t
A(t) =n; + { [Al (g +1g) =y — pany — P‘p”lnl] W

n 1)]’ A (Bipots = Aitohy — Ay i),

=Opty = Pty + Aty + Ayny g — Syt — pphg) = [y + pa) Ay (g + 1g) = yry — pany,
2
t

‘Ilp”ﬂ’ll] = py2m [Al (ny +ng) = yny —puny - .“p”h”l]} m)

tﬁ
Fp (t) =ny + { [pym) = (Bipy + Baps)ty = Opaty — ppmy ] W}{ [@yA; (g + 1) — yny —pumy

_.“p”1”1] ~[(Bipw + Baps) (911 = (Bipw = Baps)ty = Spitty — s ),

2%
(=[O + tg) (Bipw + Baps) (pyny = (Brpw + Baps)ny = Syt — ppis ] %>

£
My, (t) =ny + { (1= @)yn, — ppns] m} +H(1 = P)yA, (ny +ng) — yny — pun,
12
| = up [(1 = @)y, — pyms] TR+ 1)

1 t#
Fyp (t) =ny + { [ﬁlf’wnz - N—H [Aimohy + Aynyymy| = Sppmy — #F”4] m}’ +{ﬁ1Pw [¢ym: = [Bripolms

B
t
=0y — ey = Ay (14 + 1) [Brputy — Mttty — Aynyymy — Spmy — ppny m’
= Ay (g + 1) [Brpoty = Mmggng = Aynyyny = Sy — ppny] = 8y + ) [Brpomas
%
r(2g+1)

Aoy — Ay — Opny — HF”4]_‘SM”4 - !‘F”4]}

B
1 t
Fgy (t) =ns + { [ﬁzps”‘z N [Ai110hs + Aytyymis| — Oppnis — .“F”ls] T( B+ 1)} +{ﬁ2Ps [Bipum
H

—Mmyony — Ay ng — 5M”4] -4 (”10 + ”5) [/31Pw”2 = Mmyony = Ay ng = Oyny,

B
t
_.”F”4] -4 (”11 + ”5) [ﬂZpan = Mmyons — Ay ng — Oyns — .“Fns] TR+ 1y

£

(O + 1) [Bapsiy — Mymyghis + Aynyyns — Sy — ppng} m’

B
1 t 1
Finm (8) =ng + { [N—H [Aimong + Aynyymy ] = 8 — P‘F”ﬁ] m} + ‘[ |:N—H (A (119 + 1) [Brpos

Aty s = Syns — ppns| + (Aynyy + 1) [Bapsiy = Aynygns — Ayny ns — Symy,
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%
~Opaty — pipty] = (8pp + pp) [Mmyonis + Ayny ns — Sppnig — ppng m’
1 t# 1
From (t) =n; + N_H [Mimggns + Aany ns| = Symy — ppny m + N_H{)‘l (19 + 15) [Bopsny — Mymyons
—Ayny ns — Syns — .anS] + (Aanl + ”5) [szsnz = Minyohs — Ay ns — 8y,
28
t

~tptis] = (8pr + pp) [Mimyonis + Ay s — Spptig — g ]} m’

1 t#
Sy (t) =nyg +{ (1-6A; - N_H [[e111615 + ayryng + aznygng + ayng ng + asnng| — ﬂH”ls] m]’

1
+ ‘[(1 —OA; - N [[a1 (ms + ng) [Ayygny + Aynyyng = Syng — ppng| — ag (n; + ng) [Aymyons + Aynyyns
H

—OpmNy — P‘F”7] - a3 [(1 —OA; - (”10 + ”8)”6”8 = Qohytg — A3ty oflg — Oyt g — (st g

_P‘Hns] 0y (”11 + ”8)”6”8 =GNyt — A3ty oty — Qytly g — KstlyHtlg — .“H”S]

2
t

- Qs (”s + ”10) [71”10 — Tty — .”H”u] —Hy [1 = O)A; — ayngng — aynsng — iy g — ayuny g — “5”12”8]} m>

1 th
Ey (t) =ny + N—H [{a g + aynsng + asiygng + ayny g + ashy g — Oty — ppts | m
1
+ N {{“1 (ns + ”8) [Ai1ghy + Ayry g — Sy — pupng) + a, (”7 +ng) [Mymyns + Ay ns — Syn;
H
—upny] + a3 [(1 = O)A; — a; (19 + ng )nghg — ayhyng — dsighg — 01y Mg — KstyaNg — g ]
oy (1) + Mg )ghg — ay1,1g — A3ty g — Gy1y Mg + Ashy Mg — g + as (g + 1) Ty
2
t
~Tohyy = gy ] = (0 + pgg) [ g + aynyng + ashy g + iy g + dshy g — Oty — pphg |} —————,
rp+1)
P
Iy (t) =nyy + ‘[ [A; + ong — Ty15 — Onyg — 0,15 — gty m} +H{EA; + o [aynghg + ayngng + azny g
2
Ty Ny + dshpNg — 0y — .“H”9] - (Tl +0+0; + .“H) [€A3 + 01y — 1y (71 +0+0, + PH)]} m’
P
Ty (8) =nyy +{[myg = Tymyy — Oynyy — pymyy |} TE+1) +{[0{€A; + ong — 7)1y = Oy = Oy
t#
—ppiig] = (T3 + 0y + ) [$119 — Tonyy — Oy — gy |} m’
#
Ry () =nyy +{ 110 = Ty1y; = ppgnyy]} m {7, [6A; + ong — 1115 = Onyg = Oy — ppgtiyg
%
) [¢”10 = Tyfy — Oy — ﬂH”n] ~Uu [71”10 — Tohyy — #H"lz]} m
(23)

3.1. Numerical Solution of the Laplace-Adomian De-  conditions presented in Appendix, the Laplace-Adomian de-
composition Method (LADM). In this section, we shall con-  composition method (LADM) gives us an approximate solution
sider the numerical solution of the model. Using the initial  in terms of an infinite series presented as follows:
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th T
A(t) = 2500 + 44100.3 ——— — 37045.1 ——— . ...
®) rp+1) reg+1)
P P
F, (t)=500+332—— + 1864.39 —— . ..
0 T(B+1) (2B +1)
th t#
My, (t) =160 + 1843 —— + 1053.16 —————. . .
() T(B+1) T(2f+1)
i (28
F t) =250+ 74331 ——— - 17522 —— ...
(1) T(f+1) r(2f+1)
P %
Fo,, (£) = 120 + 83.82 - 100
su () T(B+1) r2B+1)
B 28
F £)=125-36.835——— +11.21——— . ..
v (8) [(f+1) r(2f+1)
(24)
th P

F 1) =40-11.672 ———+3910 ———. ..
rsm (D) T(B+1) T(2B+1)

t 1
Sy (t) =1000 + 35310 ——+ 3646 ———— . ...
n(®) " TG+ TR+ )

§ 126

t
EH(t):30+0.3052r(ﬁ+1)+0.19r(2/3+1)...

tF £
r(ﬁ+1)+2'032r(2/3+1)"'

Ty, (t) =20 +0.020

B 28

8 P
R, (t)=0412——— +0.3848 —— . ..
i (1) r(ﬂ+1)Jr [ (2f+1)

The solution of the model for § =1 is given as follows: Fpan (£) = 125 — 36.835¢ + 5.612 - -

Frop (£) = 40 — 11.672¢ + 1.96t" - - -
Sy (t) = 1000 + 35.310¢ + 18.23¢° - - -

Ey; (t) = 30 + 0.3052¢ + 0.095¢" - - - (25)
I (t) = 20 +0.020¢ + 1.016¢° - - -
Iy (t) = 15— 2.3752t + 1L.91£° - --
Ry (t) = 0.412¢ +0.1924¢% - -

A(t) = 2500 + 44100.3¢ — 18522¢> - ..
Fj (t) = 500 + 332¢ — 932.19¢% - - -
M, () = 160 + 18.42¢ + 526.58¢% - - -
Fyp (t) = 250 + 74.331t — 87.61t - - -
Fgy, (t) = 120 + 83.82t — 50t° - - -
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3.2. Numerical Simulation. Here, we present the numerical
simulation of our fractional order sterile insect technology
model so as to compare with the classical order. All the
variables of our model are presented from Figures 2-7 with
variation in the value of the fractional order 8. Figures 2-7,
shows that the fractional order sterile insect technology
model has more degrees of freedom as such the order 8 can
be varied to determine various degrees of responses of the
different classes that makes up the model. This is seen when
we compared the fractional order (ie 8 = 0.4,0.7) with the
classical case where = 1.0. The effect of the sterile mos-
quitoes on the female mosquitoes are shown earlier when
B <1 than when § = 1, which agrees with our earlier result
that the fractional order allows for determination of re-
sponses at different levels when compared with the classical
case. The fractional order indeed helps us to get different
responses in real time of the different classes of our model as
shown in Figures 2-7. We also carefully chose our initial
values and time to avoid having negative population of
mosquitoes or human which might not be biologically
meaningful.

3.3. Convergence Analysis for the Laplace-Adomian De-
composition Method (LADM). The solution of (17) is
expressed in forms of infinite series as presented in equation
(18) which converges uniformly to its exact solution. To
verify the convergence of the series (17), we employ the
method used in [20]. For sufficient conditions of conver-
gence of the LADM, we present the following theorem:

Theorem 1 (see [11]). Let X be a Banach space and
T: X — X be a constructive nonlinear operator such that
for all
(x), (%) € X, 1T (x) = T (x| <kll(x) = (x)',0<k<1.
Then, T has a unique point x such that Tx = x, where x =
(A, Faps Mg Exags Fsars Erns Frsan Ses Ers Trs T Ryg)-

The series given in (?) can be written by applying the
Adomian decomposition method as follows:

xn = Txn—l’xn—l’

n-1 (26)
=Y xpn=1,23,...
i=1

and we assume that x, € B,(x), where B, (x):{xre X: |
x! — x|| <r}; then, we have as follows:

(i) x,, € B, (x).
(i) lim

n—ocoXn = X.

Proof. For condition (i), invoking mathematical induction
for n = 1, we have as follows:

-l =T - Tl <o -5k @
If this is true for m — 1, then
e P @)

This gives the following:

Ji =5 =T (o)~ T <K = ] <K 5]
(29)
Therefore,

| = x| <K"|x0 — x| <K"r <. (30)

This directly implies that x,, € B, (x).
Also, for (ii), we have that since [x,, — x|| <k"||x, — x|

and lim k" = 0, we can write lim X, = X. O

n—=o0 n—-00

4. Conclusion

In this work, we extended the work of Atokolo et al. [1] by
formulating a fractional order sterile insect technology
model. To solve this model, we developed a numerical
scheme that gives an analytical (approximate) solution of
our model using the Laplace-Adomian decomposition
method. Our solution showed quantitative agreement with
other numerical solutions. We also showed that our ap-
proximate solution converges to an exact solution. Finally,
we showed from our numerical simulation that the frac-
tional order gives more degrees of freedom as the order can
be varied to show responses by the different classes in real
time. It is also seen that reduction of the fractional order f3
gives a corresponding reduction in the population value of
each of the classes considered, which implies that the
fractional order has a direct implication in our model which
is aimed at reducing the mosquito population. We have been
able to show that the LADM can be used to solve an SIT
model which has never been done before in literature. We
also hope to apply the homotopy perturbation method in
solving our model and compare the result with the LADM so
as to make strong recommendation on the best method to
use and why.

We therefore conclude that the fractional order model
solved via the Laplace-Adomian decomposition method
gives a higher degree of freedom as compared to the integer
order model, and as such, linear and nonlinear ordinary and
partial differential equations of classical and fractional or-
ders can be solved using the Laplace—Adomian de-
composition method [21-27].

Appendix

Here, we present Table 1 showing definition of variables used
in our model, Table 2 showing definition of parameters as
used in our model equations, and Table 3 that shows initial
conditions for our model variables and parameter values,
respectively.
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