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In this study, a new loss distribution, called the exponentiated Fréchet loss distribution is developed and studied. �e plots of the
density function of the distribution show that the distribution can exhibit di�erent shapes including right skewed and decreasing
shapes, and various degrees of kurtosis. Several properties of the distribution are obtained including moments, mean excess
function, limited expected value function, value at risk, tail value at risk, and tail variance. �e estimators of the parameters of the
distribution are obtained via maximum likelihood, maximum product spacing, ordinary least squares, and weighted least squares
methods. �e performances of the various estimators are investigated using simulation studies. �e results show that the es-
timators are consistent. �e new distribution is extended into a regression model. �e usefulness and applicability of the new
distribution and its regression model are demonstrated using actuarial data sets. �e results show that the new loss distribution
can be used as an alternative to modelling actuarial data.

1. Introduction

In actuarial practice, there is the need to appropriately model
data sets. Achieving this can lead to optimal capital allo-
cation as a result of accurate calculations of risk measures
and insurance premiums. �is is essential for risk man-
agement purposes. Due to this, probability distributions are
very essential in actuarial practice. Several distributions have
been used in actuarial practice including Pareto, gamma,
beta, Fréchet, exponential and Weibull distributions.
However, given the nature of actuarial data, speci�cally loss
data, some of these distributions are not able to appropri-
ately model such data. For instance, loss data are observed to
be heavy-tailed in nature and require distributions that
exhibit such properties to be able to model them [1, 2]. �us,
several new distributions have been developed and studied
by researchers over the decades for modelling loss data.

Due to the nature of loss data, distributions that exhibit
right skewness, such as extreme value distributions or their
generalizations, are used to model them. �e Fréchet dis-
tribution, also known as type II extreme value distribution, is

a special case of the generalized extreme value distribution. It
has applications in several �elds including actuarial science,
�nance, hydrology, and biological studies (see [3]). Due to its
usefulness, several families of distributions have been de-
veloped for the generalization of the Fréchet distribution.
Some of these include odd Fréchet family [4], extended odd
Fréchet family [5, 6], transmuted odd Fréchet family [7],
generalized odd Fréchet [8], and exponentiated Fréchet
family [9]. Speci�cally, some generalizations of the Fréchet
distribution include exponentiated Fréchet (EF) [10], beta
Fréchet (BF) [11], gamma extended Fréchet [12], Kumar-
aswamy Fréchet (KF) [13], Weibull Fréchet [14], modi�ed
Fréchet [15], beta exponentiated Fréchet (BEF) [16], Burr X
Fréchet [17], modi�ed Kies-Fréchet [18], and extended
Weibull Fréchet [19] distributions.

In this study, a new extension of EF distribution, known
as the exponentiated Fréchet loss (EFL) distribution is de-
veloped and studied. �e new distribution is developed
using a family of loss distributions proposed by Ahmad et al.
[20]. Regression models are very essential in relating a re-
sponse variable to an independent variable(s). Letting the
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response variable follow the EFL distribution, an EFL re-
gression model can be developed.&us, in this study, an EFL
regression model is developed and its application
demonstrated.

&e rest of the article is organized as follows: Section 2
presents the EFL distribution. Some statistical properties,
including moments and moment generating function, are
presented in Section 3. Section 4 presents some actuarial
properties including mean excess function, limited expected
value function, value at risk, tail value at risk, and tail
variance. Section 5 presents four parameter estimation
methods for estimating the parameters of the distribution.
Monte Carlo simulation studies to assess the performance of
the estimators are carried out in Section 6. A new regression
model based on the EFL distribution is given in Section 7.
&e usefulness of the new distribution and its regression
model are demonstrated on real data sets in Section 8.
Section 9 presents the conclusion of the study.

2. Exponentiated Fréchet Loss Distribution

Let the random variable X follow the family of loss distri-
butions proposed by Ahmad et al. [20]. &en its cumulative
distribution function (CDF) is given as follows:

F(x) � 1 −
α(1 − G(x))

α − log(1 − G(x))
, α> 0, x ∈ R , (1)

where G(x) is CDF of the baseline distribution. In this study,
the EF distribution is used as the baseline distribution. &e
CDF of the EF distribution is given as follows:

G(x) � 1 − 1 − e
− (β/x)λ

􏼔 􏼕
θ
, x> 0, β> 0, θ> 0, λ> 0 , (2)

where β is a scale parameter and θ and λ are shape pa-
rameters. Substituting equation (2) into equation (1) gives
the CDF of the EFL distribution as follows:

F(x) � 1 − α 1 − e
− (β/x)λ

􏼔 􏼕
θ
α − θ log 1 − e

− (β/x)λ

􏼔 􏼕􏼚 􏼛
− 1

, x> 0, α> 0, β> 0, θ> 0, λ> 0 . (3)

&e differential of equation (3) gives the probability
density function (PDF) of the EFL distribution as follows:

f(x) � αθλβλx− (λ+1)
e

− (β/x)λ 1 − e
− (β/x)λ

􏼔 􏼕
θ− 1 1 + α − θ log 1 − e

− (β/x)λ

􏼔 􏼕􏼚 􏼛

α − θ log 1 − e
− (β/x)λ

􏼔 􏼕􏼚 􏼛
2 , x> 0 . (4)

&e hazard rate function of ELF distribution is obtained
as follows:

τ(x) � θλβλx− (λ+1)
e

− (β/x)λ
1 + α − θ log 1 − e

− (β/x)λ

􏼔 􏼕􏼚 􏼛

1 − e
− (β/x)λ

􏼔 􏼕 α − θ log 1 − e
− (β/x)λ

􏼔 􏼕􏼚 􏼛

, x> 0 . (5)

It should be noted that when θ � 1 in the EFL distribution,
Fréchet loss distribution is obtained. To show the flexibility of
the EFL distribution, some plots of its PDF and hazard rate
functions are obtained for some parameter values of the dis-
tribution and shown in Figure 1. It can be observed that the PDF
can exhibit right-skewed, decreasing, approximately symmetric
shapes, and various degrees of kurtosis. Also, the hazard rate
function exhibit decreasing, increasing, and reverse J shapes.

2.1. Expansion of PDF. &e expansion of the PDF of EFL
distribution is obtained in this subsection. &e expansion is

useful for obtaining some quantities, such as the moments,
moment generating function, and other properties, of the
distribution that involve integrals of the PDF or its func-
tions. Using generalized binomial expansion defined as

(1 − z)a � 􏽐
∞
i�0

a

i
􏼠 􏼡(− 1)izi, |z|< 1, we have

1 − e
− (β/x)λ

􏼔 􏼕
θ− 1

� 􏽘
∞

i�0

θ − 1

i
􏼠 􏼡(− 1)

i
e

− i(β/x)λ
. (6)

Also, using the binomial expansion (1 + z)− 2 �

􏽐
∞
j�0 (− 1)j− 1jzj− 1, we have
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α − θ log 1 − e
− (β/x)λ

􏼔 􏼕􏼚 􏼛
− 2

�
1
α2

1 +
θ
α

− log 1 − e
− (β/x)λ

􏼔 􏼕􏼒 􏼓􏼨 􏼩

− 2

�
1
α2

􏽘

∞

j�1
j(− 1)

j− 1 θ
α

􏼠 􏼡

j− 1

− log 1 − e
− (β/x)λ

􏼔 􏼕􏼒 􏼓
j− 1

, α≥ θ.

(7)

Substituting equations (6) and (7) into the PDF of the
EFL distribution in equation (4) gives

f(x) � λβλx− (λ+1)
􏽘

∞

i�0
􏽘

∞

j�1

θ − 1

i
⎛⎝ ⎞⎠

θ
α

􏼠 􏼡

i

(− 1)
i+j− 1

je
− (i+1)(β/x)λ

× (1 + α) − log 1 − e
− (β/x)λ

􏼔 􏼕􏼒 􏼓
j− 1

+ θ − log 1 − e
− (β/x)λ

􏼔 􏼕􏼒 􏼓
j

􏼢 􏼣.

(8)

Using the expansion (− log(1 − z))a � a 􏽐
∞
k�0 􏽐

k
m�0

k − a

k
􏼠 􏼡

k

m
􏼠 􏼡(Pm,k/(a − m))za+k, where Pm,k � (1/k)

􏽐
k
n�1((mn + n − k)/(n + 1))(− 1)nPm,k− n, k � 1, 2, . . . , Pm,0 �

1 [21, 22], we have

− log 1 − e
− (β/x)λ

􏼔 􏼕􏼒 􏼓
j− 1

� (j − 1) 􏽘
∞

k�0
􏽘

k

m�0

k − j + 1

k

⎛⎝ ⎞⎠
k

m

⎛⎝ ⎞⎠
Pm,k

j − m − 1
e

− (j+k− 1)(β/x)λ
, (9)

− log 1 − e
− (β/x)λ

􏼔 􏼕􏼒 􏼓
j

� j 􏽘
∞

k�0
􏽘

k

m�0

k − j

k
􏼠 􏼡

k

m
􏼠 􏼡

Pm,k

j − m
e

− (j+k)(β/x)λ
. (10)
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Figure 1: Plots of PDF (a) and hazard rate function (b) of the EFL distribution.
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Substituting equations (9) and (10) into equation (8), and
after some algebraic manipulations, gives the PDF of the EFL
distribution as follows:

f(x) �
λβλ

x
λ+1 (1 + α)Πijkme

− (i+j+k)(β/x)λ
+ θΠ∗ijkme

− (i+j+k+1)(β/x)λ

􏼔 􏼕,

(11)

where Πiikm � 􏽐
∞
i�0 􏽐
∞
j�1 􏽐
∞
k�0 􏽐

k
m�0

θ − 1
i

􏼠 􏼡
k − j + 1

k
􏼠 􏼡

k

m
􏼠 􏼡(θ/α)i(Pm,k/(j − m − 1))j(j − 1)(− 1)i+j− 1, Π∗iikm �

􏽐
∞
i�0 􏽐
∞
j�1 􏽐
∞
k�0 􏽐

k
m�0

θ − 1
i

􏼠 􏼡
k − j

k
􏼠 􏼡

k

m
􏼠 􏼡 (θ/α)i(Pm,k/

(j − m))j2(− 1)i+j− 1, and Pm,k � (1/k) 􏽐
k
n�1((mn + n − k)/

(n + 1))(− 1)nPm,k− n, k � 1, 2, . . . , Pm,0 � 1.

3. Statistical Properties

In this section, some statistical properties of the EFL dis-
tribution are obtained. &ese include the quantile function,
ordinary and incomplete moments, and moment generating
function.

3.1. Quantile Function. &e quantile function of a distri-
bution can be used to characterize the distribution. It can
also be used to obtain random numbers from the distri-
bution and obtain some quantile-based quantities, such as
the skewness and kurtosis, of the distribution. &e quantile
function is obtained as the inverse function of the CDF of a
distribution. &at is, QX(u) � F− 1(u). For the EFL distri-
bution, the quantile function is obtained as follows:

QX(u) � β − log 1 −
1 − u

α
􏼒 􏼓W

α
1 − u

􏼒 􏼓e
α

􏼔 􏼕􏼚 􏼛
1/θ

􏼠 􏼡􏼢 􏼣

1/λ

,

u ∈ (0,1),

(12)

where W(xex) � x is the Lambert function. Substituting u �

0.5 into the quantile function gives the median of the EFL
distribution as follows:

Median � β − log 1 −
1
2α

W 2αe
α

􏼂 􏼃􏼚 􏼛
1/θ

􏼠 􏼡􏼢 􏼣

1/λ

. (13)

Moor’s kurtosis (K) and Bowley’s skewness (S) can
be defined using the quantile function, respectively, as
follows:

K �
Qx(7/8) − Qx(5/8) + Qx(3/8) − Qx(1/8)

Qx(6/8) − Qx(2/8)
, (14)

S �
Qx(3/4) − 2Qx(2/4) + Qx(1/4)

Qx(3/4) − Qx(1/4)
. (15)

Plots of the kurtosis and skewness of the EFL distri-
bution are obtained and shown in Figure 2 for α � 8.1,
β � 1.8, and a range of values for θ and λ. It can be observed
that the EFL distribution can assume various degrees of
kurtosis and also assume both negative and positive
skewness.

3.2. Moments and Moment Generating Function. &e ordi-
nary moments, incomplete moments, and moment gener-
ating function (MGF) of the EFL distribution are given in
this section. &ese properties are useful for characterizing
the distribution and for obtaining some other properties of
the distribution such as variance, coefficients of skewness
and kurtosis, and mean excess function.

3.2.1. Ordinary Moments. &e ordinary moment of a dis-
tribution is defined as E[Xr] � 􏽒

∞
0 xrf(x)dx, r � 1, 2, 3, . . ..

&us, the ordinary moment of the EFL distribution is ob-
tained by substituting the PDF of the distribution in
equation (11) into the definition. &is is given as follows:

E X
r

􏼂 􏼃 � λβλ (1 + α)Πijkm 􏽚
∞

0
x

r− (λ+1)
e

− (i+j+k)(β/x)λ
dx + θΠ∗ijkm 􏽚

∞

0
x

r− (λ+1)
e

− (i+j+k+1)(β/x)λ
dx􏼔 􏼕. (16)

Letting z � (i + j + k)(β/x)λ and y � (i + j + k + 1)

(β/x)λ in the first and second integrals, respectively, in
equation (16), and after some algebraic manipulations, gives
the ordinary moment of the EFL distribution as follows:

μr
′ � βr

(1 + α)Πijkm(i + j + k)

r

λ
− 1

+ θΠ∗ijkm(i + j + k + 1)

r

λ
− 1⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Γ 1 −

r

λ
􏼒 􏼓, r< λ, r � 1, 2, . . . , (17)

where Γ(a) � 􏽒
∞
0 xa− 1e− xdx is the gamma function and

Πjkm and Π∗ijkm are as defined in equation (11). &e mean of
the EFL distribution is obtained by letting r � 1 in equation
(17). &us, the mean of EFL distribution is given as follows:
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μ � β (1 + α)Πijkm(i + j + k)
1/λ− 1

+ θΠ∗ijkm(i + j + k + 1)
1/λ− 1

􏽨 􏽩Γ(1 − 1/λ), λ> 1. (18)

Important measures such as standard deviation, coeffi-
cient of variation (CV), coefficients of skewness (CS), and
kurtosis (CK) of the EFL distribution can be obtained via
various ordinary moments of the distribution. &e standard
deviation and CV are measures of risk and are defined as
σ �

������

μ2′ − μ2
􏽱

and CV � σ/μ, respectively. Also, CS and CK
are defined, respectively, as CS � (μ3′ − 3μ2′μ + 2μ3)/σ3 and
CK � (μ4′ − 4μ3′μ + 6μ2′μ2 − 3μ4)/σ4. Table 1 shows the first
four moments, σ, CV, CS, and CK of the EFL distribution for
three sets of parameter values: I � (α � 4.1, β � 4.2,

θ � 4.4, λ � 1.5), II � (α � 1.9, β � 0.1, θ � 2.3, λ � 1.9),
and III � (α � 0.2, β � 1.1, θ � 2.2, λ � 2.5). Again, it can
be observed that the EFL distribution can exhibit various
degrees of kurtosis and skewness, including negative
skewness.

3.2.2. Incomplete Moments. &e incomplete moment of a
distribution with PDF f(x) is defined as
mr(y) � 􏽒

y

0 xrf(x)dx, r � 1, 2, 3, . . .. Substituting PDF of
the EFL distribution in equation (11) into the definition gives

mr(y) � λβλ (1 + α)Πijkm 􏽚
y

0
x

r− (λ+1)
e

− (i+j+k)(β/x)λ
dx + θΠ∗ijkm 􏽚

y

0
x

r− (λ+1)
e

− (i+j+k+1)(β/x)λ
dx􏼔 􏼕. (19)

After substitution, similar to obtaining the rth ordinary
moment, and some algebraic manipulations, the incomplete
moment of the EFL distribution is obtained as follows:

mr(y) �
βr

(1 + α)Πijkm

(i + j + k)
1− (r/λ)
Γ 1 −

r

λ
, (i + j + k)

β
y

􏼠 􏼡

λ
⎛⎝ ⎞⎠ +

βrθΠ∗ijkm

(i + j + k + 1)
1− (r/λ)
Γ 1 −

r

λ
, (i + j + k + 1)

β
y

􏼠 􏼡

λ
⎛⎝ ⎞⎠,

r< λ, r � 1, 2, 3, . . . ,

(20)

where Γ(a, y) � 􏽒
∞
y

xa− 1e− xdx is the upper incomplete
gamma function. &e first incomplete moment of the EFL
distribution is given as follows:

m1(y) �
β(1 + α)Πijkm

(i + j + k)
1− (r/λ)
Γ 1 − 1/λ, (i + j + k)

β
y

􏼠 􏼡

λ
⎛⎝ ⎞⎠ +

βθΠ∗ijkm

(i + j + k + 1)
1− (r/λ)
Γ 1 − 1/λ, (i + j + k + 1)

β
y

􏼠 􏼡

λ
⎛⎝ ⎞⎠, λ> 1. (21)
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Figure 2: Kurtosis and skewness plots.
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3.3. Moment Generating Function. &e moment generating
function (MGF) of a distribution is defined as MX(t) �

E[etX] and is useful in obtaining moments of the distri-
bution. Using Taylor series expansion, MGF can be written

as MX(t) � 􏽐
∞
r�0(tr/r!)μr

′, r � 1, 2, 3, . . .. &e MGF of the
EFL distribution is obtained by substituting the ordinary
moment in equation (17) into the definition. &is gives the
MGF of the EFL distribution as follows:

MX(t) � 􏽘
∞

r�0

t
rβr

r!
(1 + α)Πijkm(i + j + k)

r

λ
− 1

+ θΠ∗ijkm(i + j + k + 1)

r

λ
− 1⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦Γ 1 −

r

λ
􏼒 􏼓, r< λ, r � 1, 2, 3, . . . . (22)

4. Actuarial Properties

In this section, some actuarial properties of the EFL dis-
tribution are obtained. &ese include mean excess function,
limited expected value function, value at risk, tail value at
risk, and tail variance.

4.1. Mean Excess Function. &e mean excess function is
useful in so many fields. It is also known as mean residual
function or complete expectation of life. In an insurance
context, an insurance policy with a fixed deductible, say t,

has its mean excess function defined as the expected pay-
ment, with losses less than t not paid. Also, in a mortality
context, it can be defined as the remaining lifetime of an
individual, given that the individual attained a particular age,
say t. &e mean excess function is defined as follows:

e(t) � E[X − x|X> t] �
1

1 − F(x)
􏽚
∞

t
xf(x)dx − t. (23)

Using the PDF of the EFL distribution given in equation
(11), we have

􏽚
∞

t
xf(x)dx � λβλ (1 + α)Πijkm 􏽚

∞

t
x

− λ
e

− (i+j+k)(β/x)λ
dx + θΠ∗ijkm 􏽚

∞

t
x

− λ
e

− (i+j+k+1)(β/x)λ
dx􏼔 􏼕. (24)

Letting z1 � (i + j + k)(β/x)λ and z2 � (i + j + k + 1)

(β/x)λ, and after some algebraic manipulations, we have

􏽚

∞

t

xf(x)dx �
β(1 + α)Πijkm

(i + j + k)
1− (1/λ)

c 1 − 1/λ, (i + j + k)
β
t

􏼠 􏼡

λ
⎛⎝ ⎞⎠ +

βθΠ∗ijkm

(i + j + k + 1)
1− (1/λ)

c 1 − 1/λ, (i + j + k + 1)
β
t

􏼠 􏼡

λ
⎛⎝ ⎞⎠, λ> 1,

(25)

where c(a, y) � 􏽒
y

0 xa− 1e− xdx. Substituting equation (25)
into equation (23) gives the mean excess function of the EFL
distribution as follows:

e(t) �
β

1 − F(t)

(1 + α)Πijkm

(i + j + k)
1− (1/λ)

c 1 − 1/λ, (i + j + k)
β
t

􏼠 􏼡

λ
⎛⎝ ⎞⎠ +

θΠ∗ijkm

(i + j + k + 1)
1− (1/λ)

c 1 − 1/λ, (i + j + k + 1)
β
t

􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ − t, λ> 1.

(26)

Table 1: First six moments, σ, CV, CS, and CK of the EFL distribution.

μr
′ I II III

μ1′ 2.7653 0.0855 0.7762
μ2′ 8.8097 0.0087 0.6419
μ3′ 33.2061 0.0012 0.5793
μ4′ 154.8394 0.0003 0.5993
σ 1.0784 0.0356 0.1987
CV 0.3900 0.4238 0.2560
CS 1.9247 3.2234 2.5103
CK 12.0663 50.8141 20.7895

6 International Journal of Mathematics and Mathematical Sciences



Figure 3 shows some plots of the mean excess function
for three sets of parameter values of the EFL distribution. It
can be observed that the mean excess function generally
increases and can also assume both linear and nonlinear
shapes.

4.2. LimitedExpectedValueFunction. Given a policy limit or
a deductible from a reinsurance perspective, say u, a limited
loss random variable is defined as follows:

XΛu � min(X, u) �
X, ifX≤ u,

u, ifX> u.
􏼨 (27)

&e limited expected value function is defined as the
expectation of the limited loss random variable given as
follows:

E[XΛu] � 􏽚
u

o
xf(x)dx + u(1 − F(u)) � m1(u) + u(1 − F(u)),

(28)

where m1(u) is the first incomplete moment given in
equation (21). Substituting equations (3) and (21) into the
definition gives the limited expected value function of the
EFL distribution as follows:

E[XΛu] �
β(1 + α)Πijkm

(i + j + k)
1− (1/λ)
Γ 1 − 1/λ, (i + j + k)

β
u

􏼠 􏼡

λ
⎛⎝ ⎞⎠ +

βθΠ∗ijkm

(i + j + k + 1)
1− (1/λ)
Γ 1 − 1/λ, (i + j + k + 1)

β
u

􏼠 􏼡

λ
⎛⎝ ⎞⎠

+
αu 1 − e

− (β/u)λ

􏼔 􏼕
θ

α − θ log 1 − e
− (β/u)λ

􏼔 􏼕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, λ> 1.

(29)

4.3. Value at Risk. Value at risk (VaR) is a commonly used
risk measure. VaR is defined as the loss that will not be
exceeded with a given probability. Mathematically, given a
probability p, VaR � inf x ∈ R: P(X≤x)≥p􏼈 􏼉. &us, VaR
is also known as a quantile risk measure and is defined as
VaR � F− 1(p) for a continuous distribution. VaR of the EFL
distribution with probability p is defined as follows:

VaR � β − log 1 −
1 − p

α
􏼒 􏼓W

α
1 − p

􏼠 􏼡e
α

􏼢 􏼣􏼨 􏼩

1/θ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

1/λ

, p ∈ (0, 1).

(30)

4.4.TailValueatRisk. Tail value at risk (TVaR) defines the
expected value of the worst case of a loss. &at is, TVaR
measures the expectation of the losses beyond VaR.
Given that P(X≤VaR) � p, then TVaR is defined as
follows:

TVaR � E[X|X>VaR] �
1

1 − p
􏽚

∞

VaR

xf(x)dx. (31)

Substituting equation (25), with t � VaR, into the def-
inition gives the TVaR of EFL distribution as follows:

TVaR �
β

1 − p

(1 + α)Πijkm

(i + j + k)
1− (1/λ)

c 1 − 1/λ, (i + j + k)
β

VaR
􏼠 􏼡

λ
⎛⎝ ⎞⎠ +

θΠ∗ijkm

(i + j + k + 1)
1− (1/λ)

c 1 − 1/λ, (i + j + k + 1)
β

VaR
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, λ> 1. (32)

Figure 4 shows the plots of simulated values of VaR and
TVaR for different parameter values and a range of confi-
dence levels. It can be observed that increasing confidence
levels are associated with increasing VaR and TVaR. &is is
consistent with practice, as more capital would have to be
allocated for risk management purposes if a company wants
to be safer at a higher probability.

4.5. Tail Variance. TVaR measures the expectation of losses
exceeding VaR but does not measure the variability of these

losses. Tail variance (TV) measures the conditional variance
of losses given that they exceed VaR at a given probability.
TV at a probability of p is defined as follows:

TV � E X
2
|X>VaR􏽨 􏽩 − (TVaR)

2

�
1

1 − p
􏽚
∞

VaR
x
2
f(x)dx − (TVaR)

2
.

(33)

Using the PDF of the EFL distribution in equation (1), we
have

􏽚
∞

VaR
x
2
f(x)dx � λβλ (1 + α)Πijkm 􏽚

∞

VaR
x
1− λ

e
− (i+j+k)(β/x)λ

dx + θΠ∗ijkm 􏽚
∞

VaR
x
1− λ

e
− (i+j+k+1)(β/x)λ

dx􏼔 􏼕. (34)
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With the necessary substitutions and algebraic manip-
ulations, we have

􏽚
∞

VaR
x
2
f(x)dx �

β2(1 + α)Πijkm

(i + j + k)
1− (2/λ)

c 1 −
2
λ
, (i + j + k)

β
VaR

􏼠 􏼡

λ
⎛⎝ ⎞⎠ +

β2θΠ∗ijkm

(i + j + k + 1)
1− (2/λ)

c 1 −
2
λ
, (i + j + k + 1)

β
VaR

􏼠 􏼡

λ
⎛⎝ ⎞⎠, λ> 2, (35)
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Figure 3: Mean excess function plots for some sets of parameter values.
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Figure 4: VaR and TVaR plots of the EFL distribution.
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where c(a, y) � 􏽒
y

0 xa− 1e− xdx. Substituting equation (35)
into equation (33) gives the TV of the EFL distribution as
follows:

TV �
β2

1 − p

(1 + α)Πijkm

(i + j + k)
1− (2/λ)

c 1 −
2
λ
, (i + j + k)

β
VaR

􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ +

θΠ∗ijkm

(i + j + k + 1)
1− (2/λ)

c 1 −
2
λ
, (i + j + k + 1)

β
VaR

􏼠 􏼡

λ
⎛⎝ ⎞⎠

− (TVaR)
2
, λ> 2.

(36)

5. Parameter Estimation Methods

Estimators of the parameters of the EFLdistribution are presented
in this section. Four different estimation methods including
maximum likelihood, maximum product spacing, least squares,
and weighted least squares estimation methods are presented.

5.1.MaximumLikelihood Estimation. Let x1, x2, . . . , xn be n

independent and identically distributed random samples
from the EFL distribution with a set of parameters
ϕ � (α, β, θ, λ)′. &e total log-likelihood function of the
density of the distribution given in equation (4) is obtained
as follows:

ℓ(ϕ) � n log αθλβλ􏼐 􏼑 − (λ + 1) 􏽘
n

i�1
log xi( 􏼁 − 􏽘

n

i�1

β
xi

􏼠 􏼡

λ

+(θ − 1) 􏽘
n

i�1
log 1 − e

−
β
xi

􏼠 􏼡

λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 􏽘
n

i�1
log 1 + α − θ log 1 − e

−
β
xi

􏼠 􏼡

λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

− 2􏽘
n

i�1
log α − θ log 1 − e

−
β
xi

􏼠 􏼡

λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(37)

Equating the score functions, which are obtained by
differentiating equation (37) with respect to each param-
eter, to zero and solving them simultaneously for the pa-
rameters give the maximum likelihood estimates (MLE) of
the parameters of the EFL distribution. Numerical methods
are employed to obtain the parameter estimates since the
solution to the equations does not result in closed-form
solutions.

5.2. Maximum Product Spacing Estimation. &e maximum
product spacing (MPS) method of obtaining parameters is
an alternative to the maximum likelihood method. Let the
ordered random samples of the EFL distribution be given as
x(1), x(2), x(3), . . . , x(n) with CDF F(x) given in equation (3).
Define the uniform spacing as follows:

Hi(ϕ) � F x(i)|ϕ􏼐 􏼑 − F x(i− 1)|ϕ􏼐 􏼑, (38)

where F(x(0)|ϕ) � 0, F(x(n+1)|ϕ) � 1 and 􏽐
n+1
i�0 Hi(ϕ) � 1.

&e MPS estimates of the parameters are obtained by
maximizing the function as follows:

S(ϕ) �
1

n + 1
􏽘

n+1

i�1
log Hi(ϕ), (39)

with respect to each parameter.

5.3.OrdinaryandWeightedLeast SquaresEstimation. Let the
ordered samples of the EFL distribution be given as
x(1), x(2), x(3), . . . , x(n). &e ordinary least squares (OLS)
estimates of its parameters are obtained by minimizing the
function as follows:

L(ϕ) � 􏽘
n

i�1
F x(i)|􏼐 􏼑 −

i

n + 1
􏼔 􏼕

2
, (40)

with respect to the parameters of the distribution. Also, the
weighted least squares (WLS) estimates are obtained by
minimizing the following function with respect to the pa-
rameters of the distribution:

W(ϕ) � 􏽘
n

i�1

(n + 1)
2
(n + 2)

i(n − i + 1)
F x(i)|ϕ􏼐 􏼑 −

i

n + 1
􏼔 􏼕

2
. (41)

6. Simulation Studies

Simulation studies are carried out in this section to assess the
performance of the parameter estimators. &e R program
with the nlminb function is used for the simulation. &e
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function uses the L-BFGS-B optimization method. &e
simulation procedure is given as follows:

(i) Generate N � 3000 samples of size
n � 20, 50, 100, 250, 500 from the EFL distribution
using its quantile function in equation (12).

(ii) Compute the MLE, MPS, OLS, and WLS parameter
estimates of the samples obtained in the previous
step.

(iii) For each parameter estimate, obtain the average
estimate (AE), absolute bias (AB), and the root
mean square error (RMSE) defined as follows:

AE �
1
N

􏽘

N

i�1

􏽢ϕı̈, AB �
1
N

􏽘

N

i�1

􏽢ϕı̈ − ϕi􏼐 􏼑and RMSE

�

�������������

1
N

􏽘

N

i�1

􏽢ϕı̈ − ϕi􏼐 􏼑
2

􏽶
􏽴

,

(42)

where ϕ � (α, β, θ, λ).
(iv) Steps (i) to (iii) are repeated for two parameter sets

I � (α � 0.2, β � 1.2, θ � 0.5, λ � 0.2) and
II � (α � 2.1, β � 0.9, θ � 0.7, λ � 0.8).

Tables 2 and 3 show the simulation results. It can be
observed that all the estimation methods are consistent since
their AE grows closer to the true parameter values, while AB
and RMSE grow towards zero for all the estimationmethods.
However, generally, for smaller sample sizes, WLS per-
formed better for α and λ, while MPS and MLE performed
better for β and θ, respectively, for both sets of simulations.
But, for larger sample sizes, MLE and MPS generally per-
formed better for all the parameters in both simulations. Due
to the desirable properties of MLE, it will be used to estimate
the parameters of the distribution for application purposes.

7. EFL Regression Model

Regression analysis plays an important role in data analysis
in most fields, including actuarial science. In this section, a
new regression model with the response variable following
the EFL distribution is given. Using the regression structure

h πi( 􏼁 � xi
′δ, i � 1, 2, . . . , n, (43)

where xi � (1, xi1, xi2, . . . , xip)′ is the ith vector of inde-
pendent variables and δ � (δ0, δ1, δ2, . . . , δp)′ is the vector
of parameters. h(πi) is known as a link function and links the
response variable to the independent variables. Generally,
the response variable is linked to the independent variables
via the mean. But, also, the response variable can be linked to
the independent variable via the quantile or a model pa-
rameter. In using a model parameter, a scale or shape pa-
rameter is used [2]. In this study, the shape parameter λ is
used. Also, the log link function is used. &is gives the
response variable Z|xi following the EFL distribution with
parameters ϕ � (α, β, θ, λi), where log(λi) � xi

′δ,

i � 1, 2, . . . , n. &e PDF of the EFL regression model is given
as follows:

f(z) � αθλβλz− (λ+1)
e

− (β/z)λi 1 − e
− (β/z)λi

􏼔 􏼕
θ− 1

·
1 + α − θ log 1 − e

− (β/z)λi

􏼔 􏼕􏼚 􏼛

α − θ log 1 − e
− (β/z)λi

􏼔 􏼕􏼚 􏼛
2 , z> 0.

(44)

&e parameters of the EFL regression model can
be obtained via the maximum likelihood method by
maximizing the log-likelihood function given by

ℓ(ϕ) � n log(αθ) + 􏽘
n

i�1
log λi( 􏼁 + 􏽘

n

i�1
λilog(β)

− 􏽘
n

i�1
λi + 1( 􏼁log zi( 􏼁 − 􏽘

n

i�1

β
zi

􏼠 􏼡

λi

+(θ − 1) 􏽘

n

i�1
log 1 − e

− (β/z)λi

􏼔 􏼕

+ 􏽘
n

i�1
log 1 + α − θ log 1 − e

− (β/z)λi

􏼔 􏼕􏼚 􏼛

− 2􏽘
n

i�1
log α − θ log 1 − e

− (β/z)λi

􏼔 􏼕􏼚 􏼛.

(45)

For practical purposes, after fitting a model, residual
analysis is used to diagnose the model and assess its ade-
quacy. In this study, Cox–Snell [23] residual analysis is
employed. Cox–Snell residuals are defined as 􏽢ei � − log(1 −

F(zi;
􏽢ϕ)), i � 1, 2, . . . , n, where 􏽢ϕ ı́s a vector of estimated

parameters. &e Cox–Snell residuals are standard expo-
nentially distributed if the model fits the data. Checking the
adequacy of a model using the Cox–Snell residuals can also
be graphically investigated.

7.1. Simulation Studies. A Monte Carlo simulation study is
carried out to assess the MLE estimators of the parameters of
the EFL regression model. &ree independent variables are
considered in this simulation. &us, the regression structure
used is

log λi( 􏼁 � δ0 + δ1xi1 + δ2xi2 + δ3xi3, i � 1, 2, . . . , n. (46)

&e process used for the simulation is as follows:

(i) Generate 3,000 samples of sizes
n � 25, 50, 150, 300, 600 from the EFL distribution
using its quantile function and the independent
variables, x1, x2, and x3, from a uniform U(0, 1)

distribution
(ii) Obtain the MLE estimates of the parameters

α, β, θ, δ0, δ1, δ2 and δ3
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Table 2: Simulation results for I � (α � 0.2, β � 1.2, θ � 0.5, λ � 0.2).

Parameter n
AE AB RMSE

MLE MPS OLS WLS MLE MPS OLS WLS MLE MPS OLS WLS

α

20 3.2791 4.0993 1.9601 1.902 3.1276 3.9164 1.8903 1.8327 3.8091 4.294 2.8471 2.8076
50 2.4407 3.4328 1.5148 1.5036 2.2965 3.2551 1.4365 1.4189 3.2077 3.8727 2.3923 2.4244
100 1.8339 2.9395 1.2619 1.2967 1.6927 2.7635 1.1575 1.1888 2.6758 3.5177 2.0413 2.1709
250 1.0227 1.8845 0.9203 0.9756 0.8856 1.7126 0.8064 0.8546 1.7599 2.6189 1.5651 1.7263
500 0.6038 1.0308 0.6002 0.6064 0.4686 0.8665 0.4807 0.4818 1.1109 1.6642 0.9883 1.1003

β

20 3.9546 3.1504 6.5333 6.9199 3.9658 3.3182 5.8841 6.2031 5.4102 4.7979 6.9779 7.1773
50 3.1699 1.797 5.0604 5.2819 3.3674 2.3267 4.761 4.9327 4.841 3.632 6.0994 6.241
100 3.0783 1.4832 4.4242 4.5742 3.2416 2.1145 4.2841 4.3904 4.7182 3.3239 5.7158 5.7927
250 3.0658 1.477 4.158 3.9374 3.0776 1.985 4.0332 3.8157 4.557 3.1679 5.4782 5.2745
500 3.1455 1.7671 3.9697 3.6965 2.9906 2.0082 3.7867 3.4836 4.4471 3.2061 5.2597 4.9558

θ

20 1.0928 1.3374 1.148 1.0989 0.7659 0.9689 0.9725 0.886 1.2382 1.544 1.4145 1.3158
50 0.6415 0.7004 0.6976 0.6689 0.3247 0.3623 0.53 0.4374 0.5238 0.6101 0.7982 0.6847
100 0.5464 0.566 0.5923 0.5652 0.2074 0.2143 0.345 0.2698 0.3066 0.3299 0.5133 0.4021
250 0.5046 0.5097 0.5195 0.5097 0.128 0.1253 0.2073 0.1587 0.1671 0.1664 0.2852 0.2149
500 0.4979 0.5002 0.4991 0.4979 0.0925 0.09 0.1401 0.1091 0.1172 0.1148 0.1793 0.14

λ

20 0.2904 0.3529 0.2204 0.2042 0.1198 0.1708 0.0773 0.063 0.191 0.279 0.1606 0.1326
50 0.2885 0.347 0.2647 0.2428 0.1093 0.1575 0.1015 0.0807 0.1604 0.217 0.2013 0.1508
100 0.2697 0.3233 0.2569 0.244 0.0894 0.1318 0.0877 0.075 0.1274 0.171 0.1471 0.1165
250 0.242 0.2837 0.2424 0.2381 0.0617 0.0925 0.0696 0.0639 0.0844 0.1171 0.1047 0.0916
500 0.226 0.2529 0.2296 0.2252 0.0465 0.0638 0.0553 0.0492 0.0643 0.0848 0.0774 0.0689

Table 3: Simulation results for II � (α � 2.1, β � 0.9, θ � 0.7, λ � 0.8).

Parameter n
AE AB RMSE

MLE MPS OLS WLS MLE MPS OLS WLS MLE MPS OLS WLS

α

20 3.7972 4.4066 2.4961 2.2582 2.5633 2.7065 2.2488 2.2212 2.6358 2.7581 2.3539 2.3193
50 3.4789 4.2889 2.3995 2.2666 2.4340 2.6591 2.2065 2.1678 2.5360 2.7230 2.3111 2.2800
100 3.2977 4.1315 2.4378 2.4545 2.3295 2.5732 2.1869 2.2036 2.4582 2.6646 2.3009 2.3125
250 3.0564 3.9016 2.5908 2.6516 2.1733 2.4051 2.1732 2.1253 2.3303 2.5528 2.2972 2.2719
500 2.9788 3.7685 2.4422 2.5695 2.0164 2.2785 2.0835 2.0182 2.2216 2.4620 2.2249 2.1859

β

20 4.2828 3.9957 6.1518 6.7515 3.6117 3.3059 5.3834 5.9239 5.3204 5.0315 6.6637 7.0373
50 2.9653 2.2402 4.7130 4.9302 2.3452 1.6507 4.0056 4.1863 4.0954 3.2000 5.5390 5.7511
100 2.4394 1.6668 3.9783 3.9308 1.7897 1.0664 3.2788 3.2095 3.4669 2.3947 4.8195 4.9096
250 1.9878 1.3874 2.9522 2.8671 1.2884 0.7392 2.2279 2.1350 2.7699 1.9259 3.6956 3.8618
500 1.4846 1.0920 2.5043 2.2202 0.7513 0.4068 1.7556 1.4656 1.6941 1.0148 2.9840 2.8564

θ

20 1.6239 2.0225 1.7068 1.6268 1.1616 1.5209 1.3995 1.2951 1.8459 2.3794 2.0348 1.9323
50 0.9928 1.0818 1.2033 1.0988 0.5447 0.6210 0.8431 0.6923 0.8965 1.0474 1.2886 1.0916
100 0.8203 0.8516 1.0170 0.9211 0.3255 0.3547 0.5846 0.4405 0.4925 0.5600 0.9429 0.7055
250 0.7534 0.7519 0.8538 0.8003 0.1830 0.1825 0.3218 0.2310 0.2534 0.2552 0.4783 0.3334
500 0.7392 0.7324 0.7943 0.7687 0.1329 0.1301 0.2203 0.1661 0.1756 0.1714 0.2984 0.2237

λ

20 0.8258 0.9667 0.7894 0.5815 0.3902 0.4741 0.5319 0.3705 0.5337 0.7869 1.0189 0.5116
50 0.8537 0.9726 0.7628 0.6804 0.3187 0.3692 0.4017 0.3269 0.4207 0.5205 0.6250 0.4235
100 0.8160 0.9107 0.7229 0.7068 0.2411 0.2606 0.3138 0.2774 0.3161 0.3668 0.4117 0.3486
250 0.7811 0.8482 0.7163 0.7244 0.1679 0.1590 0.2311 0.1975 0.2114 0.2081 0.2790 0.2401
500 0.7772 0.8306 0.7087 0.7285 0.1264 0.1151 0.1907 0.1582 0.1582 0.1464 0.2257 0.1941

Table 4: Simulation results of EFL regression model.

Parameter n
I II

AE AB RMSE AV AB RMSE

α

25 1.5750 1.3015 1.4018 1.6328 1.5141 1.9941
50 1.8351 1.3302 1.4430 1.5665 1.4361 1.9328
150 1.7534 1.2188 1.3764 1.2907 1.1592 1.6775
300 1.7799 1.1097 1.3204 0.9486 0.8154 1.3465
600 1.5831 0.7914 1.0999 0.4932 0.3511 0.7449

International Journal of Mathematics and Mathematical Sciences 11



(iii) Compute AE, AB, and RMSE of the parameter
estimates

(iv) For the parameters (α, β, θ, δ0, δ1, δ2, δ3), repeat
steps (i) to (iii) for the parameter values
I � (1.2, 0.5, 1.8, 0.2, 0.1, 0.1, 0.9) and II � (0.2, 0.1,

0.6, 0.1, 0.3, 0.4, 0.5)

&e results of the simulation study are given in Table 4. It
can be observed that the estimators of the parameters are
consistent as the AE gets closer to the true parameter values,
while AB and RMSE decrease with increasing sample size.

8. Applications to Real Data

In this section, the applications of the EFL distribution and
EFL regression model to real data are demonstrated.

8.1. Application of EFL Distribution. In this subsection, the
application of the EFL distribution is considered. &e
performance of the distribution is compared with several
other distributions using Cramér von-Mises (CVM) and
Anderson Darling (AD) goodness-of-fit measures. &e
distribution with the least of these measures is considered
the best distribution. &e distributions compared with the

EFL distribution include the Fréchet (F), exponentiated
Fréchet (EF), beta exponentiated Fréchet (BEF), Kumar-
aswamy Fréchet (KF), Weibull (W), and Weibull loss
(WL) [20] distributions.

8.1.1. Data 1: Catastrophe Data. &e first data consist of the
cost associated with natural catastrophic disasters in
Australia from 1967 to 2014. &e normed cost in millions
of 2014 Australian dollars (AUD), computed as the
inflated cost using the consumer price index, is used. &e
data can be found in the CASdatasets package [24] of the
R program with the name auscathist. Table 5 shows the
descriptive statistics of the data. &e data has 206 ob-
servations with a wide range of values. Since the median is
less than the mean, it suggests that the data is right-
skewed.

Figure 5 shows the histogram and box plot of the data.
Both figures confirm that the data is right-skewed. &is
suggests that the EFL distribution can be used to model the
data.

&e parameter estimates and their corresponding
standard errors, in brackets, of the EFL distribution and the
other competing distributions are shown in Table 6.

Table 4: Continued.

Parameter n
I II

AE AB RMSE AV AB RMSE

β

25 0.8377 0.5794 0.9522 0.1858 0.1613 0.5030
50 0.8812 0.6081 0.9992 0.1891 0.1633 0.4875
150 0.9366 0.5873 1.0115 0.1429 0.1133 0.3203
300 0.8054 0.4375 0.8552 0.1230 0.0807 0.2047
600 0.7047 0.2937 0.6746 0.1117 0.0478 0.0908

θ

25 1.7392 1.1814 1.3640 0.8161 0.5502 0.8555
50 1.9304 1.0784 1.2860 0.7391 0.4252 0.6870
150 2.0814 0.7840 1.0541 0.5893 0.2040 0.3078
300 1.9843 0.5641 0.8413 0.5707 0.1321 0.1822
600 1.9311 0.3531 0.6311 0.5888 0.0792 0.1169

δ0

25 0.1763 0.6405 0.7970 0.3600 0.7679 0.9953
50 0.0387 0.4832 0.5792 0.2207 0.5229 0.6534
150 − 0.0842 0.3709 0.4597 0.1326 0.3392 0.4289
300 − 0.0579 0.2856 0.3903 0.0745 0.2712 0.3480
600 − 0.0036 0.2078 0.3231 0.0079 0.1944 0.2733

δ1

25 − 0.0218 0.5306 0.7228 0.0171 0.7157 0.9328
50 0.0098 0.3110 0.4033 − 0.0040 0.4494 0.5657
150 0.0176 0.1435 0.1971 0.0361 0.2941 0.3551
300 0.0211 0.1023 0.1431 0.0354 0.2684 0.3176
600 0.0398 0.0673 0.1029 0.0884 0.2118 0.2596

δ2

25 − 0.0137 0.5601 0.7514 − 0.0288 0.7691 0.9846
50 − 0.0026 0.3177 0.4193 0.0261 0.4868 0.6066
150 0.0050 0.1478 0.2007 0.0220 0.3901 0.4568
300 0.0246 0.1018 0.1415 0.0452 0.3558 0.4022
600 0.0415 0.0646 0.0974 0.1150 0.2850 0.3421

δ3

25 0.0863 0.9140 1.0952 0.0113 0.7855 1.0018
50 0.0489 0.8593 0.9506 0.0180 0.5758 0.6966
150 0.1009 0.7991 0.8608 0.0370 0.4694 0.5320
300 0.1854 0.7146 0.8043 0.0607 0.4395 0.4844
600 0.3569 0.5431 0.6982 0.1408 0.3592 0.4269
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Table 7 shows the goodness-of-fit measures of the dis-
tributions. It can be observed that the EFL distribution fits
the data better than the competing distributions as it has the
least of all the goodness-of-fit measures with large corre-
sponding p-values.

Figure 6 shows the PDF plot superimposed on the
histogram of the data, the CDF, and probability-probability
(P-P) plots of the EFL distribution. It can be observed that
the EFL distribution fits the data.

8.1.2. Data 2: Automobile Collision Data. &e second data
consist of severity, the average amount of claims (in
pounds sterling) adjusted for inflation, of automobile

collisions in the United Kingdom. &e data can be found
in insuranceData package [25] of the R program with the
name AutoCollision. Table 8 shows the descriptive sta-
tistics of the data. &e data consists of 31 observations and
indicates positive skewness, as its mean is greater than its
median.

Figure 7 shows the histogram and box plot of the data.
&e data can be observed to be positively skewed; confir-
mation of the observation is made in Table 8.

Table 9 shows the parameter estimates of the EFL dis-
tribution and the other competing distributions with their
standard errors in brackets.

&e goodness-of-fit measures of the fitted distributions
are shown in Table 10 with their corresponding p-values. It

Table 5: Descriptive statistics of catastrophe data.

Minimum Maximum Range Mean Median 1st Quartile 3rd Quartile
2.144 4605.932 4603.788 287.830 77.195 32.164 216.305
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Figure 5: (a) Histogram and (b) box plot of catastrophe data.

Table 6: Parameter estimates and standard errors for catastrophe data.

Distribution
Parameter

a α β θ λ
EFL 12.9656 (43.7931) 498.2129 (0.8051) 4.2362 (0.9513) 0.3616 (0.0130)
F 40.0063 (4.2430) 0.6960 (0.0355)
EF 2.6409 (0.6614) 0.4534 (0.0501) 166.6619 (72.9527)
BEF 32.5139 (0.1268) 5.7122 (6.0689) 0.1245 (0.0215) 13.0977 (0.2957) 3.2091 (1.4834)
KF 4.4756 (0.4949) 5.6070 (3.0253) 8.8135 (0.0837) 0.3327 (0.0686)
W 0.6343 (0.0315) 0.0365 (0.0074)
WL 0.6358 (0.0316) 0.0342 (0.0069) 16.4990 (<0.0001)

Table 7: Goodness-of-fit measures of estimated distributions for catastrophe data.

Distribution CVM CVM p-value AD AD p-value
EFL 0.0623 0.8001 0.4372 0.8110
F 0.2708 0.1638 1.9174 0.1021
EF 0.1079 0.5481 0.7117 0.5490
BEF 0.0666 0.7734 0.4449 0.8032
KF 0.0672 0.7693 0.4440 0.8041
W 0.7541 0.0094 4.5831 0.0046
WL 0.7481 0.0097 4.5516 0.0047
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Figure 6: Histogram, CDF, and PP plots of EFL distribution for catastrophe data.

Table 8: Descriptive statistics of collision data.

No. Minimum Maximum Range Mean Median 1st Quartile 3rd Quartile
31 153.6 797.8 644.2 277.2 250.6 211.2 298.4
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Figure 7: (a) Histogram and (b) box plot of collision data.

Table 9: Parameter estimates and standard errors for collision data.

Distribution
Parameter

a α β θ λ
EFL 0.0206 (0.0443) 600.2800 (0.0009) 1.2989 (2.3504) 1.6453 (0.1157)
F 231.4037 (9.7832) 4.4036 (0.5835)
EF 1.2165 (0.7742) 3.998 (1.3859) 240.0675 (34.2864)
BEF 68.7090 (8.1609) 1.5138 (1.3243) 3.2615 (3.4143) 78.8714 (24.0905) 1.0644 (1.2961)
KF 77.8484 (5.4353) 1.3758 (0.9322) 77.3238 (20.4437) 3.7389 (1.3732)
W 1.0693 (0.3072) 0.0025 (0.0045)
WL 1.1387 (0.6357) 0.0017 (0.0063) 1090.2000 (<0.0001)
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can be observed that EFL distribution has the least of the
measures and the largest p-value.

Figure 8 shows the histogram of the data with the fitted
PDF, the CDF, and P-P plots of the EFL distribution. It can
be observed that the EFL distribution can be used to model
the automobile collision data.

8.2. Application of EFL Regression Model. &is subsection
presents an application of the EFL regression model to a real
data set. &e data used is obtained from insuranceData
package [25] in the R program with the name dataOhlsson
and comes from the former Swedish insurance company
Wasa. &e data contains aggregated data on all insurance
policies and claims from 1994 to 1998. In this data set, the
variables used are the claim cost (z) in 10,000 Swedish krona,
vehicle age (x1) and MC class, a classification by the so-
called EV ratio, defined as (engine power in kW× 100)/
(vehicle weight in kg + 75), rounded to the nearest lower
integer. &e 75 kg represents the average driver weight. &e
EV ratios are divided into seven classes. &is data set was
analyzed in a regression context by Gündüz and Genç [2].
&e descriptive statistics of the claims and frequencies of the
MC class are given in Table 11. It can be observed that there
are 670 observations with more than zero claims. Also, MC
class 6 can be observed to have the highest number of oc-
currences, with class 7 having the least.

&e independent variable MC class is a categorical
variable with seven levels and is coded using an indicator
variable for the regression model. Given a categorical var-
iable with p levels, then p − 1 new indicator variables are
introduced. In such a case, one of the categories is chosen as
a reference level. Usually, the level with the highest fre-
quency is used as the reference level. Similar to Gündüz and
Genç [2], level 6 of the MC class is chosen as the reference
level because it has the highest number of occurrences as
shown in Table 10. In this scenario, the following levels and
their corresponding indicator variables are used:
(1, x2), (2, x3), (3, x4), (4, x5), (5, x6), and (7, x7). Hence,
the regression model considered is given as follows:

log λi( 􏼁 � δ0 + 􏽘
7

i�1
δixij, j � 1, . . . , n. (47)

&e performance of the EFL regression model is com-
pared with the EF regression model with parametrization I
as defined by Gündüz and Genç [2].

Table 12 shows the parameter estimates of the EFL and EF
regression models with their corresponding standard errors
(SE) and p-values. Also, the average marginal estimates (AME),
which measures the average contribution, of each independent
variable is presented in Table 12. Again, the negative log
likelihood (− ℓ), Akaike information criteria (AIC), and
Bayesian information criteria (BIC) are also presented.

Table 10: Goodness-of-fit measures of estimated distributions for collision data.

Distribution CVM CVM p-value AD AD p-value
EFL 0.0378 0.9466 0.2981 0.9391
F 0.0436 0.9169 0.3822 0.8653
EF 0.0414 0.9287 0.3653 0.8815
BEF 0.0419 0.9259 0.3647 0.8821
KF 0.0406 0.9329 0.3573 0.8890
W 1.6794 0.0000 7.9414 0.0001
WL 1.6015 0.0001 7.6057 0.0002
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Figure 8: Histogram, CDF, and PP plots of EFL distribution for collision data.
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It can be observed from Table 12 that the vehicle age and
MC class 3 are significant and significantly different fromMC
class 6 at a 5% significance level for both regression models.
Both of these variables have a negative impact on the claims,
as can be observed from their AME for the EFL regression.
However, vehicle age contributes positively to the claims in
the EF regression model, while MC class 3 contributes
negatively. Finally, EFL regression performs better in mod-
elling the data as compared to the EFmodel, as the EFLmodel
has the least values in terms of − ℓ, AIC and BIC measures.

Cox–Snell residuals analysis is performed on the fitted
models to evaluate their fit. Figure 9 shows the P-P plots of
the empirical probabilities of the residuals against the the-
oretical probabilities from the standard exponential distri-
bution. It can be observed that the EFL regression has more

plotted points closer to the diagonal as compared to the EF
regression model. &is confirms that the EFL regression
model performed better than the EF regression model in
modelling the data.

9. Conclusion

A new loss distribution, called the exponentiated Fréchet
loss distribution, is developed and studied. Various statis-
tical properties including the quantile function, moments,
and moment generating function are obtained. Also, some
actuarial properties including value at risk, tail value at risk,
and tail variance of the distribution are obtained. Four es-
timation methods are used to obtain the estimators of the
loss distribution. Simulations studies are performed to assess

Table 11: Descriptive statistics of data.

Variable No. Minimum Maximum Mean Median 1st Quartile 3rd 3rd Quartile
Claims 670 0.0016 36.5347 2.5436 0.9015 0.3031 2.9304
MC class 1 2 3 4 5 6 7
Frequency 45 57 158 93 144 168 5

Table 12: Regression parameter estimates.

EFL EF
Estimate SE p-value AME Estimate SE p-value AME

α 113.0807 0.0063 0.0000
β 1290.2940 0.0213 0.0000 5.2535 0.0451 0.0000
θ 35.3300 2.3085 0.0000 134.0171 0.0003 0.0000
δ0 − 1.5562 0.0221 0.0000 − 1.9628 0.0613 0.0000
Vehicle age − 0.0084 0.0013 0.0000 − 0.0013 0.0077 0.0039 0.0468 0.0009
MC class
1 − 0.0518 0.0348 0.1367 − 0.0080 − 0.1111 0.1216 0.3607 − 0.0134
2 − 0.0333 0.0317 0.2934 − 0.0051 0.1543 0.1093 0.1582 0.0186
3 − 0.0565 0.0231 0.0144 − 0.0087 − 0.1934 0.0776 0.0127 − 0.0233
4 − 0.0516 0.0268 0.0541 − 0.0080 − 0.1042 0.0912 0.2532 − 0.0125
5 − 0.0382 0.0234 0.1027 − 0.0059 − 0.0790 0.0798 0.3226 − 0.0095
7 0.0770 0.0936 0.4109 0.0119 0.1813 0.2939 0.5373 0.0218
− ℓ 1171.068 1184.263
AIC 2364.136 2388.525
BIC 2413.716 2433.598
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Figure 9: Cox–Snell residuals P-P plot.
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the performance of the estimators. &e new loss distribution
is extended into a regression model. &e usefulness of the
new loss distribution and its regression model are dem-
onstrated using real data sets. &e results show that the
exponentiated Fréchet loss distribution and its regression
model can serve as an alternative to modelling loss data.
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