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In the method comparison approach, two measurement errors are observed. The classical regression approach (linear regression)
method cannot be used for the analysis because the method may yield biased and inefficient estimates. In view of that, the Deming
regression is preferred over the classical regression. The focus of this work is to assess the impact of censored data on the
traditional regression, which deletes the censored observations compared to an adapted version of the Deming regression that
takes into account the censored data. The study was done based on simulation studies with NLMIXED being used as a tool to
analyse the data. Eight different simulation studies were run in this study. Each of the simulation is made up of 100 datasets with
300 observations. Simulation studies suggest that the traditional Deming regression which deletes censored observations gives
biased estimates and a low coverage, whereas the adapted Deming regression that takes censoring into account gives estimates that
are close to the true value making them unbiased and gives a high coverage. When the analytical error ratio is misspecified, the

estimates are as well not reliable and biased.

1. Introduction

A biological assay (Bioassay) is a scientific experiment
where a substance of interest is introduced to a living
organism to assess the effects of the substance introduced.
In the area of drug development, a quantitative bioassay is
when the effects of the substance introduced are quantified.
The quantitative bioassay is mainly applied in drug de-
velopment and environmental pollution assessment [1]. In
order for a firm to receive approval from the Food and
Drugs Administration (FDA) for a new medical mea-
surement device or method, the firm must show that the
new method target value is accurate as the old standard
method (gold standard method) [2].

In an example, suppose this pharmaceutical company
has two methods X and Y that could be used to measure the
count of CD4+ in the blood of HIV patients. If there are
some measurement errors associated with one method,
which may be due to calibration or the way the scientist
handled the device while taking the measurement, the
classical regression approach or traditional regression

approach is normally employed. In this approach, the least-
squares (LS) method is usually used to find “good” esti-
mators of the regression parameters, intercept (f,) and
slope (f;) [3]. In the LS method, it is assumed that the
measurements of one of the methods are without random
errors, i.e., in the most familiar setting, X is measured
without error and Y is a linear function of the X plus some
random measurement error, which is conventionally as-
sumed and modeled by a normal distribution [4].
However, in this same pharmaceutical company, two
variables X and Y are to be fitted to a straight line to the data
and the two variables have errors in them. We would be
willing to have more clarification on the dataset, how it was
collected and why there are errors in both X and Y. The
scientist would be surprised with the kind of questions these
statisticians would ask him because to him as a scientist,
errors in both variables may seem to be quite trivial since all
he may need is to see the straight line plotted to the data.
Suppose, for example, the company has got in their
possession a new method Y that said to give a better reading
of the CD4+ count in the blood of the HIV patients. The
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new method as well as the old method X would still be used
to measure the CD4+ on the patients. If both devices have
some measurement errors in them, fitting a straight line
through the data points will not be the same as that one
with only one error in the variables. In such a situation, the
least-squares method cannot be applicable as such another
method should be applied, which can take into account the
measurement errors in both variables like the Deming
regression also known as the traditional Deming regression
(assumes that the measurements by both methods have
random errors), the weighted Deming regression (takes
into account non-constant analytical standard deviation
for both methods, i.e., both methods subject to propor-
tional measurement errors), and the regression procedure
based on the rank principle [5].

An extra complication occurs when the measurement
methods are subject to a limit of quantitation (LoQ) below
which the true substance cannot be accurately measur-
ed.According to Croghan and Egeghy [6], the LoQ is de-
fined: “the term often used by laboratories to indicate the
smallest amount that they consider to be reliably not
quantifiable.” This calls for an adaptation of Deming re-
gression to take into account the censored data rather than
deleting them.

1.1. Study Objectives. The main aim of this project is to assess
the impact of censored data on the traditional Deming
regression based on the deletion of censored data compared
to an adapted version that takes into account the censored
nature of data.

2. Methodology

2.1. Sources of Error. tlb 0.1ptThere are many sources by
which errors occur. In their book, Good and Hardin [7]
stated some sources of errors in statistical procedures in-
cluding the following:

(1) Using the same dataset in the formulation of
hypothesis

(2) Taking samples from a wrong population
(3) Failing to draw representative samples randomly

(4) Measuring the variables or failing to measure what is
to be measured

(5) The use of wrong and ineflicient statistical models

(6) Failing to validate models used

In view of the underlined sources of error, Good and
Hardin [7] reported that there exist three fundamental
concepts to the design experiments and surveys, namely,
variation, population, and samples. There is variability
virtually in all observations; therefore, in designing an ex-
periment or survey, we must always anticipate the possi-
bilities of errors arising from the measuring instrument and/
or from the observer. According to them, a sample is any
proper subset of a population. Proper means the sample
must be representative of the population and must be drawn
at random as well as being reasonably large.

2.2. Measurement Error. In the traditional regression
analysis, it is assumed that there is measurement error in the
dependent variable y; and this dependent variable is known
to relate to x; through a linear regression model,

yi=a+px;+e;, (D

where ¢ ~ N (0, Vi) depicting the variability of the de-
pendent variable (y;) around the regression line. However, if
there is measurement error in y; and x;, then y; can be
replaced by y; =Y, + ¢; with the assumption ¢; ~ N (0, V;)
and x; can be replaced by x; = X;+v; assuming that
; ~ N(0,V?2). The linear regression model relating to the
response and the predictor would be assumed as

yi=oa+px;+e;, (2)

with g; ~ N (0, Vf,). The slope of the above model 3 does not
represent the true relationship between the response and
predictor variables, which we would like to know. In view of
that, Carroll et al. [8] reported that in order to see the effect
of the error on the estimated regression coefficients, the
maximum likelihood estimate of a bivariate normal model
with responses x; and y; is used.

2.3. Censoring. The assay limit of being quantified is a
common practice when a value in an observation cannot be
analysed reliably because the value is seen to be below a
certain threshold. According [4], “the limit of quantitation
(LoQ) is a value below which it is felt that the analyte cannot
be measured reliably.” Censored observations are obser-
vations that are below certain level of concentrations of
chemicals with values known only to be somewhere be-
tween zero and the laboratory detection limits. The mea-
surements are seen to be inaccurate if they reported as single
number; therefore, it is usually reported as being less than
an analytical threshold. The word censored observation is
used by statisticians when the said observations are not
quantified but are known to exceed or be less than a
threshold value. In brief, observations or values that are
known to be below a threshold are left censored data and
values that are seen only to be exceeding a threshold are
right censored, while values that are only known to be
within an interval are called interval censored. The worst
practice in dealing with censored observation is deleting
them [9].

As a common practice, these values below the threshold
are left out of the analysis, but if they are left in, they are
marked unreliable. However, for Method Comparison
studies, there is no reason to select the samples whose true
values are above the threshold of the measuring instrument.
The instrument may select the limit of quantification in one
or both observations. If the unquantifiable data are deleted,
there will be loss of information.

2.4. Statistical Software. The SAS version 9.4 software was
used to fit the various models, and statistical significance was
taken at a 5% level.
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3. Data Simulation Procedure

3.1. Deming Regression. In the traditional Deming regres-
sion, censored data are deleted in the analysis. However, as
an extension, we would like to the compare the traditional
Deming regression method with an adapted version that
takes into account the censored nature of data. For the
purpose of the study, a linear regression model using the
Deming regression was used, the response variable is a
continuous variable, and the predictor variable is also
continuous. The Deming regression is a method for fitting a
straight line to bivariate data where the two variables are
measured with error. It is different from the classical linear
regression where only the response variable has error in it.
The Deming regression uses paired measurements, (x;, y;),
measured with errors, v; and ¢;, where

x;=X;+,. (3)

Figure 1 depicts a graphical representation of the
measurement error problem with continuous data in vari-
able x;. It is assumed that a variable is measured with error as
represented in the above model with X; being the true value
for the variable of interest at the ith subject and v, is the error
made while recording the variable [1],

yi=Yi+g,. (4)

Figure 2 depicts a graphical representation of the
measurement error problem with continuous data in vari-
able y. It is assumed that a variable is measured with error as
represented in the above model with Y; being the true value
for the variable of interest at the ith subject and ¢; is the error
made while recording the variable [1]. To estimate the in-
tercept, a, and the slope, 5, in the equation

Y, =a+p X, (5)

where X, and Y, are the estimates that are used as estimates
of X; and Y,are used for the estimation of alpha and Beta.

3.2. Assumptions of Deming Regression. The Deming re-
gression requires the following assumptions:

(1) The measurement errors, v; and ¢;, are independent
and normally distributed with expected values of
zero and variances V2 (7,) and V2 (¢,), respectively,
which are constant or at least proportional

(2) The measurement error variance ratio or analytical
error ratio ¢ = V2(v,)/V?(¢,) is constant and as-
sumed to be known

(3) The subjects are independent of one another and are
selected at random from a larger population

3.3. Simulation. The data used were simulated to follow a
normal distribution and were then analysed with SAS
procedure NLMIXED as the tool for the analysis. Two
variables are of prime importance in the study. Random
values were generated by the software with X and Y being the
variables of interest and follow normal distribution because

F1GURE 1: Graphical model representation of measurement error in

X

i

FIGURE 2: Graphical model representation of measurement error in
Vi

the measurement error distributions are supposed to be zero
[10] in the form specified below, where

X;~ N[Ci’ ¢292 (Ci)]’ (6)
and
Y; ~ N[“+ﬁ(z"92 (Ci)]’ (7)

where (; is the true value which both X and Y aim to
measure, but it is not the parameter of interest; therefore, it is
known as the nuisance parameter. The parameter ¢ is the
ratio of the standard deviation of X to Y, but it is assumed to
be known, and it also can not be determined within the
method comparison approach. From the distribution of X
and Y, the measurement error of X is fixed and it is known
while the measurement error in Y is multiple. It is then
assumed that g ({;) = V2, i.e., we assume a constant vari-
ance [4],

X; ~ N[(, ¢*V?], (8)
and
Y, ~ N[a+p(, V2. (9)

The primary parameters of interests are a and f3 of the
regression. g((;) is a variance function, which may need
additional parameters. However, it is also assumed that g is
constant/same for the two variables of interest X and Y.

Due to the limit of quantitation, X; and/or Y; is left
censored (below the limit we cannot measure).

In the coding of the SAS procedure for the simulation,
the following notations were used: Let v be the limit of
quantitation for an X measurement and w be the limit of
quantitation for a Y measurement, where in this report,
when X and Y methods have a threshold say v and w ,
respectively, a clear-cut X and Y value above the limit is
reported for analysis,



4 International Journal of Mathematics and Mathematical Sciences

1, if uncensored,
| = (10)

0, if censored.

d =1 means the value is above the threshold, therefore
uncensored; § =0 means the value is below the threshold,
therefore censored.

(i) If X;>v, then we observe X; (noncensored)

(ii) If X; <v, then we observe v (censored), so we ob-
serve X; hence, the censoring indicator delta () is 0

(iii) If Y; > w, then we observe Y; (non-censored)

(iv) If Y; <w, then we observe w (censored); therefore,
the censoring indicator delta (8) is 0

X and Y can take continuous positive and negative values.
For this reason, values of X and Y are randomly selected from
the normal distribution. The probability density is used for the
observed data since the probability density is the probability
of having a known value (ie., P(X>v) = P(X = x) = f(x)
or P(Y>w) =P(Y = y) = f(y)). The cumulative density,
however, is used for the censored because left censored
observations are observations below the LoQ (i.e., P(Y <w) =
f(w) or P(X <v)=F(v)).

For the loglikelihood contribution, we have the
following.

When X; is observed,

_ 1 -1 (X, -§)
log f(X;) = log(mexp<7 W))

(11)

When v is observed,

log F(v) = log ¢(V¢_VCI) (12)

When Y; is observed,
1 -1 (Y, —a-pC)
log f(Y;) =log 7exp<— ~—— = )|
(27‘[V2)1/2 2 V2

When w is observed,

w—oc—ﬁ(i)

log F(w) = log (/)( v

3.4. Model Performance Measures. After the simulation
plan was done and the model was fitted for every setting, a
performance measure was done to check if the results
obtained are reliable to make statistical and biological
inferences from them. According to Linnet [10], a number
of performance measures have been spelt out some of
which are the bias of the slope estimate, root mean squared
error of the slope estimate, and hypothesis testing. In a
broader sense, what these performance measures do are
that they check how the models are faring or performing.

(i) Bias of the slope estimate. This is the difference
between the true value 5, and the mean of the
estimated slope values for the various settings of the
simulation runs that were made,

BIAS® = (E(B) - p)*. (15)

(i) Root mean squared error of the slope estimate
(RMSE). This is also the estimate of the overall error
of the estimate of slope f including the systematic
part (bias) and the standard error. This is the
standard deviation of the dispersion of 3 around f3
and its bias [5],

Z(B _ ﬂ)z 0.5

RMSE =
Number of detasets

- [BrAS? + SE*]™, (16)

MSE = BIAS® + VARIANCE.

(iii) Hypothesis testing. The hypothesis is tested by
comparing the observed and expected frequencies
of the rejection of the null hypothesis on the basis
of the t-test for the slope carried out in each
simulation run. In their paper, Deal et al. [11] can
also be used to check the performance measure of
the results.

3.5. Nonlinear Mixed Model. Stockl et al. [12] recommended
in their study that a nonlinear regression can be used for a
bivariate response. The Deming regression was done using
the NLMIXED in the SAS software as a tool for the analysis.
This procedure fits models by numerically maximising to a
marginal likelihood where this likelihood is integrated over
the random effects using the adaptive Gaussian quadrature
as its integral approximation that uses the empirical Bayes
estimates of the random effects as its focal point after which
updates are done for every iteration [13]. Because this
method is very eflicient, one can typically obtain very sat-
isfactory results. If convergence is achieved successfully, the
optimisation problem results in maximum likelihood and
not restricted maximum likelihood (REML).

4. Results and Discussions

4.1. Description of Simulation Settings. Different settings
were assumed to produce the results for this report. This was
done by the alteration of the various parameters in the
model. The mean of the true value is put at 30 with a
standard deviation of 3, and the standard deviations of Y and
X are also put at 2 and 4, respectively. In addition, 100
simulated datasets with each 300 observations were used in
the simulation studies in the report. Eight different settings
were done. In the first setting, the LoQ values for X and Y
were 29 and 35 with all other values; in the second setting,
the LoQ values for X and Y are 25 and 20; in the third setting,
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the LoQ was only for X at 25; and the LoQ for setting 4 was
put at 20. The various settings were misspecified in the
analytical error ratio (¢) was also put at 2.

4.2. Results and Performance Measures

4.2.1. Simulation Run for Setting 1. Table 1 is built with an
intercept and a slope values of 10 and 1.5, respectively, where
the limits of quantitation for X and Y are 25 and 50. It is
observed that in the traditional Deming regression, which
deletes all censored observations, the parameter estimate for
intercept («) is —4.510, deviating from the true value of the
intercept with a relatively high standard deviation of 11.51 with
an astronomical biasness indicating the deviations of estimates
from the true parameter. The coverage of the intercept is 79%,
indicating that the true value lies in 79 out of 100 datasets. The
mean square error of the intercept is 341.73. The slope is 1.931
with a standard deviation of 0.37. The estimate of the slope
indicates that there is a considerable amount of deviation from
the true value of the slope. The biasness and mean square error
are 0.186 and 0.3186. The true value of the slope only lies in 84
out of 100 datasets representing 84% coverage,

Y = -4.51 +1.931X. (17)

It is observed on the other part of Table 1 where another
Deming regression is conducted by taking into account
censored observation in their analysis, the intercept («) has
an estimate of 9.529 and slope (f3) 1.5151. The biasness of the
intercept 0.2218 and 2.2801 x 10~ * for the slope. The bias-
ness compared that of the traditional Deming regression
where censored observations are deleted from the analysis is
smaller. The mean square errors for both « and f3 are 24.841
and 0.0275. The true values of « and f3 are found in 92% of
the total datasets,

Y =9.529 + 1.5151X. (18)

4.2.2. Simulation Run for Setting 2. Table 2 is built with an
intercept of 0 and a slope of 1 with X having a censoring value
of 25 and that of Y being 20. Table 2shows parameter estimates
for censored and traditional Deming regression for setting 2
where the parameters of interest & and 3 have estimates of
-19.141 and 1.58, respectively, for the traditional Deming re-
gression where all censored observations are deleted. For the
traditional Deming regression where all censored observations
are deleted. In this setting, the limit of quantitation in X and Yis
25 and 20, respectively. In this setting, the coverage of the
intercept is 6%, depicting that the true value of the intercept
and slope lies in 6 out of 100 datasets simulated based on a null
hypothesis that 0 should lie in the confidence interval for the
intercept, while the coverage of the slope is 14%, indicating that
the true value lies in 14 out of 100 datasets based on a hy-
pothesis that 1 must lie in the confidence interval for the slope.
The biasness of the traditional Deming regression for the
setting is 366.378 and 0.337 for the intercept and slope. The
mean square error for intercept and slope is 431.952 and 0.405.
The standard errors for the intercept and slope are 8.139 and
0.263,

TaBLE 1: Parameter estimates and performance measures for
setting 1.

Traditional Deming regression

Parameters Mean (SD) Bias MSE  Coverage

a -4.510(11.51) 210.541 341.73 79%

B 1.931 (0.37) 0.186 0.319 84%
Adapted Deming taking censoring into account

Parameters Mean (SD) Bias MSE  Coverage

o 9.529 (4.987) 0.2218 24.841 92%

B 1.5151 (0.1659) 2.2801 x 10°* 0.0275  92%

TaBLE 2: Parameter estimates and performance measures for
setting 2.

Traditional Deming regression

Parameters Mean (SD) Bias MSE Coverage
o —19.141 (8.139) 366.378  431.952 6%
B 1.580 (0.263) 0.337 0.405 14%
Adapted Deming taking censoring into account

Parameters Mean (SD) Bias MSE Coverage
o —-0.032 (3.226) 1.065 10.306 80%
B 1.501 (0.978) 0.251 1.197 70%

Y =-19.141 + 1.58X. (19)

In the setting of the Deming regression which takes
censoring into account, the results were different from the
traditional Deming regression. The parameter estimates are
—0.032 and 1.501 for intercept and slope, respectively. The
biasness are 1.065 and 0.251 for the intercept and slope,
respectively. The mean square errors of the intercept and
slope are 10.306 and 1.197, respectively. The standard errors
for the intercept and slope are 3.226 and 0.978, respectively.
The coverage for all 100 datasets for the intercept and slope is
80% and 70%, depicting how much the true values of the
intercept and slope lie in the datasets. The coverage in the
traditional Deming regression compared with the one taking
into account censoring is very small,

Y =-0.032 + 1.501X. (20)

The two approaches seem to give seemingly similar
results in terms of the slopes that are close to the true values.
The coverage in the traditional Deming regression is very
small, showing that when censored observations are deleted,
they have an impact on the capture or coverage of the data.
However, in the traditional Deming regression, the biasness
is huge than the approach with censoring depicting how
much deviations we have in the traditional Deming re-
gression. The parameter estimates for the traditional are very
huge, which are different from the true values put in the
simulation runs.

4.2.3. Simulation Run for Setting 3. Table 3 is also built with
the same assumption and parameterisation as in Table 2;
however, in this setting, censoring is done only on X with a
value of 25 with Y not being censored. Table 3 shows the
parameter estimates and their performance measures. The
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TaBLE 3: Parameter estimates and performance measures for
setting 3.

TaBLE 4: Parameter estimates and performance measures for
setting 4.

Traditional Deming regression

Traditional Deming regression

Parameters Mean (SD) Bias MSE  Coverage Parameters Mean (SD) Bias MSE  Coverage

o —19.389 (8.113) 375.945 441.109 6% o 0.010 (3.208) 1.042 x 10°*  10.190 94%

B 1.588 (0.262) 0.346 1.588 12% B 1.023 (0.251) 5228 x107*  0.063 93%
Adapted Deming taking censoring into account Adapted Deming taking censoring into account

Parameters Mean (SD) Bias MSE  Coverage Parameters Mean (SD) Bias MSE  Coverage

o —-0.036 (3.191) 1.276 x10"* 10.81 80% o —0.312 (3.238) 0.0973 10.482 95%

B 1.359 (0.852) 0.129 0.848 76% B 1.033 (0.25)  1.107 x 1073  0.063 94%

traditional Deming regression for the setting has intercept
(a) and slope (f) of —19.389 and 1.588, respectively. The
biasness in it are 375.945 and 0.346 for the intercept and
slope, respectively. This shows how the estimated mean for
the parameters are deviating from the true value. High
biasness indicates that the regression does not cover the
data well; hence, we observe small coverages for a and f3,

Y =-19.389 + 1.588X. (21)

On the other hand too, for the Deming regression that is
adapted to take censoring into account gives estimates of
—0.036 and 1.359 for the intercept («) and slope (f), re-
spectively. These estimates are close to the true values in the
simulation run; therefore, the biasness and mean square
error confirm how close they are with small values. The
coverage of this regression was much better as the coverage
in « is 80% and f is 76%,

Y =-0.036 + 1.359X. (22)

From the results of regression methods, it is observed
that the Deming regression adapted to take censoring into
account does better than the traditional Deming regres-
sion, which deletes censored observations. This is seen
from the parameter estimates that are close to the true
values in the Deming regression that takes censoring into
account. The standard deviations are also smaller com-
pared with that of the traditional Deming regression. The
biasness and mean square error are as well small depicting
the small deviations in the regression method that takes
into account censoring.

4.2.4. Simulation Run for Setting 4. Table 4 is built with the
same setting in Table 2; however, in this setting, Y is the
only variable censored at 20. The table shows the parameter
estimates and performance measures for the censored and
traditional Deming regression for setting 4 of the simu-
lation run. For the traditional Deming regression, it is
observed that the intercept («) and slope () have estimates
0f 0.010 and 1.023. These estimates are very close to the true
values put in the simulation run for this setting. The
standard deviations are 3.208 and 0.251 for the « and f5,
respectively, ~with biasness of 1.042x10"* and
5.228 x 10~*. This small biasness is a result of the mean of
the mean parameter estimates being close to the true values.
The mean square errors for o and f are 10.19 and 0.063. The
coverages of the setting are 94% and 93% for both

parameters. This shows that the true value for « is found in
the 94% of the datasets, while for f, the true value lies in
93% of the datasets,

Y =0.01 +1.023X. (23)

The adapted Deming regression that takes censoring into
account also gives estimates and performance measures of «
and f. The mean estimates for « and 3 are —0.312 and 1.033.
These estimates we observe seem to be close to the true
values in the simulation run. The biasness in the two pa-
rameters is 0.0973 and 1.107 x 10~ 2. The biasness depicts the
deviations from the true value, and it is observed that & has a
small deviation. The standard deviations reported were 3.238
for the intercept («) and 0.25 for the slope (). The mean
square error for the intercept («) is 10.482, and the mean
square error for the slope (f) is 0.063. The coverage of the
confidence interval of the various datasets in which the true
value of the intercept («) and slope (/) lies in 95% and 94%,
respectively. On the other hand, when censoring is con-
sidered for the approach, o and 3, give estimates of 7.87 and
1.29, respectively,

Y =-0.312 + 1.033X. (24)

The intercept («) of the traditional Deming regression
and the adapted Deming regression taking censoring into
account shows a small deviation from the true intercept of 0
with the slope (/) also showing a little or no deviation from
the true slope of 1. However, both regression methods give
consistent standard errors. The biasness of the regression
methods is small with both parameters in the traditional
Deming regression than in the adapted Deming regression
taking censoring into account. The mean square error for
both regression methods seems to be consistent. The cov-
erages of both methods are high but seem to be a little better
in the Deming regression adapted for censoring since both
parameters give higher capture.

As an extension of the assumptions made to both
methods, we wanted to check how the methods would do if
their analytical error ratio (¢) that is assumed to be constant
was misspecified. In view of that, the value that was used in
misspecifying was 2.

4.2.5. Simulation Run for Setting 5. From Table 5, it is
observed that misspecification of the analytical error ratio
has a massive impact on the estimates and the other per-
formance measures. The mean estimates for the parameters
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TaBLE 5: Parameter estimates and performance measures for
misspecified setting 1.

Traditional Deming regression

Parameters Mean (SD) Bias MSE  Coverage

a —42.763 (22.629) 2783.957 3290.92 4%

B 2.988 (0.687) 2.215 2.683 8%
Adapted Deming taking censoring into account

Parameters Mean (SD) Bias MSE  Coverage

o 16.254 (5.287) 39.117 66.00 66%

B 1.290 (0.171) 0.044 0.073 64%

are very huge in both the traditional Deming regression and
the Deming regression that is adapted to take censoring into
account. On comparing these estimates in Table 5 with the
estimates in Table 1, it is observed that when the analytical
error ratio (¢) is misspecified, the estimates are blown up,
therefore reducing the coverage drastically.

4.2.6. Simulation Run for Setting 6. In Table 6, the situation
was different from the findings of Table 5. However, the
estimates in both approaches of the misspecified analytical
error ratio in Table 6 seem to give similar estimates except
for the coverage that the one in the traditional Deming
regression has a better coverage (71% in & and 60% in ),
while the adapted Deming regression where censoring is
taken into account gives a poor coverage (30% and 18% for «
and f3, respectively). On comparing the estimates in Table 2
with that of Table 6, it is observed that the estimates of the
correctly specified analytical error ratio are highly preferred
to that of the misspecified since the estimates are close to the
true value put in the simulation run.

4.2.7. Simulation Run for Setting 7. Estimates in Table 7
indicate the misspecification of analytical error ratio (¢) for
setting 3. Setting 3 is the setting where censoring was ob-
served only in X. These estimates in Table 7 also seem to be
similar in both approaches in the misspecified setting.
However, in both approaches, it is observed that they have
poor coverages. Comparing estimates in Table 7 with that of
Table 3, different estimates are observed. We observe
seemingly small estimates in the misspecified setting;
however, we can also observe small coverages, while we seem
to have to high estimates for the correctly specified analytical
error (¢) in setting 3 where there is a higher coverage.

4.2.8. Simulation Run for Setting 8. Table 8 shows the es-
timates of the misspecified analytical error ratio for setting 4.
In this setting, it is observed that the estimates are seemingly
similar except for the coverage of the traditional Deming
regression, which is higher than the adapted Deming re-
gression that takes censoring into account. However, on
comparing the correctly specified and misspecified analytical
ratio, the estimates of the correctly specified analytical ratio
are close to the true value with a huge coverage. Mis-
specification has an impact on the estimates.

TaBLE 6: Parameter estimates and performance measures for
misspecified setting 2.

Traditional Deming regression

Parameters Mean (SD) Bias MSE Coverage

o —3.387 (4.550) 11.469 31.968 71%

B 1.310 (0.618) 0.096 0.474 60%
Adapted Deming taking censoring into account

Parameters Mean (SD) Bias MSE Coverage

o 3.295 (4.92) 10.857 29.948 30%

B 1.227 (0.611) 0.051 0.421 18%

TABLE 7: Parameter estimates and performance measures for
misspecified setting 3.

Traditional Deming regression

Parameters Mean (SD) Bias MSE Coverage

o 5.622 (3.545) 31.604 44.047 24%

B 0.822 (0.133) 0.032 0.049 26%
Adapted Deming taking censoring into account

Parameters Mean (SD) Bias MSE Coverage

o 5.419 (3.333) 29.370 40.370 23%

B 0.834 (0.139) 0.028 0.047 22%

TaBLE 8: Parameter estimates and performance measures for
misspecified setting 4.

Traditional Deming regression

Parameters Mean (SD) Bias MSE Coverage

o4 —3.309 (4.453) 10.947 30.578 71%

B 1.292 (0.562) 0.085 0.398 63%
Adapted Deming taking censoring into account

Parameters Mean (SD) Bias MSE Coverage

o 3.215 (4.448) 10.339 29.929 22%

B 1.263 (0.161) 0.069 0.440 10%

5. Conclusion

The report sought to check the impact of doubly censored
observations in method comparison studies despite the
usual practice of deleting or ignoring values below the limit
of quantitation. It can be seen that the main objective of the
thesis was met as the coverages of the adapted Deming
regression that takes censoring into account were better
and yielding small mean square Error. This is an indication
that when censored data are taken into account the analysis
they have impact.

Misspecification of the analytical error ratio (¢) had a
considerable biasness in the intercept and slope for both
traditional Deming regression that does not take censoring
into account and the adapted Deming regression that takes
censoring into account.

Data Availability

No real data were used since we only used simulated data. All
parameter values are duly cited and referenced.
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