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In this work, we used Tran Hung Thao’s approximation of fractional Brownian motion to approximate the shadow price of the
fractional Black Scholes model. In the case to maximize expectation of the utility function in a portfolio optimization problem
under transaction cost, the shadow price is approximated by a Markovian process and semimartingale.

1. Introduction

Let us consider a financial market without frictions and a
portfolio consisting of a risky asset S, and a nonrisky asset S/
such that the dynamics of the evolution of the assets is re-
spectively given by the equations dS, = uS,dt + 0S,dW, and
ds? = rS°dt where r, u, and o are real constants. Let ¢ be the
proportion of the nonrisky asset in the portfolio and ¢; the
proportion of the risky asset in the portfolio. For any pair
Q(t) = (gb?,gbtl)OStST(T € R), the value of the portfolio at
time ¢ is given by V¢ (£) = ¢'S° + ¢/S,. A portfolio optimi-
zation consists in determining an optimal allocation ® () =
(8%, ¢})g<e<r of the portfolio which maximizes the expectation
of the utility function under terminal wealth X ;=

x+ JOT ¢1dS,, ie., find O (t) = (¢7, ¢}) which maximizes

T
E[U(X,,)] = E[U(x + jo ¢}dst)]. (1)
¢? is given by the following relation:
t
8 =x+ [ gias - gis, @)

where U (x) is the economic function which accounts for the
risk aversion of an economic agent with initial wealth x.

Robert Merton first dealt with this problem in the fric-
tionless market case; in [1], optimal control methods is used
to solve the (1). The utility function is assumed logarithmic
and he proved that the optimal strategy consists to keep a
constant portion of risky assets in the portfolio, which is also
proportional to the sharp ratio y/a?. In [2], it is proved that
this result remains valid when g, and o, are bounded pre-
dictable processes. The following relation holds,

1
¢tst _ ﬁ (3)

¢+ 9iS, o
where y, and o, are bounded predictable processes.

In [3], Magill studies the case of the hedging with
transaction cost. The hedging of the risky asset is done under
transaction cost A (with A € [0; 1]) proportional to the risky
asset, i.e., the investor buys the asset at price S, but receives the
amount (1 — 1), at the time of sale. In this case, the terminal
wealth is replaced by Xi,T =x+ jOT ¢Lds,— A JZ S, dl |,

To solve the problem (1), Micharl used the stochastic
optimal control theory, which linked in particular the so-
lution of partial differential equations of Hamilton Jaco-
bi-Bellemann type in the Markovian framework, see [4, 5]
for the details. An alternative approach called convex duality
martingale method has been developed to take into account
non-Markovian models, see [6, 7].
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This method makes use of the results of convex analysis
and martingales. If we consider the equatlon the maximi-
zation of the function E[U (x + Io ¢>ud8 /\_[O S, dl¢t],)]
as the primal of the optimization problem, the convex
duality method allows to reduce the problem to the form of
the problem (1). The method of convex duality is used to pass
from a model with transaction cost to a model without
transaction cost, in particular the existence of a new process
S, which is a semimartingale called shadow price such that
the optimal hedging strategy of the model with transaction
cost coincides with the model without transaction cost.

The existence of the shadow is theoretically proved by the
duality methods for portfolio optimization (see [6, 7]).
Thanks to the work of Bender and Guasoni (see [8, 9]) on
arbitrage, Christoph Czichowsky et al. proved in [2, 7] that
the shadow price can exist for a non-semimartingale model
under certain conditions.

Thus, the existence of the shadow price has been proved
when the price of the risky asset S{" in the portfolio follows a
fractional Brownian motion:

8\ =Sy exp (ut + oB"), (4)

where

H
Bt

C J'O [(t _gf (_S)H—l/Z]dWS

. (5)
. j (t =) 2aw,

0

and §; > 0, the process value at t=0. We extended the result
to

1
St(z) =5 exp(yt + 0B - EathH), (6)
and thanks to the work of Tran Dung and Thao [10] on the
approximation of processes, it is proposed that an ap-
proximation of the shadow price which is a semimartingale
process is of the form

ds, = iS,dt + GS,dw.,. (7)

The paper is structured as follows: in Section 1, we state
some basic facts about the shadow prlce and its application
to the case of a problem drlven by SV =S, exp (ut + oBH)
and by extension to S!¥ =S, exp(ut+oBF - 1/202t2H)
which is a generalization of the classical Black scholes model
in the fractional case.

Section 2 is devoted to the recall of some results on
fractional Brownian motion, and Section 3 is devoted to our
main approximation results.

2. Preliminary

2.1. Existence of the Shadow Price for a Fractional Black Scholes
Financial Model. Consider a financial portfolio consisting of
a nonrisky asset B, = ¢’* and a risky asset S, defined on a
filtered probability space (Q, #, #,, P) havmg the following
dynamics:

ds, = uS,dt + 0S,dB}", (8)

where BF denotes fractional Brownian motion and
t € [0; T] with T < oo; this equation is known as the frac-
tional Black scholes equation. Portfolio optimization under
transaction cost A proportional to S, consists to find an
admissible and optimal strategy which maximizes the
function E[U (X ; (®,)]. The optimization problem can be
presented in the following form: how to find ®, = (¢?, ¢})
which maximizes

E[U(X,r(0,))]= E[U(x+ JOqu,idsu -1 stud|¢l |u)].

(9)

Definition 1. Let S, be a continuous process on a filtered
probability space (Q, &#, F,, P); the process S, is called
shadow price for the problem (9) if:

(1) S;e [(1-1)S;; ;1.

(2) The solution ¥, of the problem of maximization
without transaction cost of the utility expectation

E[U(Vy(¥))] :E[U<x+JOT‘I’Sd§S)], (10)

exists and the optimal solution ¥, of (10) coincides
with the solution of the equation (9) ® under
transaction transaction cost.

Definition 2. (Bender): let X = (X,),<,<r be a real-valued
continuous stochastic process. For a finite stopping time 7,
i=inf{t>7 X, - X, >0} and 7_:=inf{t>7: X, -

X, <0}.

X verifies the TWC (two-way crossing) condition of
crossing if 7, = 7_, for all finite stopping times 7.

The existence of the shadow price (see [7]) is related to
the following conditions:

(1) S; is continuous and satisfies (TWC) for U: [0;
+o0] — R

(2) S, is continuous and sticky for U: R — R

Czichowsky and Schachermayer (see [2, 11]) use duality
results to prove the existence of the shadow price when
SV =8, exp (ut + oBH) with U (x) = In(x).

Guasoni in [9] shows that if X, = X, exp (f, + oBH) with
f;+ R, — Racontinuous function and if small transaction
costs (AS,,A € 0,1) are taken into account, then X, is sticky
and there is no arbitrage in the portfolio. The existence
results can be extended S = S{" exp (~1/20212H).

2.2. Stochastic Calculus for Fractional Brownian Motion and
Application to the Fractional Black Scholes Model. In this
section, we recall some results on fractional Brownian
motion.
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Definition 3. We «call fractional Brownian motion a
Gaussian process B, t € R, almost surely with continuous
trajectories such that By = 0 and B _ - BF is independent of
o(BH,s<t,s € T) of normal distribution N(0, t) for all > 0.
In particular, BY? is the standard Brownian motion.

In [12], Benort and John show that BF = CJR [(t- s)Hi
1/2 - (=s)i"?1dw with C = (1/2H + jo (1 9P

sH-121245)712 H € 10; 1] et x, = max(x;0).

If H+0, then B is nelther a Markov process, nor a
semimartingale with respect to #, (see [12, 13] for details and
proofs). This process is not semimartingale, and the classical
[t6 lemma can not be applied, thus we make use of other types
of integration theories (so-called Malliavin calculus, Wick-It6
calculus approach, and pathwise calculus), see [12, 14] for
more details. In this article, we will use the Wick-It6 for-
mulation which is closer to the Itd calculus and we will try to
find some results of the classical Black Scholes model when H
tends to 1/2; we will only study the case H € 1/2; 1. Benoit
and John [13] show that B is not differentiable. Let

—Cj [(t+7-s)T V2 (- s)H 1/Z]dW for 7>0.

Bt is 1nﬁn1tely differentiable (mean square) and we can
give a meaning to the derivative of B,

ar (6:8) =| L85 525 g

Using Tran Dung and Thao’s approximation of frac-
tional Brownian motion [10], we have

E(S, - S,) <M,

(14)
1
oc:H—E,M>O, (e (0,1),
and
E(BF, - B <10, (15)
where
0
Bf( _ CJ [(t _HT 2 (Lg)H- m]dWS
; (16)
; J (t = s+ O Paw,
0
and
1
Sie =S exp(ptt + UBt( - 502t2H> (17)

We used a method of approximating B by a semi-
martingale Bf( to write df (¢, S, ;) in the form

df(:S,) = g(t f(£.S,))dt + h(t, £(£,S,0))dW,.  (18)

2 2H-1 2azf(t>st)

dB,' _dB/(t +1,w)
dr dr

1 t
= C(H - 5) j (t+1-s)"dw,.

Let S, be a process such that dS, = uS,dt + 0S,dB and
£ (t,x) a function of class C?; in [15], we show that

sy (208,

(11)

f(T,87) =
[ s

(12)
T
+ UJ- Su—af (.5.) dBuH
t ax

T *f(u,S
+H02J' 1 f( - w) du.
t Ox
The differential form of the Wick-Ito lemma for geo-
metric Brownian motion can be written as

of (t.5,) S)

t

3. Approximation Results

We make the following assumptions:

Hypothesis 1. By definition, the shadow price S, is a sem-
imartingale process which takes its values in the interval
(1 = A)S;; S, 1; we will suppose that the shadow price S can
be written as S = f(t,S,) and that St( e [(1 —/\)St(,St(]
with ¢ € [0;1].

Hypothesis 2. Let f: [0;T] xR, — R, be a function of
class C'* such that Vt € [0;T], x, yeR?,

(H1) [of (t,x)/ot —of (t, y)/ot| < M,|x — yl

(H2) |of (t,x)/0x| <M,

(H3) |0° f (t, x)/0x*| < M,

(H4) |0° f (t, x)/0x*| < M,

where M,, M,, M5, M, are real positive constants.

The following lemma establishes the convergence result
of the process f (t,S,;) to the process f (¢, S,).

Lemma 1. Let S,; and S, be the respectzve solutions of
the equations dS,;=uS,; dt+aS (Bl and dS,=uS,dt+
0S,dBH, te [0, T]. LetV tf(t St() ¢tso+¢tf(t S.¢) the
wealth process and f a function defined on [0;T]xR, and
satisfying the assumptions (H1), (H2), (H3), (H4).

(1) f(t,S,¢) is a semimartingale which converges uni-
formly to f(t,S,) in L*(Q) when { tends to 0
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(2) The wealth process V (t, f (,S,,)) is a semimartingale ~ Proof of Lemma 1. Let fbe a function of class C'?, using the
which converges uniformly to V (t, f (t,S,)) in L* (Q) differential form of de Bf(, in (11) and the Wick-Ito lemma,
when ( tends to 0 we have

t
dB}; = C(H - %) “ (t—s+ ()Hmdws]dt +CUTMaw, = A(n)dt + ¢ aw,, (19)

with A(t) = C(H - 1/2)[["_ (¢ —s+ " ¥2dW ] and

‘9 .0 £ .0 ! 12 O
7(0:50) = £(0.500) + [ 2L (s5.0)as+ [ .o (ss)dswo [ s, 2L (55, )aslh + Ho? [ #7152 2 (5, )ds

0

tfo 0 120 0
=f (0’ So,() + J [a—f (5) Ss,{) + M&,(% (S, Ss,() +Ho's™ ISi(a—xJZC (s, SS,() + ayA(t)Ss’(£ (s, Ss,()]dt,

(20)
+C¢t 1/Z(I‘uSt,(af/E)x(t, S;)dW,, so  f(t,S,;) is a We have
semimartingale.
‘lof of "o of of
F(6.8:0) = £(8.5,) = £(0.8,¢) = £(0,8,) + JO[E(S’ St) -= (s, Ss)]ds + H!‘Ss@ (s:8¢) - U (5.8, |ds
+Ho Jt S1s: 1(55) CRELFACTS] P ar S %(s S.¢)dB: — S 9 (5,5,)dB"
0 ¢ axz s axz 0 s,(ax 95, s( Sox Vs s |
(21)
In the relation (7), we have S, = S, exp (aBgf() =3, so Using the inequality (a+b+c+d)*<4(a®+b*+
f(So) = f(Sp) c* +d?), we get
> [t [of of ? t of of ?
E[f(t:S) - f(t.5)] =<4 JO E[g (s:8) - = (s ss)] ds+4 JO E[‘uss)(a (s:8¢) - U5 (5S.) | ds
t *1(s, S 2 2
+4H%o" j E szH‘lsfﬁif (:5:0) sm”sﬁ;a LACEN] N (22)
0 o ox? 0x?

‘[ of of ’
2 H H
+ 40 J-() E[SS’(a (S, sz)st,( - Ssa (S, Ss)st :| .

Let C1 = [ E[9f/s(s,Sy;) — 0f/9s(s, S,)1ds,
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t of of ?
C2 = ,[0 E [‘uSs)(a (5> Ss,() - ["Ssa (S’ Ss)] ds,

t *f(sS 2 ?
C3 = H2G4J E SZH”SZ(M_ SzH*ISZM ds, (23)
0 s 0x? S ox?
o of of u’
4=ZIE - (s,S,;)dB? — 8.2~ (5,8,)dB™ | .
C o 0 [szax (S s,() 5,¢ Ssax (5 s) s ]

Using the relations (14), (15), and the Hypotheses (H1), ()< 2EMPMAT + 2> MAM A
(H2), (H3), (H4), we get
) <2(W’MMIT +4* M3MA)(*,
folof of
Cl = J E[g (S, SS,() - g (S, SS):| ds

0

O0x? S ox?
r 7 f(s8,;) ’
2 4 4H-2 >9s,( 2 2

+2H%0" Jt s4H"2E(SZ)E

s
0

| [<5zf(s»3s,c) _azf(&Ss))T N

ox? ox?

t *£(s,S, 2 ?
C3:H204J E|:52H1S§( f( ,()_SZH—ISZa f(5>Ss)] ds
. ,

t t
stj E(S,¢ - ss)zdngfj MEds <tM2ME®,
0 0
f of of ’
C2= .[0 E [‘uss’(a (s, SS,() - ‘ussa (s SS)] ds

2 ([ of of ’
= u J E[SS,(E(S,SS)()—SS—QC (s,S,) | ds

0

0

2
<24’ J ' E(g—i(s,ss,()) E(SS)(—SS)%IS
o) 2
<ottt | l(a fgs,;s,a) ]E(s;_ssfds
0 X ’

t
#2H'M, [ (S, -5,) E(S)ds

+24° J; E(S?)E(% (s.8) - Z—j: (s SS)>2ds

t
<2 ME Mot + 21 MGM J E(S2)ds,
0
t
(24) S2H204M§M(2“J 54H_2E(SS)(+SS)2ds
where E (S?) = S, exp (ut — 1/20°t*")E (exp (B!)?) which is 0
finite. 2 4y rooa (1 aH-2 02
In fact, Vt € [0,T], E((B)*) = t*! thus ng(Sf)ds is +2M,H 0" M({ JOS E(Ss)ds'
finite.
25
Let A = [; E(S))ds, (25)
We have



6 International Journal of Mathematics and Mathematical Sciences

As E(S?) is finite, E(S,; + S,)? is also finite.
Let B= E(S) and C = E(S,; + S.)%, then we have

b oH- to (AH-1
C3<2H’d*MiM{*C J s*172ds + oM, H?o* M{**B I s ds <2 (H o*MZMEC + M4H204M(2“B)(4H .
0 0 -

<2

2 4 2
(H o*(M3MC + M4MB)>T4H 120
4H -1 ’

Q
S
1]

t af of ?
2 H H
o°| E|S,, ,Ss,¢)dB ,S,)dB
JO [SS Cax (5,85 6) s SSa (s, S,)dB, ]

2 2
< 2azr E[% (5:800)(Sse — SS)dch] +20° r E(sz)E[g (.S, )dBL - g—£ (s,S,)dB"” ]

T PR

)7 ox 6

2 2
< 202Jt E(S, - SS)ZE[% (s, SS,C)dch] +40° Jt E(S?) E[a_f (.S, )dBL g—i (s, Ss)dch]
0
2 [* pper\g|2F u_of )’
+40 JOE(SS)E[a (5:8,)dBg; == (5,8,)dB; ]

<20°M¢*® Jt E a_f( S 2E(dBH)2+4 M2B Jt E(S,. - S.)’E(dB")” + 40°B JtE % (s5.) 2E(dBH - dB)’
s 20 ¢ 0 ox S 5,6 56 o 3 0 556 N 56 o 0 Ox S5 9 $,6 s
<20°M*M2E(BL)’ + 40* M2BMG*E(B[)’ + 40*BM2E(B - B')’

<(20*MT* M3 + 46* M3BMT™ + 40° BMST).

(26)
We conclude that E[f (t,S,;) - f (t, $)1> < D** where V(t, f(,S0) = ¢)S) + ¢, f (,S,;) is also a semi-
D a constant. We deduce that f (£,S,;) converges in mean  martingale because f (£,S,,) is a semimartingale and ¢S} is
square to f(t,S,) when ( tends to 0. a finite variation process.
Similarly,
V(t>f(t’ Sn()) - V(t’f(t> St)) = ¢tl (f(t> St,() - f(t> St))’ 27)

B(V(t £(8:5.0)) = V(6 £ (6:8)))” = (8 E(f(1.8,0) = £ (65)) = () DE*.

Hence, the convergence of V (¢, f (t,S,;)) to V (¢, f (¢, S,)) in (1) gt,( is the unique solution of the equation
L*(Q). O -
B gt £(1,5,0))dt + bt £(1,5,0))dW,  (28)
Theorem 1. Let S, be a continuous semimartingale defined Si¢ ’ '
on a probability space (Q, F, P) and f a function of class C'>
then under certain assumptions there exist two processes S, ; = and verifies the relation

f(&.8) and V (t, f (¢S, ) such that

O C (0f(6:5,0)008,.) 9f(6:5,¢) L0 f(£:S:z) (1 )5, + HH 2 f(t S“)sz (29)
- t/%t,

B+ f(t, st’() ot 0S, ¢ an)( 0

with



International Journal of Mathematics and Mathematical Sciences 7

1 [of(6Sy) of(6Sy) 20 f(6S0)

t, f(t,S = — + - +a,)S,,+Ho't ——=5 30

g( f( t,()) f(t,St’()[ ot ast,( (/" t) e asi( e (30)

and (2) The processes f(t,S,;) and V (¢, f (£,S,;)) are Mar-

kovian processes.
af(t,S
h(t, f(£:8,)) = L _cos, 7(t.5.) G
»ond 6 Proof of Theorem 1.
(31)

(1) Let f be a function of class C"* and the process S,
two bounded tpredictable u 1;;20665565 and defined in the relation (5); according to the Wick-ito,
a, =Co(H -1/2) _[_OO (t—s+ )" 7 dwW,. we have:

_[of®S,)  of(t.S,) 20119 f (£5) 2 of (6S) . ou
daf (t.S,) _[ 5 + 25, uS; + Ho™t asf S, |dt + aS(t) 25, dB,". (32)
We approximate B{' by Bf%, and we have
0 t
C B - j [(£= 9™ = (=" ]aw + j (t - o) 12qw (33)
-00 0
. df(° H-172
and the integral all (t-s) Wil (35)
0
H-172 H-172
J_OO [(t=9) - (=" P aw,, (34) Using the fractional Brownian motion approxima-

tion of Tran Hung Thao, we have
is a process with absolutely continuous trajectories,
and by taking 7 = 0 in the relation (11), we can give a
meaning to the derivative

0 t
C laB!! = [% J (t =+ 0" 2aw, +(H-3) JO (t—s+ T mdws]dt L gy, (36)

Therefore,

1 t
dB! = C<H - 5) “ (t—s+ ()H_mdws]dt 2 aw, (37)

Replacing dBj' by dBy%, S, by S, and f(t,S,) by
f(t,S;) in (32), we obtain

3 2
@ = 1 |:8f(t, St,() n af(t’ St,() (1 + “t)st( N HO_ZtZH—la f(t;st’()Sf(]dt n 1 CosS, (af(t’ St;() 12 gy
Sw f(BSg)l o 08, ’ o, " (.5.¢) 38,

(38)
Let
_ 1 af(t’ St»() af(t’ SM) 2 2H7162f(t, St,() 2
a(t. f(8:5:0)) = sl o T es, (¢ + )+ Ho't Tﬁ(st,( : (39)

and
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1 of (.8, ) dS,; df(t.S,)
h(t f(£:5:0)) = s Coe gst’(“))z’* v g:“ =m: (b £(8:8,0))dt +h(t, f(£.5,))aW,.
(40) (41)
We have From hypothesis (H1) and (H2), we have

(1=, < f(t, st,() <80

(42)
|h(t’f(t’ St,()l :If(t,lst() CGSt,(af(;;CSt’()(H_m S;CO'MZCH_ 2,

So,  [4 (h(s, fs,8,) ds< [} ((1/1=)CoM,
V22 d6 ¢ (1)1 - /\)CUMZCH_I 22T < too.

1 [of(6Sy) of(tSy) 20 F(6:S)
t, (t,S = 2L+ . +a,)S,, + Ho't —— 228 . (43)
|g( f( t,())' f(t, St,() |: ot 38, (4 +@)Si; an)( t(
From Hypothesis (H1) 1 and the hypothesis (H2),
(H3),
| (t f(t S ))|< ! af(t’st’()+M (u+ )8 + Ho' ™' M,S?
g\t > 91l = (1 —)L)St)( ot 2 U t)9ot( 39t
(44)
| 1 0f(6Sy) My(u+a)| HOT™ M,
|9(t, f(t,St,())| SSMPte[O,T]I (1- 1S py + - | + 1 Sup,. [O,T](St’().
Therefore, From Assumption 1 and the hypothesis (H3), we
" have
J |g(w, £(1.8.0))|du < + 0. (45)
0
1 of (t,x)) -1 1 of (t:%,) ,-112
h(t, f (¢t —h(t f(t, | LENe - 22y
| (t, f(t:x1)) (t. f( xz))| |f(t,x1)ch1 o f(t,xz)caxz ox
(oG Plof (bx) _3f (txy)| ol %, — x| (46)
T 1-1 | ox ox |T 1-A Tt
1 of (t,0) 9f(t,0)
k, = t, t, =| .
¢ =u(t,0) +|o(t,0)] |f(t,0)( % " ox +C
The functions f(t, 0), of (t,0)/0x, of (¢t,0)/0t are Assume that f is monotonic, i.e., f(f,x,)> f (t, x)
continuous and bounded functions for t € [0;T] so and x, >x,; (where f(t,x,)> f(t,x,) and x, <x;)

E[If) Iku|2du] < +00. and N = Supyeio (1/f (t, %)),
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1 of (t,x;) Of (t,x;)
|g(t,x1)—g(t>x2)|3|f(t,xl)( ot N ot )‘

1 of (t,x of (t,x
ey (L5 o - 2852 o,
2 2H—1| 1 azf(t,xl) 2 _azf(t’xz) 2
+ Ho't If(t,x1)< " x] 9 x5 |-
Under the Hypotheses (H1), (H3), and (H4), we
have
lg(t:x)) = g(t,x,))| S NM,|x; = x,| + MsN|x,||u + o ||x; = x,| + Hazt,‘ZH_lM4N|x§||x1 - x|
SSupte[O,T]((MlN + M3N|xll|y + (xt| + NHcrztm_ldeﬂ)ﬂx1 - le.
We have

|h(t,x1) - h(t, x2)| +|g(t,x1) -g(t x2)|

2, 2H-1 oy, oC¢T
< lxl —x2|(SuptE[o)T](M1N+M3N|x1||y + oct| +Ho't M4N|x1|) +ﬁM3).

Using Hypothesis 1, we have gt,( € [(1=M)S 58]

1 [of(6Sy) of(6Sky) 210 F(6Si)
g(t, f(t, St,()) = f(t, St,() [ 5 35, (u+a)S,+Ho't Ti(st( ,
and According to the relation (3),
B 1 of (t’ St¢ ) H-1/2 7@1’8\“ _ M
eSS = g e, ) gl o
(51)

We have

6. f(6.S)  UF(6,8,)[0f(8,S00)108 +0f(£,S,0)10S,¢ (1 + &), + HI' £ '0” £(£, 8, )/0S;: St ]
o+, f(5:5,) CI(f(5:8,)) S (0 (£,5,¢)13S, )

>

F(680)  F(6:8:0)(0f (68.0)/0t +f (£S5, )08, (4 + @,)S, + Ho ™0 f (1,5, )10S},S}, )

- >

B+ f(t.S.;) Co® 2, (9 (1,5, )/2S,¢ )

with f = ¢0/¢),

1 Of (£, 8,0)/0t + Of (£,5,0)/0S, ¢ (u + a,)S, + Ho't*™ 9% £(1,5,)13S; .S},

B+ f(6.5.) *CS P (3 f (1,5,)/98, )’

S M (B (1:8,4)/9,) _f(88y) | 3f(tSk) (u+ )i+ H 2pn10 S (t;St’()Sf(.
ﬁ + f(t’st,() ot aSt,( ’ BSL( ’

(47)

(48)

(49)

(50)

(52)

(53)

(54)
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(2) The process f (t,S; ;) is a solution of (12); thus, it is
Markovian process. We deduce that V' (¢, f (,S,;)) =
¢USY + ¢} f (£,S,;) is also a Markovian process. [

4. Conclusion

In this work, we have proposed a shadow price approxi-
mation method for the fractional Black model in the sense of
Wick-It6 in the context of an optimization problem under
transaction costs. We obtained (54) whose resolution gives a
candidate process for the shadow price approximation. The
problem is thus reduced to a frictionless optimization
problem in the Markovian framework which could be solved
by Hamilton-Jacobi type equations.
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