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In this work, we used Tran Hung  ao’s approximation of fractional Brownian motion to approximate the shadow price of the
fractional Black Scholes model. In the case to maximize expectation of the utility function in a portfolio optimization problem
under transaction cost, the shadow price is approximated by a Markovian process and semimartingale.

1. Introduction

Let us consider a �nancial market without frictions and a
portfolio consisting of a risky asset St and a nonrisky asset S0t
such that the dynamics of the evolution of the assets is re-
spectively given by the equations dSt � μStdt + σStdWt and
dS0t � rS0t dt where r, μ, and σ are real constants. Let ϕ0t be the
proportion of the nonrisky asset in the portfolio and ϕ1t the
proportion of the risky asset in the portfolio. For any pair
Θ(t) � (ϕ0t , ϕ

1
t )0≤ t≤T(T ∈ R), the value of the portfolio at

time t is given by VΘ(t) � ϕ0t S0t + ϕ1t St. A portfolio optimi-
zation consists in determining an optimal allocation Θ(t) �
(ϕ0t ,ϕ

1
t )0≤t≤T of the portfolio whichmaximizes the expectation

of the utility function under terminal wealth Xx,T �
x + ∫T0 ϕ

1
t dSt, i.e., �nd Θ(t) � (ϕ

0
t , ϕ

1
t ) which maximizes

E U Xx,t( )[ ] � E U x + ∫
T

0
ϕ1
t dSt( )[ ]. (1)

ϕ0t is given by the following relation:

ϕ0t � x + ∫
t

0
ϕ1tdSt − ϕ1t St, (2)

whereU(x) is the economic function which accounts for the
risk aversion of an economic agent with initial wealth x.

Robert Merton �rst dealt with this problem in the fric-
tionless market case; in [1], optimal control methods is used
to solve the (1).  e utility function is assumed logarithmic
and he proved that the optimal strategy consists to keep a
constant portion of risky assets in the portfolio, which is also
proportional to the sharp ratio μ/σ2. In [2], it is proved that
this result remains valid when μt and σt are bounded pre-
dictable processes.  e following relation holds,

ϕ1t St
ϕ0t + ϕ1

t St
�
μt
σ2t
, (3)

where μt and σt are bounded predictable processes.
In [3], Magill studies the case of the hedging with

transaction cost.  e hedging of the risky asset is done under
transaction cost λ (with λ ∈ [0; 1]) proportional to the risky
asset, i.e., the investor buys the asset at price St but receives the
amount (1 − λ)St at the time of sale. In this case, the terminal
wealth is replaced by Xλ

x,T � x + ∫
T

0 ϕ
1
udSu− λ∫T0 Sud|ϕ

1|u.
To solve the problem (1), Micharl used the stochastic

optimal control theory, which linked in particular the so-
lution of partial di�erential equations of Hamilton Jaco-
bi–Bellemann type in the Markovian framework, see [4, 5]
for the details. An alternative approach called convex duality
martingale method has been developed to take into account
non-Markovian models, see [6, 7].
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*is method makes use of the results of convex analysis
and martingales. If we consider the equation the maximi-
zation of the function E[U(x + 

T

0 ϕ
1
udSu − λ

T

0 Sud|ϕ1|u)]

as the primal of the optimization problem, the convex
duality method allows to reduce the problem to the form of
the problem (1).*emethod of convex duality is used to pass
from a model with transaction cost to a model without
transaction cost, in particular the existence of a new process
St which is a semimartingale called shadow price such that
the optimal hedging strategy of the model with transaction
cost coincides with the model without transaction cost.

*e existence of the shadow is theoretically proved by the
duality methods for portfolio optimization (see [6, 7]).
*anks to the work of Bender and Guasoni (see [8, 9]) on
arbitrage, Christoph Czichowsky et al. proved in [2, 7] that
the shadow price can exist for a non-semimartingale model
under certain conditions.

*us, the existence of the shadow price has been proved
when the price of the risky asset S

(1)
t in the portfolio follows a

fractional Brownian motion:

S
(1)
t � S0 exp μt + σB

H
t , (4)

where

B
H
t � C 

0

− ∞
(t − s)

H− 1/2
− (− s)

H− 1/2
 dWs

+ 
t

0
(t − s)

H− 1/2
dWs,

(5)

and S0 > 0, the process value at t= 0. We extended the result
to

S
(2)
t � S0 exp μt + σB

H
t −

1
2
σ2t2H

 , (6)

and thanks to the work of Tran Dung and *ao [10] on the
approximation of processes, it is proposed that an ap-
proximation of the shadow price which is a semimartingale
process is of the form

dSt � μStdt + σStdWt. (7)

*e paper is structured as follows: in Section 1, we state
some basic facts about the shadow price and its application
to the case of a problem driven by S

(1)
t � S0 exp(μt + σBH

t )

and by extension to S
(2)
t � S0 exp(μt + σBH

t − 1/2σ2t2H)

which is a generalization of the classical Black scholes model
in the fractional case.

Section 2 is devoted to the recall of some results on
fractional Brownian motion, and Section 3 is devoted to our
main approximation results.

2. Preliminary

2.1. Existence of theShadowPrice for aFractionalBlackScholes
FinancialModel. Consider a financial portfolio consisting of
a nonrisky asset Bt � ert and a risky asset St defined on a
filtered probability space (Ω,F,Ft, P) having the following
dynamics:

dSt � μStdt + σStdB
H
t , (8)

where BH
t denotes fractional Brownian motion and

t ∈ [0; T] with T<∞; this equation is known as the frac-
tional Black scholes equation. Portfolio optimization under
transaction cost λ proportional to St consists to find an
admissible and optimal strategy which maximizes the
function E[U(Xx,T(Θt)]. *e optimization problem can be
presented in the following form: how to find Θt � (ϕ0

t , ϕ1t )

which maximizes

E U Xx,T Θt(    � E U x + 
T

0
ϕ1udSu − λ

T

0
Sud ϕ1

u  .

(9)

Definition 1. Let St be a continuous process on a filtered
probability space (Ω, F, Ft, P); the process St is called
shadow price for the problem (9) if:

(1) St∈ [(1 − λ)St; St].
(2) *e solution Ψt of the problem of maximization

without transaction cost of the utility expectation

E U VT(Ψ)(   � E U x + 
T

0
Ψsd

Ss  , (10)

exists and the optimal solution Ψt of (10) coincides
with the solution of the equation (9) Θ under
transaction transaction cost.

Definition 2. (Bender): let X � (Xt)0≤ t≤T be a real-valued
continuous stochastic process. For a finite stopping time τ,

τ+ :� inf t> τ: Xt − Xτ > 0  and τ− :� inf t> τ:{ Xt −

Xτ < 0}.
X verifies the TWC (two-way crossing) condition of

crossing if τ+ � τ− , for all finite stopping times τ.
*e existence of the shadow price (see [7]) is related to

the following conditions:

(1) St is continuous and satisfies (TWC) for U: [0;

+∞]⟶ R

(2) St is continuous and sticky for U: R⟶ R

Czichowsky and Schachermayer (see [2, 11]) use duality
results to prove the existence of the shadow price when
S

(1)
t � S0 exp(μt + σBH

t ) with U(x) � ln(x).
Guasoni in [9] shows that ifXt � X0 exp(ft + σBH

t )with
ft: R+⟶ R a continuous function and if small transaction
costs (λSt, λ ∈ 0, 1) are taken into account, then Xt is sticky
and there is no arbitrage in the portfolio. *e existence
results can be extended S

(2)
t � S

(1)
t exp(− 1/2σ2t2H).

2.2. Stochastic Calculus for Fractional Brownian Motion and
Application to the Fractional Black Scholes Model. In this
section, we recall some results on fractional Brownian
motion.
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Definition 3. We call fractional Brownian motion a
Gaussian process BH

t , t ∈ R+ almost surely with continuous
trajectories such that B0 � 0 and BH

t+s − BH
t is independent of

σ(BH
s , s≤ t, s ∈ T) of normal distribution N(0, t) for all t≥ 0.

In particular, B1/2
t is the standard Brownian motion.

In [12], Benoit and John show that BH
t � C

R
[(t − s)H−

+

1/2 − (− s)H− 1/2
+ ]dWs with C � (1/2H + 

∞
0 [(1 + s)H− 1/2 −

sH− 1/2]2ds)− 1/2, H ∈ ]0; 1[ et x+ � max(x; 0).
If H≠ 0, then BH

t is neither a Markov process, nor a
semimartingale with respect toFt (see [12, 13] for details and
proofs). *is process is not semimartingale, and the classical
Itô lemma can not be applied, thus wemake use of other types
of integration theories (so-called Malliavin calculus, Wick-Itô
calculus approach, and pathwise calculus), see [12, 14] for
more details. In this article, we will use the Wick-Itô for-
mulation which is closer to the Itô calculus and we will try to
find some results of the classical Black Scholes model when H
tends to 1/2; we will only study the case H ∈ 1/2; 1. Benoit
and John [13] show that BH

t is not differentiable. Let
B

H

t � C
t

− ∞[(t + τ − s)H− 1/2 − (− s)H− 1/2
+ ]dWs, for τ>0.

B
H

t is infinitely differentiable (mean square) and we can
give a meaning to the derivative of B

H

t .

dB
H
t

dτ
�

dB
H
t (t + τ, w)

dτ

� C H −
1
2

  
t

− ∞
(t + τ − s)

H− 3/2
dWs.

(11)

Let St be a process such that dSt � μStdt + σStdBH
t and

f(t, x) a function of class C1,2; in [15], we show that

f T, ST(  � f t, St(  + 
T

t

zf u, Su( 

zu
du

+ 
T

t
μSu

zf u, Su( 

zx
du

+ σ 
T

t
Su

zf u, Su( 

zx
dB

H
u

+ Hσ2 
T

t
u
2H− 1

S
2
u

z
2
f u, Su( 

zx
2 du.

(12)

*e differential form of the Wick-Ito lemma for geo-
metric Brownian motion can be written as

df t, St(  �
zf t, St( 

zt
+ μSt

zf t, St( 

zSt

+ Hσ2t2H− 1
S
2
t

z
2
f t, St( 

zS
2
t

 dt + σSt

zf t, St( 

zSt

dB
H
t . (13)

Using Tran Dung and *ao’s approximation of frac-
tional Brownian motion [10], we have

E St,ζ − St 
2
≤Mζ2α,

α � H −
1
2
, M> 0, ζ ∈ (0, 1),

(14)

and

E B
H
t,ζ − B

H
t 

2
≤Tζ2α, (15)

where

B
H
t,ζ � C 

0

− ∞
(t − s)

H− 1/2
− (− s)

H− 1/2
 dWs

+ 
t

0
(t − s + ζ)

H− 1/2
dWs,

(16)

and

St,ζ � S0 exp μt + σB
H
t,ζ −

1
2
σ2t2H

 . (17)

We used a method of approximating BH
t by a semi-

martingale BH
t,ζ to write df(t, St,ζ) in the form

df t, St,ζ  � g t, f t, St,ζ  dt + h t, f t, St,ζ  dWt. (18)

3. Approximation Results

We make the following assumptions:

Hypothesis 1. By definition, the shadow price St is a sem-
imartingale process which takes its values in the interval
[(1 − λ)St; St]; we will suppose that the shadow price St can
be written as St � f(t, St) and that St,ζ ∈ [(1 − λ)St,ζ ; St,ζ]

with ζ ∈ [0; 1].

Hypothesis 2. Let f: [0; T] × R+⟶ R+ be a function of
class C1,3 such that ∀t ∈ [0; T], x, y∈R∗+,

(H1) |zf(t, x)/zt − zf(t, y)/zt|≤M1|x − y|

(H2) |zf(t, x)/zx|≤M2

(H3) |z2f(t, x)/zx2|≤M3

(H4) |z3f(t, x)/zx3|≤M4

where M1, M2, M3, M4 are real positive constants.
*e following lemma establishes the convergence result

of the process f(t, St,ζ) to the process f(t, St).

Lemma 1. Let St,ζ and St be the respective solutions of
the equations dSt,ζ � μSt,ζdt +σSt,ζdBH

t,ζ and dSt � μStdt+

σStdBH
t , t∈ [0, T]. Let V(t,f(t,St,ζ)) � ϕ0t S0t +ϕ1t f(t,St,ζ) the

wealth process and f a function defined on [0;T] ×R+ and
satisfying the assumptions (H1), (H2), (H3), (H4).

(1) f(t, St,ζ) is a semimartingale which converges uni-
formly to f(t, St) in L2(Ω) when ζ tends to 0
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(2) -e wealth process V(t, f(t, St,ζ)) is a semimartingale
which converges uniformly to V(t, f(t, St)) in L2(Ω)

when ζ tends to 0

Proof of Lemma 1. Let f be a function of class C1,3, using the
differential form of de BH

s,ζ , in (11) and the Wick-Ito lemma,
we have

dB
H
t,ζ � C H −

1
2

  
t

− ∞
(t − s + ζ)

H− 3/2
dWs dt + CζH− 1/2

dWt � A(t)dt + CζH− 1/2
dWt, (19)

with A(t) � C(H − 1/2)[
t

− ∞ (t − s + ζ)H− 3/2dWs] and

f t, St,ζ  � f 0, S0,ζ  + 
t

0

zf

zs
s, Ss,ζ ds + 

t

0
μSs,ζ

zf

zx
s, Ss,ζ ds + σ 

t

0
μSs,ζ

zf

zx
s, Ss,ζ dB

H
s,ζ + Hσ2 

t

0
s
2H− 1

S
2
s,ζ

z
2
f

zx
2 s, Ss,ζ ds

� f 0, S0,ζ  + 
t

0

zf

zs
s, Ss,ζ  + μSs,ζ

zf

zx
s, Ss,ζ  + Hσ2s2H− 1

S
2
s,ζ

z
2
f

zx
2 s, Ss,ζ  + σμA(t)Ss,ζ

zf

zx
s, Ss,ζ  dt,

(20)

+CζH− 1/2σμSt,ζzf/zx(t, St,ζ)dWt, so f(t, St,ζ) is a
semimartingale.

We have

f t, St,ζ  − f t, St(  � f 0, S0,ζ  − f 0, S0(  + 
t

0

zf

zs
s, Ss,ζ  −

zf

zs
s, Ss(  ds + 

t

0
μSs,ζ

zf

zx
s, Ss,ζ  − μSs

zf

zx
s, Ss(  ds

+ Hσ2 
t

0
s
2H− 1

S
2
s,ζ

z
2
f s, Ss,ζ 

zx
2 − s

2H− 1
S
2
s

z
2
f s, Ss( 

zx
2

⎡⎣ ⎤⎦ds + σ 
t

0
Ss,ζ

zf

zx
s, Ss,ζ dB

H
s,ζ − Ss

zf

zx
s, Ss( dB

H
s .

(21)

In the relation (7), we have S0,ζ � S0 exp(σBH
0,ζ) � S0 so

f(S0,ζ) � f(S0).
Using the inequality (a + b + c + d)2 ≤ 4(a2 + b2 +

c2 + d2), we get

E f t, St,ζ  − f t, St(  
2
≤ 4

t

0
E

zf

zs
s, Ss,ζ  −

zf

zs
s, Ss(  

2

ds + 4
t

0
E μSs,ζ

zf

zx
s, Ss,ζ  − μSs

zf

zx
s, Ss(  

2

ds

+ 4H
2σ4 

t

0
E s

2H− 1
S
2
s,ζ

z2f s, Ss,ζ 

zx2 − s
2H− 1

S
2
s

z2f s, Ss( 

zx2
⎡⎣ ⎤⎦

2

ds

+ 4σ2 
t

0
E Ss,ζ

zf

zx
s, Ss,ζ dB

H
s,ζ − Ss

zf

zx
s, Ss( dB

H
s 

2

.

(22)

Let C1 � 
t

0 E[zf/zs(s, Ss,ζ) − zf/zs(s, Ss)]
2ds,
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C2 � 
t

0
E μSs,ζ

zf

zx
s, Ss,ζ  − μSs

zf

zx
s, Ss(  

2

ds,

C3 � H
2σ4 

t

0
E s

2H− 1
S
2
s,ζ

z2f s, Ss,ζ 

zx2 − s
2H− 1

S
2
s

z2f s, Ss( 

zx2
⎡⎣ ⎤⎦

2

ds,

C4 � σ2 
t

0
E Ss,ζ

zf

zx
s, Ss,ζ dB

H
s,ζ − Ss

zf

zx
s, Ss( dB

H
s 

2

.

(23)

Using the relations (14), (15), and the Hypotheses (H1),
(H2), (H3), (H4), we get

C1 � 
t

0
E

zf

zs
s, Ss,ζ  −

zf

zs
s, Ss(  

2

ds

≤M
2
1 

t

0
E Ss,ζ − Ss 

2
ds≤M

2
1 

t

0
Mζ2αds ≤ tM

2
1Mζ2α,

C2 � 
t

0
E μSs,ζ

zf

zx
s, Ss,ζ  − μSs

zf

zx
s, Ss(  

2

ds

� μ2 
t

0
E Ss,ζ

zf

zx
s, Ss,ζ  − Ss

zf

zx
s, Ss(  

2

ds

≤ 2 μ2 
t

0
E

zf

zx
s, Ss,ζ  

2

E Ss,ζ − Ss 
2
ds

+ 2 μ2 
t

0
E S

2
s E

zf

zx
s, Ss,ζ  −

zf

zx
s, Ss(  

2

ds

≤ 2 μ2Mζ2αM
2
2t + 2 μ2M2

3Mζ2α 
t

0
E S

2
s ds,

(24)

where E(S2s ) � S0 exp(μt − 1/2σ2t2H)E(exp (BH
t )2) which is

finite.
In fact, ∀t ∈ [0, T], E((BH

t )2) � t2H thus 
t

0 E(S2s )ds is
finite.

Let A � 
t

0 E(S2s )ds,
We have

C2 ≤ 2μ2Mζ2αM
2
2T +2μ2M2

3Mζ2αA

≤2 μ2MM
2
2T +μ2M2

3MA ζ2α,

C3� H
2σ4 

t

0
E s

2H− 1
S
2
s,ζ

z2f s,Ss,ζ 

zx2 − s
2H− 1

S
2
s

z2f s,Ss( 

zx2
⎡⎣ ⎤⎦

2

ds

≤2H
2σ4 

t

0
s
4H− 2

E
z2f s,Ss,ζ 

zx2
⎛⎝ ⎞⎠ S

2
s,ζ − S

2
s ⎡⎢⎢⎣ ⎤⎥⎥⎦

2

ds

+2H
2σ4 

t

0
s
4H− 2

E S
2
s E

·
z2f s,Ss,ζ 

zx2 −
z2f s,Ss( 

zx2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

2

ds

≤2H
2σ4 

t

0
s
4H− 2

E
z2f s,Ss,ζ 

zx2
⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦E S

2
s,ζ − S

2
s 

2
ds

+2H
2σ4M4

t

0
s
4H− 2

E Ss,ζ − Ss 
2
E S

2
s ds

≤2H
2σ4M2

3Mζ2α
t

0
s
4H− 2

E Ss,ζ + Ss 
2
ds

+2M4H
2σ4Mζ2α

t

0
s
4H− 2

E S
2
s ds.

(25)
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As E(S2s ) is finite, E(Ss,ζ + Ss)
2 is also finite.

Let B � E(S2s ) and C � E(Ss,ζ + Ss)
2, then we have

C3≤ 2H
2σ4M2

3Mζ2αC 
t

0
s
4H− 2

ds + 2M4H
2σ4Mζ2αB 

t

0
s
4H− 2

ds≤ 2 H
2σ4M2

3Mζ2αC + M4H
2σ4Mζ2αB 

t
4H− 1

4H − 1
 

≤ 2
H

2σ4 M
2
3MC + M4MB 

4H − 1
⎛⎝ ⎞⎠T

4H− 1ζ2α,

C4 � σ2
t

0
E Ss, ς

zf

zx
s, Ss, ς( dB

H
s,ς − Ss

zf

zx
s, Ss( dB

H
s 

2

≤ 2σ2
t

0
E

zf

zx
s, Ss,ς  Ss,ς − Ss dB

H
s,ς 

2

+ 2σ2 
t

0
E S

2
s E

zf

zx
s, Ss,ς dB

H
s,ς −

zf

zx
s, Ss( dB

H
s 

2

≤ 2σ2
t

0
E Ss,ς − Ss 

2
E

zf

zx
s, Ss,ς dB

H
s,ς 

2

+ 4σ2 
t

0
E S

2
s E

zf

zx
s, Ss,ς dB

H
s,ς −

zf

zx
s, Ss( dB

H
s,ς 

2

+ 4σ2 
t

0
E S

2
s E

zf

zx
s, Ss( dB

H
s,ς −

zf

zx
s, Ss( dB

H
s 

2

≤ 2σ2Mς2α 
t

0
E

zf

zx
s, Ss,ς 

2

E dB
H
s,ς 

2
+ 4σ2M2

3B 
t

0
E Ss,ς − Ss 

2
E dB

H
s,ς 

2
+ 4σ2B 

t

0
E

zf

zx
s, Ss(  

2

E dB
H
s,ς − dB

H
s 

2

≤ 2σ2Mς2αM
2
2E B

H
t,ς 

2
+ 4σ2M2

3BMς2αE B
H
t,ς 

2
+ 4σ2BM

2
2E B

H
t,ς − B

H
t 

2

≤ ς2α 2σ2MT
2H

M
2
2 + 4σ2M2

3BMT
2H

+ 4σ2BM
2
2T .

(26)

We conclude that E[f(t, St,ζ) − f(t, St)]
2 ≤Dζ2α where

D a constant. We deduce that f(t, St,ζ) converges in mean
square to f(t, St) when ζ tends to 0.

V(t, f(t, St,ζ)) � ϕ0t S0t + ϕ1t f(t, St,ζ) is also a semi-
martingale because f(t, St,ζ) is a semimartingale and ϕ0t S0t is
a finite variation process.

Similarly,

V t, f t, St,ζ   − V t, f t, St( (  � ϕ1t f t, St,ζ  − f t, St(  ,

E V t, f t, St,ζ   − V t, f t, St( (  
2

� ϕ1t 
2
E f t, St,ζ  − f t, St(  

2
≤ ϕ1t 

2
Dζ2α.

(27)

Hence, the convergence of V(t, f(t, St,ζ)) to V(t, f(t, St)) in
L2(Ω). □

Theorem 1. Let St,ζ be a continuous semimartingale defined
on a probability space (Ω,F, P) and f a function of class C1,3

then under certain assumptions there exist two processes St,ζ �

f(t, St,ζ) and V(t, f(t, St,ζ)) such that

(1) St,ζ is the unique solution of the equation

dSt,ζ
St,ζ

� g t, f t, St,ζ  dt + h t, f t, St,ζ  dWt, (28)

and verifies the relation

σ2C2
S
2
t,ζζ

2H− 1
zf t, St,ζ /zSt,ζ 

2

β + f t, St,ζ 
�

zf t, St,ζ 

zt
+

zf t, St,ζ 

zSt,ζ
μ + αt( St,ζ + Hσ2t2H− 1z

2
f t, St,ζ 

zS
2
t,ζ

S
2
t,ζ , (29)

with
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g t, f t, St,ζ   �
1

f t, St,ζ 

zf t, St,ζ 

zt
+

zf t, St,ζ 

zSt,ζ
μ + αt( St,ζ + Hσ2t2H− 1z

2
f t, St,ζ 

zS
2
t,ζ

S
2
t,ζ

⎡⎢⎣ ⎤⎥⎦, (30)

and

h t, f t, St,ζ   �
1

f t, St,ζ 
CσSt,ζ

zf t, St,ζ 

zSt,ζ

⎞⎠ζH− 1/2
,

(31)

two bounded predictable processes and
αt � Cσ(H − 1/2) 

t

− ∞ (t − s + ζ)H− 3/2dWs.

(2) -e processes f(t, St,ζ) and V(t, f(t, St,ζ)) are Mar-
kovian processes.

Proof of -eorem 1.

(1) Let f be a function of class C1,3 and the process St

defined in the relation (5); according to theWick-ito,
we have:

df t, St(  �
zf t, St( 

zt
+

zf t, St( 

zSt

μSt + Hσ2t2H− 1z
2
f t, St( 

zS
2
t

S
2
t dt + σS(t)

zf t, St( 

zSt

dB
H
t . (32)

We approximate BH
t by BH

t,ζ , and we have

C
− 1

B
H
t � 

0

− ∞
(t − s)

H− 1/2
− (− s)

H− 1/2
 dWs + 

t

0
(t − s)

H− 1/2
dWs, (33)

and the integral


0

− ∞
(t − s)

H− 1/2
− (− s)

H− 1/2
 dWs, (34)

is a process with absolutely continuous trajectories,
and by taking τ � 0 in the relation (11), we can give a
meaning to the derivative

d
dt


0

− ∞
(t − s)

H− 1/2
dWs . (35)

Using the fractional Brownian motion approxima-
tion of Tran Hung *ao, we have

C
− 1

dB
H
t,ζ �

d
dt


0

− ∞
(t − s + ζ)

H− 1/2
dWs + H −

1
2

  
t

0
(t − s + ζ)

H− 3/2
dWs dt + ζH− 1/2

dWt. (36)

*erefore,

dB
H
t,ζ � C H −

1
2

  
t

− ∞
(t − s + ζ)

H− 3/2
dWs dt + CζH− 1/2

dWt. (37)

Replacing dBH
t by dBH

t,ζ , St by St,ζ and f(t, St) by
f(t, St,ζ) in (32), we obtain

dSt,ζ
St,ζ

�
1

f t, St,ζ 

zf t, St,ζ 

zt
+

zf t, St,ζ 

zSt,ζ
μ + αt( St,ζ + Hσ2t2H− 1z

2
f t, St,ζ 

zS
2
t,ζ

S
2
t,ζ

⎡⎢⎣ ⎤⎥⎦dt +
1

f t, St,ζ 
CσSt,ζ

zf t, St,ζ 

zSt,ζ

⎞⎠ζH− 1/2
dWs.

(38)

Let

g t, f t, St,ζ   �
1

f t, St,ζ 

zf t, St,ζ 

zt
+

zf t, St,ζ 

zSt,ζ
μ + αt( St,ζ + Hσ2t2H− 1z

2
f t, St,ζ 

zS
2
t,ζ

S
2
t,ζ

⎡⎢⎣ ⎤⎥⎦, (39)

and
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h t, f t, St,ζ   �
1

f t, St,ζ 
CσSt,ζ

zf t, St,ζ 

zSt,ζ

⎞⎠ζH− 1/2
.

(40)

We have

dSt,ζ
St,ζ

�
df t,St,ζ 

f t,St,ζ 
� g t,f t,St,ζ  dt + h t,f t,St,ζ  dWt.

(41)

From hypothesis (H1) and (H2), we have

(1 − λ)St,ζ ≤f t, St,ζ ≤ St,ζ ,

h(t, f t, St,ζ 


 �
1

f t, St,ζ 
CσSt,ζ

zf t, St,ζ 

zx
ζH− 1/2




≤

1
1 − λ

CσM2ζ
H− 1/2

.

(42)

So, 
t

0 (h(s, f(s, Ss,ζ))
2ds< 

t

0 ((1/1 − λ)CσM2
ζH− 1/2

)2ds< ((1/1 − λ)CσM2ζ
H− 1/2

)2T< +∞.

g t, f t, St,ζ  


 �
1

f t, St,ζ 

zf t, St,ζ 

zt
+

zf t, St,ζ 

zSt,ζ
μ + αt( St,ζ + Hσ2t2H− 1z

2
f t, St,ζ 

zS
2
t,ζ

S
2
t,ζ

⎡⎢⎣ ⎤⎥⎦. (43)

From Hypothesis (H1) 1 and the hypothesis (H2),
(H3),

g t, f t, St,ζ  


≤
1

(1 − λ)St,ζ

zf t, St,ζ 

zt
+ M2 μ + αt( St,ζ + Hσ2t2H− 1

M3S
2
t,ζ

⎡⎣ ⎤⎦

g t, f t, St,ζ  


≤ Supt∈[0,T]

1
(1 − λ)St,ζ

zf t, St,ζ 

zt
+

M2 μ + αt( 

1 − λ




+

Hσ2T2H− 1
M3

1 − λ
Supt∈[0,T] St,ζ .

(44)

*erefore,


t

0
g u, f u, Su,ζ  



du < +∞. (45)

From Assumption 1 and the hypothesis (H3), we
have

h t, f t, x1( (  − h t, f t, x2( ( 


 �
1

f t, x1( 
Cσx1

zf t, x1( 

zx
ζH− 1/2

−
1

f t, x2( 
Cσx2

zf t, x2( 

zx
ζH− 1/2





≤
σCζH− 1/2

1 − λ
zf t, x1( 

zx
−

zf t, x2( 

zx




≤
σCζH− 1/2

1 − λ
M3 x1 − x2


,

kt � |μ(t, 0)| +|σ(t, 0)| �
1

f(t, 0)

zf(t, 0)

zt
+

zf(t, 0)

zx
+ C 




.

(46)

*e functions f(t, 0), zf(t, 0)/zx, zf(t, 0)/zt are
continuous and bounded functions for t ∈ [0; T] so
E[

t

0 |ku|2du]< +∞.

Assume that f is monotonic, i.e., f(t, x2)>f(t, x1)

and x2 >x1 (where f(t, x2)>f(t, x1) and x2 < x1)
and N � Supt∈[0,T](1/f(t, x1)),
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g t, x1(  − g t, x2( 


≤
1

f t, x1( 

zf t, x1( 

zt
−

zf t, x2( 

zt
 





+
1

f t, x1( 

zf t, x1( 

zx
μ + αt( x1 −

zf t, x2( 

zx
  μ + αt( x2





+ Hσ2t2H− 1 1
f t, x1( 

z
2
f t, x1( 

zx
2 x

2
1 −

z
2
f t, x2( 

zx
2 x

2
2 




.

(47)

Under the Hypotheses (H1), (H3), and (H4), we
have

g t, x1(  − g t, x2( 


≤NM1 x1 − x2


 + M3N x1


 μ + αt


 x1 − x2


 + Hσ2t2H− 1
M4N x

2
1


 x1 − x2




≤ Supt∈[0,T] M1N + M3N x1


 μ + αt


 + NHσ2t2H− 1

M4 x
2
1


   x1 − x2


.

(48)

We have

h t, x1(  − h t, x2( 


 + g t, x1(  − g t, x2( 




≤ x1 − x2


 Supt∈[0,T] M1N + M3N x1


 μ + αt


 + Hσ2t2H− 1

M4N x
2
1


  +

σCζH− 1/2

1 − λ
M3 .

(49)

Using Hypothesis 1, we have St,ζ ∈ [(1 − λ)St,ζ ; St,ζ],

g t, f t, St,ζ   �
1

f t, St,ζ 

zf t, St,ζ 

zt
+

zf t, St,ζ 

zSt,ζ
μ + αt( St,ζ + Hσ2t2H− 1z

2
f t, St,ζ 

zS
2
t,ζ

S
2
t,ζ

⎡⎢⎣ ⎤⎥⎦, (50)

and

h t, f t, St,ζ   �
1

f t, St,ζ 
CσSt,ζ

zf t, St,ζ 

zSt,ζ

⎞⎠ζH− 1/2
.

(51)

According to the relation (3),

ϕ1t St,ζ

ϕ0t + ϕ1t St,ζ
�
μt

σ2t
. (52)

We have

ϕ1t f t, St,ζ 

ϕ0t + ϕ1t f t, St,ζ 
�
1/f t, St,ζ  zf t, St,ζ /zt + zf t, St,ζ /zSt,ζ μ + αt( St,ζ + Hσ2t2H− 1

z
2
f t, St,ζ /zS

2
t,ζS

2
t,ζ 

C
2/ f t, St,ζ  

2
σ2S2t,ζ ζ

2H− 1
zf t, St,ζ /zSt,ζ 

2 ,

f t, St,ζ 

β + f t, St,ζ 
�

f t, St,ζ  zf t, St,ζ /zt + zf t, St,ζ /zSt,ζ μ + αt( St,ζ + Hσ2t2H− 1
z
2
f t, St,ζ /zS

2
t,ζS

2
t,ζ 

C
2σ2S2t,ζ ζ

2H− 1
zf t, St,ζ /zSt,ζ 

2 ,

(53)

with β � ϕ0t /ϕ
1
t ,

1
β + f t, St,ζ 

�
zf t, St,ζ /zt + zf t, St,ζ /zSt,ζ μ + αt( St,ζ + Hσ2t2H− 1

z
2
f t, St,ζ /zS

2
t,ζS

2
t,ζ

σ2C2
S
2
t,ζζ

2H− 1
zf t, St,ζ /zSt,ζ 

2 ,

σ2C2
S
2
t,ζζ

2H− 1
zf t, St,ζ /zSt,ζ 

2

β + f t, St,ζ 
�

zf t, St,ζ 

zt
+

zf t, St,ζ 

zSt,ζ
μ + αt( St,ζ + Hσ2t2H− 1z

2
f t, St,ζ 

zS
2
t,ζ

S
2
t,ζ .

(54)
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(2) *e process f(t, St,ζ) is a solution of (12); thus, it is
Markovian process. We deduce that V(t, f(t, St,ζ)) �

ϕ0t S0t + ϕ1t f(t, St,ζ) is also a Markovian process. □

4. Conclusion

In this work, we have proposed a shadow price approxi-
mation method for the fractional Black model in the sense of
Wick-Itô in the context of an optimization problem under
transaction costs. We obtained (54) whose resolution gives a
candidate process for the shadow price approximation. *e
problem is thus reduced to a frictionless optimization
problem in theMarkovian framework which could be solved
by Hamilton–Jacobi type equations.
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