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In this paper, we design and investigate a higher order ε-uniformly convergent method to solve singularly perturbed parabolic
reaction-di�usion problems with a large time delay. We use the Crank–Nicolson method for the time derivative, while the spatial
derivative is discretized using a nonstandard �nite di�erence approach on a uniform mesh. Furthermore, to improve the order of
convergence, we used the Richardson extrapolation technique. �e designed scheme converges independent of the perturbation
parameter (ε-uniformly convergent) and also achieves fourth-order convergent in both time and spatial variables. Two model
examples are considered to demonstrate the applicability of the suggestedmethod.�e proposedmethod produces better accuracy
and a higher rate of convergence than some methods that appear in the literature.

1. Introduction

Many practical problems which are modelled by parameter
dependent di�erential equations and delay singularly per-
turbed di�erential equations have many application in en-
gineering and applied mathematics such as the e�ect of
various physical parameter on heat and mass transfer [1, 2],
heat transport in the presence of magnetic �eld and mod-
ulation [3, 4], ground water �ow, extraction of oil from
reservoirs, population dynamics, and �uid �ow.�e solution
of time delayed singularly perturbed partial di�erential
equation is not only determined by its present state but also
by a certain past state. One of the di�culties in solving
singularly perturbed problems is developing ε− uniformly
convergent methods. As far as �nite di�erence methods are
concerned, two approaches have ordinarily been used by
numerical analysis to obtain ε− uniformly convergent
methods for solving singularly perturbed problems, and
these are namely �tted operator and �tted mesh �nite dif-
ference methods [5].

�e majority of researchers focused on the numerical
solution of singularly perturbed partial di�erential equations
without a delay parameter [6–10]. Numerical approaches for

solving singularly perturbed parabolic time delay reaction-
di�usion equations that are ε− uniformly convergent are not
well established. Gowrisankar and Natesan [11] presented a
numerical scheme for singularly perturbed parabolic delay
convection di�usion equation using piecewise �tted mesh
approach, and the method have �rst-order in time and �rst-
order up to a logarithmic factor in space. Singh et al. [12]
analyzed a domain decomposition method for solving
singularly perturbed parabolic reaction-di�usion problems
with time delay, and the method have rate of convergence
one. Yulan et al. [13] examined time delayed singularly
perturbed reaction-di�usion problem using the barycentric
interpolation collocation method but they did not show the
convergence analysis. Kumar and Kumari [14] introduced a
cubic B-spline method over�tted mesh for a class of sin-
gularly perturbed delay parabolic partial di�erential equa-
tions �rst-order in t and second-order accurate in x.
Dagnachew et al. [15] designed a �tted operator method for
singularly perturbed parabolic convection di�usion equa-
tion with small space delays, and the method have second
order in both spatial and temporary variables. Kumar [16]
developed a collocation method consisting of cubic B-spline
basis functions over piecewise-uniform mesh for singularly
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perturbed parabolic convection diffusion problems with a
time delay. Govindarao et al. [17] presented for the solution
of singularly perturbed delay parabolic reaction-diffusion
initial-boundary-value problem using Shishkin mesh strat-
egy. Mesfin and Gemechis [18] introduced numerical so-
lution for singularly perturbed parabolic PDEs with shift
parameter using the Crank–Nicolson method in the tem-
poral discretization and nonstandard finite difference
method in the spatial discretization, and the method have
order of convergence O(Δx + (Δt)2). Fasica and Gemechis
[19] proposed a nonstandard finite difference method for
singularly perturbed parabolic reaction-diffusion subject to
Robin boundary conditions, and the method have the rate of
convergence one.

In this study, we developed a nonstandard finite difference
method (NSFDM) for solving singularly perturbed parabolic
reaction-diffusion problems with a large time delay. We ap-
plied a nonstandard finite difference method (Mickens rule)

over the Crank–Nicolson finite difference method. To accel-
erate the order of convergence, the Richardson extrapolation
technique is applied.)e current method is more accurate and
has faster rate of convergence than those methods that appear
in the literature. )e present method has a fourth-order of
convergence in both the spatial and temporal variables after
Richardson extrapolation technique applied.

Notation. )roughout this work, M and C are positive
constants that are independent of the perturbation parameter
ε and m and n. )e norm ‖ . ‖ denotes the maximum norm.

2. Description of the Problem

We consider the singularly perturbed parabolic reaction-
diffusion initial boundary value problem with time delay
over D � Dx × Dt with Dx � (0, 1), Dt � (0, T], and Ω �

Ωl ∪Ωb ∪Ωr of the form:

ut − ϵuxx + p(x, t)u(x, t) + q(x, t)u(x, t − τ) � g(x, t), (x, t) ∈ D,

u(x, t) � ψb(x, t), onΩb � (x, t): 0≤x≤ 1, − τ ≤ t≤ 0{ },

u(0, t) � ψl(t), onΩl � (0, t): 0≤ t≤T{ },

u(1, t) � ψr(t), onΩr � (1, t): 0≤ t≤T{ },

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where 0< ϵ≪ 1 and τ > 0 are the given constants. )e
functions p(x, t), q(x, t), g(x, t) over D and
ψb(x, t),ψl(t),ψr(t) overΩ are sufficiently smooth and
bounded functions that satisfy

p(x, t)≥ α> 0, (x, t) ∈ D. (2)

For some positive integer b, the terminal time T is
considered to satisfy the condition T � bτ. )e existence of a
unique solution of equation (1) is guaranteed with the as-
sumption that the data are smooth and satisfy appropriate
compatibility conditions at the corner points
(0, 0), (1, 0), (0, − τ), and (1, − τ). )e delay terms and the
required compatibility condition at the corner points are
ψb(0, 0) � ψl(0),ψb(1, 0) � ψr(0), and

dψl(0)

dt
− ϵ

z
2ψb(0, 0)

zx
2 + p(0, 0)ψb(0, 0) + q(0, 0)ψb(0, − τ) � g(0, 0),

dψr(0)

dt
− ϵ

z
2ψb(1, 0)

zx
2 + p(1, 0)ψb(1, 0) + q(1, 0)ψb(1, − τ) � g(1, 0).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

Equation (1) admits a unique solution under the above
assumptions and compatibility conditions, and the solution
exhibits boundary layers along x � 0, x � 1 in [20].

u(x, t) − ψb(x, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Ct, (x, t) ∈ D,

|u(x, t)|≤C, (x, t) ∈D,

⎧⎨

⎩ (4)

where C is the positive real constant. For the proof of
equation (4), see Govindarao and Mohapatra [21].

Lemma 1. �e solution of the equation (1) satisfies the fol-
lowing estimate:

Lemma 2. Continuous maximum principle: we assume that
θ(x, t) is any sufficiently smooth function satisfying
θ(x, t)≥ 0, ∀(x, t) ∈ zD. �en, Lϵθ(x, t)≥ 0, ∀(x, t) ∈ D

implies that θ(x, t)≥ 0, ∀(x, t) ∈D, where
Lϵθ(x, t) � θt(x, t) − ϵθxx(x, t) + p(x, t)θ(x, t).

Proof. We assume (x∗, t∗) ∈D − zD such that θ(x∗, t∗) �

min
(x,t)∈D

θ(x, t) and suppose θ(x∗, t∗)< 0. )is gives that

θt(x∗, t∗) � 0, θx(x∗, t∗) � 0, and θxx(x∗, t∗)≥ 0, and this
implies

L
ϵθ x
∗
, t
∗

( 􏼁 � θt x
∗
, t
∗

( 􏼁 − ϵθxx x
∗
, t
∗

( 􏼁 + p x
∗
, t
∗

( 􏼁 x
∗
, t
∗

( 􏼁

� − ϵθxx x
∗
, t
∗

( 􏼁 + p x
∗
, t
∗

( 􏼁θ x
∗
, t
∗

( 􏼁

≤ 0.

(5)

We have Lϵθ(x, t)≤ 0 which contradicts our assumption.
)us, θ(x∗, t∗)≥ 0 which leads to θ(x, t)≥ 0,
∀(x, t) ∈D. □

Lemma 3. Stability estimate: let u(x, t) be the solution of the
continuous problem for equation (1), and we have

‖u(x, t)‖≤ α− 1
L
ϵ
u

����
���� +‖u‖Ω, (6)

where Lϵu � ut − ϵuxx + p(x, t)u(x, t).
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Proof. Let the two barrier function π± be defined as
π± � α− 1‖Lϵu‖ + ‖u‖Ω ± u(x, t), (x, t) ∈D, we have

π±(0, t) � α− 1
L
ϵ
u

����
���� +‖u‖Ω ± u(0, t)≥ ‖u‖Ω ± u(0, t)≥ 0,

π±(1, t) � α− 1
L
ϵ
u

����
���� +‖u‖Ω ± u(1, t)≥ ‖u‖Ω ± u(1, t)≥ 0.

(7)

Also, for (x, t) ∈ Ωb,

π±(x, t) � α− 1
L
ϵ
u

����
���� +‖u‖Ω ± u(x, t)≥ ‖u‖Ω ± u(x, t)≥ 0.

(8)

Furthermore, ∀(x, t) ∈ D

L
ϵπ±(x, t) � π ±t (x, t) − ϵπ ±xx(x, t) + p(x, t)π±(x, t)

� p(x, t) α− 1
L
ϵ
u

����
���� +‖u‖Ω􏽨 􏽩 ± L

ϵ
u(x, t)

≥ L
ϵ
u

����
���� + α‖u‖Ω ± L

ϵ
u(x, t)

≥ L
ϵ
u

����
���� ± L
ϵ
u(x, t)≥ 0.

(9)

)erefore, using Lemma 2, we obtained the desired
outcome. □

3. Derivation of the Numerical Method

In this section, we develop a nonstandard finite difference
method over Crank–Nicolson scheme to solve equation (1).

3.1. Time Discretization. We first perform a semi-
discretization of the problem in time direction by using the
average of implicit and explicit Euler method with uniform
time-steps k � (T/n) in the time-interval [0, T]. )is results
a time-mesh Dn

t ≡ tj � jk, j � 0, 1, 2, . . . , n, and the method
results in a system of boundary value problems.

u
j+1

(x) − u
j
(x)

k
−
ϵ
2

u
j+1
xx (x) + u

j
xx(x)􏽨 􏽩 +

1
2

p
j+1

(x)u
j+1

(x) + p
j
(x)u

j
(x)􏽨 􏽩

� −
1
2

q
j+1

(x)ψb x, t
j+1

− 1􏼐 􏼑 + q
j
(x)ψb x, t

j
− 1􏼐 􏼑􏽨 􏽩 +

1
2

g
j+1

(x) + g
j
(x)􏽨 􏽩,

for 0<x< 1 and 0≤ j≤
n

b
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
j+1

(x) − u
j
(x)

k
−
ϵ
2

u
j+1
xx (x) + u

j
xx(x)􏽨 􏽩 +

1
2

p
j+1

(x)u
j+1

(x) + p
j
(x)u

j
(x)􏽨 􏽩

� −
1
2

q
j+1

(x)u
j+1− (n/b)

(x) + q
j
(x)u

j− (n/b)
(x)􏽨 􏽩 +

1
2

g
j+1

(x) + g
j
(x)􏽨 􏽩,

for 0<x< 1 and
n

b
< j≤ n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)
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where u(x, tj+1) � uj+1(x), p(x, tj+1) � pj+1(x),
q(x, tj+1) � qj+1(x), g(x, tj+1) � gj+1(x), and b � (T/τ).

Rearranging equation (10), we get

− ϵuj+1
xx (x) + p

j+1
(x)u

j+1
(x)

� ϵuj
xx(x) − p

j
(x)u

j
(x) + g

j+1
(x) + g

j
(x),

for 0<x< 1 and 0≤ j≤
n

b
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ϵuj+1
xx (x) + p

j+1
(x)u

j+1
(x) � ϵuj

xx(x) − p
j
(x)u

j
(x)

+q
j+1

(x)u
j+1− (n/b)

(x) + q
j
(x)u

j− (n/b)
(x) + g

j+1
(x) + g

j
(x),

for 0<x< 1 and
n

p
< j≤ n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where pj+1(x) � pj+1(x) + (2/k), p
j
(x) � pj(x) − (2/k),

and gj+1(x) � gj+1(x) − qj+1(x)ψb(x, tj+1 − 1).
In the operator form, equation (11) can be written as

L
∗
u

j+1
(x) � g1 x, tj+1􏼐 􏼑, 0<x< 1 and 0≤ j≤

n

b
,

L
∗
u

j+1
(x) � g2 x, tj+1􏼐 􏼑, 0<x< 1 and

n

b
< j≤ n,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

with initial and boundary condition

u(x, 0) � ψb(x, 0),

u(0, t) � ψl(t), u(1, t) � ψr(t),
􏼨 (13)

where

L
∗
u

j+1
(x) � − ϵuj+1

xx (x) + p
j+1

(x)u
j+1

(x),

g1 x, tj+1􏼐 􏼑 � ϵuj
xx(x) − p

j
(x)u

j
(x) + g

j+1
(x) + g

j
(x),

g2 x, tj+1􏼐 􏼑 � ϵuj
xx(x) − p

j
(x)u

j
(x)

− q
j+1

(x)u
j+1− (n/b)

(x) − q
j
(x)u

j− (n/b)
(x)

+ g
j+1

(x) + g
j
(x).

(14)

Lemma 4 (Maximum principle for continuous
semidiscretization). We assume θj+1(x) ∈ C2(Dx). If
θj+1(0)≥ 0, θj+1(1)≥ 0, and L∗θj+1(x)≥ 0∀x ∈ Dx, then
θj+1(x)≥ 0∀x ∈ Dx.

Proof. Suppose that x∗ ∈ Dx such that

θj+1
x
∗

( 􏼁 � minx∈Dx
θj+1

(x)< 0. (15)

Since θj+1(0)≥ 0, θj+1(1)≥ 0, then x∗ ∉ 0, 1{ } and
x∗ ∈ Dx.

)e differential operator L∗θj+1(x) at the point x∗ value
becomes

L
∗θj+1

x
∗

( 􏼁 � − ϵθj+1
xx x
∗

( 􏼁 + p
j+1

x
∗

( 􏼁θj+1
x
∗

( 􏼁,

< 0, since θj+1
xx x
∗

( 􏼁≥ 0,
(16)

which contradicts our assumption.
)erefore, θj+1(x)≥ 0, ∀x ∈ Dx. □

)e local truncation error of the semidiscretization
method of equation (11) is given by ej+1 ≡ uj+1 − uj+1,
where uj+1 is the computed solution of the boundary value
problem.

Lemma 5 (Estimation of local error). Suppose that

z
v

zt
v u(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤C, (x, t) ∈ D, 0≤ v≤ 2. (17)

)e local error estimate in the temporal direction is
given by

e
j+1����

����∞ � C1k
3
. (18)

Proof. Using Taylor series expansion, we have

u x, t
j+1

􏼐 􏼑 � u x, t
j+(1/2)

􏼐 􏼑 +
k

2
ut x, t

j+(1/2)
􏼐 􏼑 +

k
2

8
utt + O k

3
􏼐 􏼑, (19)

u x, t
j

􏼐 􏼑 � u x, t
j+(1/2)

􏼐 􏼑 −
k

2
ut x, t

j+(1/2)
􏼐 􏼑 +

k
2

8
utt + O k

3
􏼐 􏼑.

(20)
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Subtracting equations (19) and (20), we have

u x, t
j+1

􏼐 􏼑 − u x, t
j

􏼐 􏼑

k
� ut x, t

j+(1/2)
􏼐 􏼑 + O k

2
􏼐 􏼑,

u x, t
j+1

􏼐 􏼑 − u x, t
j

􏼐 􏼑

k
� ϵuxx

x, t
j

+
k

2
􏼠 􏼡 − p x, t

j
+

k

2
􏼠 􏼡u x, t

j
+

k

2
􏼠 􏼡

+g1 x, t
j

+
k

2
􏼠 􏼡, 0<x< 1, 0≤ j≤

n

p
,

u x, t
j+1

􏼐 􏼑 − u x, t
j

􏼐 􏼑

k
� ϵuxx

x, t
j

+
k

2
􏼠 􏼡 − p x, t

j
+

k

2
􏼠 􏼡u x, t

j
+

k

2
􏼠 􏼡

+g2 x, t
j

+
k

2
􏼠 􏼡, 0<x< 1,

n

p
< j≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where

u x, t
j

+
k

2
􏼠 􏼡 �

u x, t
j

􏼐 􏼑 + u x, t
j+1

􏼐 􏼑

2
+ O k

2
􏼐 􏼑,

g x, t
j

+
k

2
􏼠 􏼡 �

g x, t
j

􏼐 􏼑 + g x, t
j+1

􏼐 􏼑

2
+ O k

2
􏼐 􏼑.

(22)

)e solution to the local error is

L
∗
e

j+1
� O k

3
􏼐 􏼑,

e
j+1

(0) � 0 � e
j+1

(1).
(23)

)us, using the maximum principle, the required result
is satisfied. □

Lemma 5 at each time step plays significant role to the
global error in the temporal discretization which is defined
in the following lemma.

Lemma 6 (Global error estimate). �e global error estimate
at jth time level is given by

E
j

����
����∞ ≤C3k

2
. (24)

Proof. Using Lemma 5, the global error estimate at (j)th

time level is given by

E
j

����
����∞ � 􏽘

j

l�1
e

l

���������

���������∞

≤ e
1����
����∞ + e

2����
����∞ + · · · + e

j
����

����∞

≤C(jk)k
2
, using Lemma 5

≤CTk
2
, since jk≤T

� C3k
2
,

(25)

where C3 is the positive real constant independent of ϵ and
k. □

Lemma 7 (Stability estimate for semidiscretization). Let
y(x) be the solution of the continuous problem for equation
(11). �en, we have

‖y(x)‖≥ α− 1
L
∗
y(x)

����
���� +‖y(x)‖Ω. (26)

Proof. )is lemma can be proved using the same approach
as Lemma 3. □

3.2. Spatial DiscretizationwithNSFDM. )e development of
the exact finite difference approach led to the discovery of a
nonstandard discrete modeling method. Let Dm

x be the
partition of the spatial domain [0, 1] into m subinterval such
that

xi � ih, for i � 0, 1, 2, . . . , m, (27)

where h � (1/m) is the step length in spatial direction such
that h> ϵ. )e resulted boundary value problems (11) are
treated using the nonstandard finite difference scheme rules
of Mickens in [22] to find the solution as follows:

− ϵ
u

j+1
i− 1 − 2u

j+1
i + u

j+1
i+1

ϕ2(i, j + 1)
􏼢 􏼣 + p

j+1
i u

j+1
i � ϵ

u
j
i− 1 − 2u

j
i + u

j
i+1

ϕ2(i, j)
􏼢 􏼣 − p

j

i u
j
i + g

j+1
i + g

j
i , for 0< i<m and 0≤ j≤

n

b
,

− ϵ
u

j+1
i− 1 − 2u

j+1
i + u

j+1
i+1

ϕ2(i, j + 1)
􏼢 􏼣 + p

j+1
i u

j+1
i � ϵ

u
j

i− 1 − 2u
j

i + u
j

i+1

ϕ2(i, j)
􏼢 􏼣

− p
j

i u
j
i + q

j+1
i u

j+1−
n

b
i + q

j
i u

j−
n

b
i + g

j+1
i + g

j
i , for 0< i<m and

n

b
< j≤ n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)
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with initial and boundary conditions

u xi, 0( 􏼁 � ψb xi, 0( 􏼁,

u 0, t
j

􏼐 􏼑 � ψl t
j

􏼐 􏼑, u 1, t
j

􏼐 􏼑 � ψr t
j

􏼐 􏼑,

⎧⎨

⎩ (29)

where for i � 1, 2, . . . , m − 1 and j � 1, 2, . . . , n.

ϕ2(i, j) �
4

ρ2(i, j)
sinh2

ρ(i, j)h

2
􏼠 􏼡, with ρ(i, j) �

��

p
j
i

ϵ

􏽳

. (30)

)e scheme (28) results in a tridiagonal system of linear
equations

E
j+1
i u

j+1
i− 1 + F

j+1
i u

j+1
i + G

j+1
i u

j+1
i+1 � H

j+1
i , (31)

where

E
j+1
i �

− ϵ
ϕ2(i, j + 1)

F
j+1
i �

2ϵ
ϕ2(i, j + 1)

+ p
j+1
i

G
j+1
i �

− ϵ
ϕ2(i, j + 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀i, j and

H
j+1
i �

ϵ
u

j
i− 1 − 2u

j
i + u

j
i+1

ϕ2(i, j)
􏼢 􏼣 − p

j

i u
j
i + g

j+1
i + g

j
i , ∀i, 0≤ j≤

n

b
,

ϵ
u

j
i− 1 − 2u

j
i + u

j
i+1

ϕ2(i, j)
􏼢 􏼣 − p

j

i u
j
i − q

j+1
i u

j+1−
n

b
i − q

j
i u

j−
n

b
i + g

j+1
i + g

j
i , ∀i,

n

b
< j≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Table 1: Maximum absolute pointwise error and rate of convergence for Example 1 before and after the Richardson extrapolation method
applied, where L≥ 6.

ε↓ m, n⟶ 10, 10 20, 20 40, 40 80, 80 160, 160
After

10− 6 5.7318e − 06 3.3273e − 07 2.0558e − 08 1.2776e − 09 7.9666e − 11
10− 8 5.7318e − 06 3.3273e − 07 2.0558e − 08 1.2776e − 09 7.9666e − 11
10− 10 5.7318e − 06 3.3273e − 07 2.0558e − 08 1.2776e − 09 7.9666e − 11
10− 12 5.7318e − 06 3.3273e − 07 2.0558e − 08 1.2776e − 09 7.9666e − 11
10− 14 5.7318e − 06 3.3273e − 07 2.0558e − 08 1.2776e − 09 7.9666e − 11

Rate of convergence
10− L 4.1066 4.0166 4.0081 4.0034

Before
10− 6 8.3948e − 03 2.3134e − 03 6.0360e − 04 1.5393e − 04 3.8852e − 05
10− 8 8.3948e − 03 2.3134e − 03 6.0360e − 04 1.5393e − 04 3.8852e − 05
10− 10 8.3948e − 03 2.3134e − 03 6.0360e − 04 1.5393e − 04 3.8852e − 05
10− 12 8.3948e − 03 2.3134e − 03 6.0360e − 04 1.5393e − 04 3.8852e − 05
10− 14 8.3948e − 03 2.3134e − 03 6.0360e − 04 1.5393e − 04 3.8852e − 05

Rate of convergence
10− L 1.8595 1.9383 1.9713 1.9862
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)e discrete operator of the scheme (31) satisfies the
following maximum principle.

Lemma 8 (Discrete maximum principle). Suppose that Lm,n

is the discrete operator of the scheme (31) and ωj
i be any mesh

function satisfying, ω0
i ≥ 0, ωj

0 ≥ 0, ωj
m ≥ 0, ∀i, j. If Lm,nωj

i ≥ 0
in Dn

m, then ωj
i ≥ 0 in D

n

m.

Proof. Let ωl
s � min

(i,j)
ωj

i , for all ω
j
i ∈ D

n

m and ωl
s < 0. It follows

that ωl
s+1 − ωl

s > 0 and ωl
s− 1 − ωl

s > 0. )us, Lm,nωl
s < 0, which

contradicts our assumptions.

)erefore, ωj
i ≥ 0 ∈ D

n

m. □

4. Convergence Analysis

We shall omit the time level index for the sake of simplicity.
)e following is how we get the local truncation error of the
present nonstandard finite difference method from equation
(28):

L
m,n
ϵ Ui − ui( 􏼁 � Lx,ϵ − L

m
x,ϵ􏼐 􏼑ui, (33)

using nonstandard finite difference method

Table 2: Maximum absolute pointwise error and rate of convergence for Example 2 before and after the Richardson extrapolation method
applied, where L≥ 6.

ε↓ m, n⟶ 16, 16 32, 32 64, 64 128, 128 256, 256
After

10− 6 1.5252e − 06 5.6891e − 08 2.8561e − 09 1.5286e − 10 9.4897e − 12
10− 8 1.5252e − 06 5.6891e − 08 2.8561e − 09 1.5808e − 10 9.4897e − 12
10− 10 1.5252e − 06 5.6891e − 08 2.8561e − 09 1.5808e − 10 9.4897e − 12
10− 12 1.5252e − 06 5.6891e − 08 2.8561e − 09 1.5808e − 10 9.4897e − 12
10− 14 1.5252e − 06 5.6891e − 08 2.8561e − 09 1.5808e − 10 9.4897e − 12

Rate of convergence
10− L 4.7446 4.3161 4.2237 4.0581

Before
10− 6 4.7003e − 03 1.1960e − 03 3.0108e − 04 7.5494e − 05 1.8899e − 05
10− 8 4.7003e − 03 1.1960e − 03 3.0108e − 04 7.5494e − 05 1.8899e − 05
10− 10 4.7003e − 03 1.1960e − 03 3.0108e − 04 7.5494e − 05 1.8899e − 05
10− 12 4.7003e − 03 1.1960e − 03 3.0108e − 04 7.5494e − 05 1.8899e − 05
10− 14 4.7003e − 03 1.1960e − 03 3.0108e − 04 7.5494e − 05 1.8899e − 05

Rate of convergence
10− L 1.9746 1.9383 1.9957 1.9980

Table 4: Comparison of absolute maximum errors and rate of convergence Rm,n for Example 2.

ε↓ m, n⟶ 32, 32 64, 64 128, 128 256, 256
Present method
10− 6 5.6891e − 08 2.8561e − 09 1.5286e − 10 9.4897e − 12
10− 7 5.6891e − 08 2.8561e − 09 1.5286e − 10 9.4897e − 12
10− 8 5.6891e − 08 2.8561e − 09 1.5286e − 10 9.4897e − 12
Rm,n 4.3161 4.2237 4.0581
Govindarao and Mohapatra [21]
10− 6 2.6347e − 03 2.4293e − 04 1.6525e − 05 1.0538e − 06
10− 7 2.6347e − 03 2.4293e − 04 1.6525e − 05 1.0538e − 06
10− 8 2.6347e − 03 2.4293e − 04 1.6525e − 05 1.0538e − 06
Rm,n 3.4390 3.8771 3.9710

Table 3: Comparison of absolute maximum errors and rate of convergence Rm,n for Example 1.

ε↓ m, n⟶ 32, 8 64, 16 128, 32 256, 64
Present method
10− 6 1.3999e − 05 8.6123e − 07 5.0742e − 08 3.1249e − 09
10− 7 1.3999e − 05 8.6123e − 07 5.0742e − 08 3.1249e − 09
10− 8 1.3999e − 05 8.6123e − 07 5.0742e − 08 3.1249e − 09
Rm,n 4.0228 4.0851 4.0213
Singh et al. [12]
10− 6 7.95e − 01 2.03e − 01 5.12e − 02 1.28e − 02
10− 7 7.95e − 01 2.03e − 01 5.12e − 02 1.28e − 02
10− 8 7.95e − 01 2.03e − 01 5.12e − 02 1.28e − 02
Rm,n 1.97 1.99 2.00
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L
m,n
ϵ Ui − ui( 􏼁 � − ϵui

″ + ϵ
ui− 1 − 2ui + ui+1

ϕ2i
􏼢 􏼣. (34)

Using Taylor series expansion of ui− 1 and ui+1 in (34), we
have that

L
m,n
ϵ Ui − ui( 􏼁 � − ϵui

″ +
ϵ
ϕ2i

h
2
ui
″ +

h
4

12
u

(4) ξi( 􏼁􏼢 􏼣, ξi ∈ xi− 1, xi+1( 􏼁. (35)

)e truncated Taylor series expansion of (1/ϕ2i ) is given
by

1
ϕ2i

�
ρ2i
4

4
ρ2i h

2 −
1
3

+
ρ2i h

2

60
􏼠 􏼡. (36)

Using equation (36), equation (34) becomes
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ε=10-6

ε=10-8

ε=10-10

ε=10-6

ε=10-8

ε=10-10

50 100 150 2000
n=m

-11

-10

-9

-8

-7

-6

-5

 M
ax

 A
bs

. L
og

 E
rr

or

-4.5

-4

-3.5

-3

-2.5

-2

 M
ax

 A
bs

. L
og

 E
rr

or
50 100 150 2000

n=m

Figure 1: Log-log plot of maximum absolute errors before and after the Richardson extrapolation method applied for Example 1.
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Figure 2: )e physical behavior of the solutions for Example 2 for m� 20, n� 20, and ε � 10− 10.
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L
m,n
ϵ Ui − ui( 􏼁 �

ϵ
12

u
(4) ξi( 􏼁 − ρ2i ui

″􏼐 􏼑􏼔 􏼕h
2

+ ϵρ2i
ρ2i
240

ui
″ −

1
144

u
(4) ξi( 􏼁􏼠 􏼡􏼢 􏼣h

4
+
ϵρ4i
2880

u
(4) ξi( 􏼁h

6
.

(37)

)us,

L
m,n
ϵ Ui − ui( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Mh

2
, (38)

where M is independent to ϵ.

Theorem 1. Let U
j

i be the numerical solution of (31) and
u(x, tj) be the solution of (11) both at time level j. �en,

max0≤i≤m U
j
i − u

j
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Mh
2
. (39)

)erefore, the nonstandard finite difference method is a
second order uniformly convergent scheme in space
variable.

Theorem 2. Let U
j
i be the numerical solution of (31) and

u(x, t) be the solution of (1). �en,

max
0≤i≤m,0≤j≤n

U
j
i − u

j
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤M h
2

+ k
2

􏼐 􏼑. (40)

)erefore, the nonstandard finite difference method is a
second order uniformly convergent scheme in both space
and time variables.

5. Richardson Extrapolation Method

)e Richardson extrapolation method is intended to in-
crease the accuracy of the basic scheme’s computed solu-
tions. From )eorem 2, we have

u xi, t
j+1

􏼐 􏼑 − U
j+1
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤M h
2

+ k
2

􏼐 􏼑, (41)

where u(xi, tj+1) and U
j+1
i are the exact and approximate

solution for Dn
m mesh interval, respectively, and M is a

constant independent of ϵ, k, and h.
Let D2n

2m be the mesh found by doubling the mesh in-
terval of Dn

m and approximate solution using D2n
2m mesh

interval is U
j+1
i . Equation (41) with mesh size h, k≠ 0

becomes

u xi, t
j+1

􏼐 􏼑 − U
j+1
i � M h

2
+ k

2
􏼐 􏼑 + R

n
m, xi, t

j+1
􏼐 􏼑 ∈ D

n
m, (42)

and equation (41) with mesh size (h/2), (k/2)≠ 0
becomes

u xi, t
j+1

􏼐 􏼑 − U
j+1
i � M

h
2

4
+

k
2

4
􏼠 􏼡 + R

2n
2m, xi, t

j+1
􏼐 􏼑 ∈ D

2n
2m,

(43)
where the remainders Rn

m and R2n
2m are O(h4 + k4). Sub-

tracting equation (42) from equation (43) and obtained
extrapolation formula,

U
j+1
i􏼐 􏼑

ext
�
4U

j+1
i − U

j+1
i

3
, (44)

where (U
j+1
i )ext is the approximate solution of u(xi, tj+1)

using the Richardson extrapolation method with trun-
cation error.

u xi, t
j+1

􏼐 􏼑 − U
j+1
i􏼐 􏼑

ext􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤M h
4

+ k
4

􏼐 􏼑. (45)

Theorem 3. Let (U
j+1
i )ext be the numerical solution of (31)

after the Richardson extrapolation method applied and
u(x, t) be the solution of (1). �en,

max
0≤i≤m,0≤j<n

u
j
i − U

j+1
i􏼐 􏼑

ext􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌≤M h
4

+ k
4

􏼐 􏼑. (46)

)erefore, after the Richardson extrapolation method
applied, the proposed method becomes fourth order
uniformly convergent scheme in both space and time
variables.

6. Numerical Examples and Results

To determine the efficacy of the current scheme, we looked at
model problems that had been addressed in the literature
and had approximate solutions that could be compared.

We used the double mesh principle to estimate the
absolute maximum error of the current approach when the
exact solution for the given problem is unknown [23]. We
use the following formula to approximate the absolute
maximum error at the selected mesh points:

Case 1. If the exact solution is known,

E
m,n
ϵ � max

xi,tj( 􏼁∈Ω
u xi, tj􏼐 􏼑 − u

j
i􏼐 􏼑

ext􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌. (47)
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Figure 3: )e behavior of spatial vs solution graph with different
time level for Example 2 for m� 20, n� 20, and ε � 10− 10.
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Case 2. If the exact solution is unknown,

E
m,n
ϵ � max

xi,tj( 􏼁∈Ω
u

j

i􏼐 􏼑 − u
2j− 1
2i− 1􏼐 􏼑

ext􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌. (48)

where (u
j
i ) is the approximation solution obtained by using

m and n number of subintervals of space and time variables,
respectively, and (u

2j− 1
2i− 1)

ext is the approximation solution
obtained by using 2m and 2n number of subintervals of
space and time variables, respectively, after applying the
Richardson extrapolation method.

We also evaluate the corresponding rate of convergence:

R
m,n
ϵ �

log E
m,n
ϵ − log E

2m,2n
ϵ

log 2
. (49)

Example 1. We consider the following singularly perturbed
parabolic delay initial-boundary-value problem:

ut(x, t) − ϵuxx(x, t) + 1.1 + x
2

􏼐 􏼑 − u(x, t − 1) � t
3
, (x, t) ∈ (0, 1) ×(0, 2],

u(x, t) � 0, (x, t) ∈ [0, 1] ×[− 1, 0],

u(0, t) � 0 � u(1, t), t ∈ (0, 2],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(50)

whose exact solution is unknown. Example 2. We consider the following singularly perturbed
parabolic delay initial-boundary-value problem in [24]:

ut(x, t) − ϵuxx(x, t) +
(1 + x)

2

2
� − u(x, t − 1) + t

3
, (x, t) ∈ (0, 1) ×(0, 2],

u(x, t) � 0, (x, t) ∈ [0, 1] ×[− 1, 0],

u(0, t) � 0 � u(1, t), t ∈ (0, 2],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)

whose exact solution is unknown.

7. Discussion and Conclusion

We proposed a nonstandard finite difference method for
solving singularly perturbed parabolic delay partial differ-
ential equations of the reaction-diffusion type. )e con-
sidered problems’ solution exhibits twin boundary layers on
the right and left sides of the spatial domain. )e basic
mathematical procedures are defining the model problem,
approximating the time variable using the Crank–Nicolson
method, approximating the spatial variable using non-
standard finite difference scheme using Mickens rule, and
reducing it into a tridiagonal systems of equation; this can be
solved by using the)omas algorithm. Lastly, to enhance the
accuracy of themethod, we use the Richardson extrapolation
technique.

To validate the applicability of the proposed method, we
used two model examples. )e maximum absolute error and
rate of convergence are shown in Tables 1 and 2 with dif-
ferent values of ϵ, m, and n. Comparison of maximum ab-
solute error and rate of convergence with other methods that
appear in the literature are shown in Tables 3 and 4. )e
behavior of maximum absolute error is shown in Figure 1.
)e physical behavior of the solution is shown in Figures 2
and 3.

)e convergence of proposed scheme is insensitive to the
perturbation parameter. After applying the Richardson
extrapolation technique, the present method has order of
four rate of convergence. )e performance of the proposed
scheme is assessed by comparing the results, and it is
demonstrated that the numerical results are more accurate
than that of existing difference schemes in the literature.

As future directions of this research, we will apply the
scheme for nonlinear singularly perturbed parabolic reac-
tion and convection diffusion problems.
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