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In this paper, we study the mathematical analysis of a nonlinear age-dependent predator—prey system with diffusion in a bounded
domain with a non-standard functional response. Using the fixed point theorem, we first show a global existence result for the
problem with spatial variable. Other results of existence concerning the spatial homogeneous problem and the stationary system
are discussed. At last, numerical simulations are performed by using finite difference method to validate the results.

1. Introduction and Assumptions

The study of predator-prey systems has attracted the at-
tention of many mathematicians in the last century. Pioneers
like Voltera and Lotka were the first to mathematically
model the interaction between predators and preys. The
standard model of Lotka and Voltera is:

x' (1) =rx(t) - p(x()y(t),
Y (t) = np(x )y (t) — oy (1),
x(0)>0, y(0)>0,

t>0, (1)

where x and y denote preys and predators density re-
spectively; r, 4 and o are positive constants stand respectively
for the prey intrinsic growth rate, the coeflicient for the
conversion that predator intake to per capital prey and the
predator mortality rate. And, p (x) is the functional response
which can take many forms [1].

In order to be closer to biological reality, the Lotka-
Volterra model (1) has been improved. Models taking into
account both mortality and fertility of species, the carrying
capacity of prey of the environment, environmental con-
figuration, migratory movements (diffusion coefficients)
have emerged. In [2], B. Ainseba, F. Heiser, and M. Langlais
establish the existence of a solution of a predator-prey
system in a highly heterogeneous environment but without

the age variable and with a holling II type functional re-
sponse. Note that in their model, prey dynamics is governed
by logistic growth. In [3], the authors discuss a diffuse
predator-prey system with a mutually interfering predator
and a nonlinear harvest in the predator with a Crowley-
Martin functional response. They analyze the existence and
uniqueness of the solution of the system using the C,, semi-
group. They show that the upper bound on the predator
harvest rate for species coexistence can be guaranteed.
Furthermore, they establish the existence and non-existence
of a positive non-constant steady state. They give explicit
conditions on predator harvesting for local and global
stability of the interior equilibrium, as well as for the ex-
istence and non-existence of a non-constant steady state
solution. In [4] the authors propose a diffusive prey-predator
system with mutual interference between the predator
(Crowley-Martin functional response) and the prey pool. In
particular, they develop and analyze both a spatially ho-
mogeneous model based on ordinary differential equations
and a reaction-diffusion model. The authors mainly study
the global existence and limit of the positive solution, the
stability properties of the homogeneous steady state, the
non-existence of the non-constant positive steady state, the
Turing instability and the Hopf bifurcation conditions of the
diffusive system analytically. The classical stability properties
of the non-spatial counterpart of the system are also studied.
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The analysis ensures that the prey pool leaves a stabilizing
effect on the stability of the time system. A model of
predator-prey interaction with Beddington-DeAngelis
functional response and incorporating the cost of fear in
prey reproduction is proposed and analyzed in [5]. The
authors study the stability and existence of transcritical
bifurcations. For the spatial system, the Hopf bifurcation
around the inner equilibrium, the stability of the homo-
geneous steady state, the direction and stability of spatially
homogeneous periodic orbits have been established. Using
the normal form of the steady state bifurcation, they es-
tablish the possibility of a pitchfork bifurcation. A Leslie-
Gower type prey-predator system with feedback is con-
structed in [6]. The authors systematically analyze the effects
of feedback controls on ecosystem dynamics. In this study,
they examine the global dynamics of non-autonomous and
autonomous systems based on the Leslie-Gower type model
using the Beddington-DeAngelis functional response with
time independent and time dependent model parameters.
The global stability of the unique positive equilibrium so-
lution of the autonomous model is determined by defining
an appropriate Lyapunov function. The autonomous system
exhibits complex dynamics via bifurcation scenarios, such as
the period doubling bifurcation. They then prove the exis-
tence of a globally stable quasiperiodic solution of the as-
sociated non-autonomous model. For the mathematical and

0,9 +0,9-Aq+p,(a)g = fRinQ,,
Ay
p(0,t,x) = Io Bi(a)p(a,t,x)dain Qy,

P(a,0,x) = py(a,x)inQ,,
q(a,0,x) = q,(a,x)in Qup
d,p=00nZ,

[ 0,4 =00n%,,

where T is a positive number, and Q a bounded open subset
of R" which boundary is assumed to be of class C?.

Actually, Q,; = (0,4;)x (0,T) xQ, Qy, = (0,A,) xQ,
2, =(0,4,)% (0, T)x0Q for i =1,2 and Q; = (0,T) x Q.

We denote by A; (resp. A,) the maximum life expec-
tancy of prey (resp. predators).

In (2), 3, (a) and 3, (a) are respectively the natural birth-
rate at age a of preys and predators, y; and y, are the
functions describing the mortality rate respectively of preys
and predators that depends on a, 7 is the external normal
derivative on 0Q.

In this model, predators and prey live on the same
domain and any movement accross the boundaries is
impossible.

qualitative study of some prey-predator models, the reader
can also consult the following articles [7-14].

In this article, we will mainly study the existence of
solutions of a predator-prey system structured in age, time
and space with a functional response F subject to the K-
lipschitz condition.

Our motivation arose from the fact that, there is no
existence result concerning predator-prey systems si-
multaneous structuring in age, time and space with a non-
standard functional response. But there is works on
population dynamics systems that take these three vari-
ables into account according to our best knowledge. For
example in [15], an existence result is proved by Ainseba
where the system models the transmission of an epidemic
to holy individuals by carrier individuals. A result of
existence and uniqueness and positivity of solution is also
proved in [16] by Traoré et al. where their system models
the population dynamics of Callosobruchus Maculatus.
Traoré et al. have proved an existence result in [17] where
the system models a nonlinear age and two-sex population
dynamics.

Let us denote by p(a,t, x) and gq(a, t, x) respectively the
distribution of preys and predators of age a being at time
t>0 and location x over a bounded domain Q.

We consider in this paper the following nonlinear age-
dependent population dynamics diffusive system:

. A,
O,p+0,p—-Ap+u (a)p=f, - Jo F(p(a,t,x),q(a,t,x))dainQy,

AZ Al AZ
1 49(0,t,x) = Jo B, (a)q(a,t,x)da + Jo Jo b(x,a,a)F(p(a,t,x),q(a,t,x))dada in Qr, (2)

Our model is much more general because it simulta-
neously involves the notion of time, age and space. More-
over, the dynamics of prey and predators are governed by
partial differential equations and not by the usual expo-
nential or logistic growth laws. It is also a realistic model
because in this model the prey is not the only source of food
for the predators. Since in nature, it is almost impossible to
find predators that feed exclusively on a single prey. Here,
prey is not the only food source for predators. External food
sources are also available. Not all of the prey that is con-
sumed by predators is converted into predator energy
(biomass), only a fraction is used.

Consumption of prey directly affects prey density (direct
decrease in prey numbers) but indirectly affects predator
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density through an increase in predator fertility (predator
numbers do not increase immediately after consumption but
over time predator density increases).

We have denoted by F(p(a,t,x),q(a,t,x)) the func-
tional response to predation, that is the capture rate of prey
having age a per predator of age « or the average number of
prey having age a captured by predators of age « at times
t>0, and location x € Q.

Thus, I?Z F(p(a,t,x),q(at,x))da is the amount of
prey of age a consumed by predator at time ¢ >0 and lo-
cation x € Q.

The function b(x,a,«) is the conversion rate of the
biomass of captured prey having age a by predators of age «
into predator offspring at location x € Q.

Thus, the biomass is transformed and influences the
birth process through the quantity

Al AZ
J J b(x,a,0)F(p(a,t,x),q(at, x))dada, (3)
0 0

which is the supply.

The function f, (a,t, x) (resp. f,(a,t, x)) is the external
supply for prey persistence (resp. for predator persistence)
having age a at time ¢ >0 and location x € Q.

Our main goal in this paper is to answer some ecological
questions:

Is the cohabitation of predators and prey modeled by the
model (2) possible?

The answer to this question will bring us back to the
notion of a well posedness problem or to the notion of the
existence of a solution in suitably chosen spaces.

Does the biomass b influence the size of the two
populations?

Will the predators succeed in consuming all the prey?
Can predators or prey disappear into the environment?

To answer these last questions, we will use numerical
simulations by varying the values of b, that is to say we will
take small and large values of b to observe the behavior of the
two populations.

Our work will be structured as follows:

In Section 2, we give a global existence result of so-
lution of system (2) with the space variable in appropriate
spaces. We will also study the existence of solutions of the
spatially homogeneous problem in Section 3. The Section
4 is devoted to the analysis of the stationary problem.
Results of numerical simulations are given in Section 5

and we will end in Section 6 with a conclusion and some
perspectives.
Before starting, let

7, (a) =exp{— J:yi(a)do}, ae[0:A]ic{l2. (4

Which is the probability for a newborn to survive to age
a and

A;
Rizj Bi(a)m;(a)da, i€ {1,2}. (5)
0

And assume that the following hypotheses hold:

(A)Vie{l,2},3, € L*(0,4,),5;(a)=0a.ea € (0,4,
(AyVi e (1,2}, € LL (0, A),p;(a) >0a.ea € (0,4
(Ay)[2 i (@)da = +0o,i = 1,2,

(A)F is a positive and mesurable function on
[(0; 00)]* and satisfies the usual locally boundedness
and Lipschitz continuity conditions with respect to the
pair variable, that is

3K >0V (py1,q1)s (P2, 95) € [(0; 00)]%,

(6)
|F(p1q1) = F (P2 )| SK('Pl - po| +ai - ‘12|)~

And F(0,0) = 0.

For the biological meanings of assumptions (4,), (4,)
and (A;), the functions y;, f;, m; and the constants R;, we
refer the reader to books such [18, 19].

2. Spatially Heterogeneous Solutions

Let us make the following assumptions:
(H,) (Po-d0) € L®(Qa) X L®(Qp), po=0a.einQ,
and. gy >0a.einQ,

(Hy)(f1> f2) € L®(Qp) X L™ (Qy),
and. f,>0a.einQ,

f1=20a.einQ,
We have the following result:

Theorem 1. Under the hypothesies (A,)—(A,), (H,), (H,)
the system (2) admits a unique solution in L? (Q,) x L? (Q,).
Moreover, there exist a constant C depending on T such
that

6l (o), 11 (o) SC(" 2ol (o, ) Hlaolia, ) 1Al o 17l (Qz)). 7)

Proof. Let us fix T > 0. The proof of the theorem is based on
the method used in [20].

Set u=eMpinQ, and v = e M'ginQ, where A, is a
positive parameter that we will be fixed later.

Hence the system (2) admits a unique solution if
and only the following system admits a unique
solution.
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0,v+0,v—Av+ (A +p, (a)v = e f,inQ,,

Ay
u(0,t,x) = J B (@u(t,a,x)dain Qr,
0

A, N
v(0,£,x) = Jo B, (a)v(a,t,x)da + e Mot Jo

u(a,0,x) = py(a, x) inQy,
v(a,0,x) = gy (a,x) InQy ,

o,u=00nX,

[ 0,y =00nZ,

For any nonnegative h € L?(Q,), we introduce the fol-
lowing cascade system:

0y +0,v—Av+ (g +py (@)v=e"F,inQ,,

Ay
u(0,t,x) = J B (@u(t,a,x)dain Qr,
0

0
u(a,0,x) = py(a, x) inQy,

v(a,0,x) = g, (a,x)in QAz’

o,u=00nX,

[ 0,y =00nZ,

Using the Fubini’s theorem, the function v solves the
following system:

0V +0,v—Av+ i, (a)y = ef)t"tf2 inQ,,
A2 -~
v(0,t,x) = J B, (a,t,x,v(a,t,x))v(a,t,x)dain Qr,
1 0

v(a,0,x) = qy(a,x)in Qap

| 0,y =00nZ,.

(10)

With @ (@) =2 +u,(a) and B, (at,xv(atx) =
B, (a) + e Mt JOI b(x, o, a)F (e h(a,t, x), v (a,t, x))da.

As A, is fixed, e ' f, € L°(Q,), b € L™ (A; x A, x Q),
F is bounded then 4, € L} (0, A,) and B, is bounded.

( A
Ou+0,u—Au+ Ay +py (a))u = e_l"tf1 —e Mt J ’ F(e/\"tu(a, t, x),el"tv((x, t, x))d(x inQy,
0

1 A2
J- b(x,a, (x)F(ertu(a, t, x),e’\‘)tv((x, t, x))docda inQy, (8)
0

) A,
Ou+0,u—Au+(Ay+p, (a))u= e_’l“tf1 —e Mt J F(ewu(a, t, x),el"tv(oc, t, x))d(x inQ,,
0

AZ Al AZ
v(0,t,x) = J B, (a)v(a,t,x)da + eiA"tJ J b(x,a, (x)F(e)“}tu(a, t, x),e’\‘)tv((x, t, x))docda in Qy, ©)
0 0

Hence, (10) admits a unique nonnegative solution v, in
L2(Q,) (see [20]).
Multiplying (10) by v, and integrating over Q,, we get

1 1
o vt 07 dadde s Slaoll o, ) +51 o

1
+EJ V2 (art,x)dadtdx (1)

2

1
+-J V2 (0,1, x)dedx.
2)a

2

Using the Young and Cauchy Schwarz’s inequalities, we
obtain
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1 1 1
AOJszh (a,t, x)*dadtdx < 5"610";(%2) + E“fzuiz @) *3 JQZV%’ (a,t, x)dadtdx+

||/32||20AZJ Vi (@ t,x)zdadtdx+A1A§K2||b||§oj B (a,t, x)dadtdx+ (12)
Q, Q

A?Aszllbllioj vy (@, t, x)dadtdx.
Q

So, we have

1 1 1
(AO _“ﬁz “ioAz _ A%Asznb”io _ E>JQ Vfl (a,t, x)dadtdx Siuqolliz(QAz) + 5"][2"?2 (Q2)+

That is to say

i

2
() < C1<"%”iz(QAZ) +||f2”iz (@) +[|Rll7 (Q1)>’
(14)

where

[ O,w +0,w— Aw + (Ay + 4, (a))w = 0in Q,,

0
w(a,0,x) =0inQ,,

| O,w=00nZX,.

Multiplying (16) by w and integrating over
(0, A) x (0,t) x Q, and following the same calculations as
before, one has

t
(1o 1B e = AT ) [ s 0 g8

t
< A AR, [ 0 = o) (@50 g
(17)

Therefore, we have
2

t
Jo “(Vhl - Vhl) (a,5, %), ((O’AZ)XQ)ds

t
<G [ 10 =)@ 5.9 ey

(18)

where

P A A
- J J e Mty (x,a, oc)F(eA"th2 (a,t,x), e)totvh2 (a,t, x))docda inQyp,
0

(13)
ALK, | B (@ 0)dadrd
Q
C. = 1
" Bl A - AZALKEIBIE, - (172)
(15)

1
x max{i, A1A§K2||b||§o}.

For any hj,h, € [2(Q,), set w=e "t (v, —vp)ae
inQ,. So, w solves the following system

AZ Al AZ
w(0,t,x) = J B, (a)w(a,t,x)da + J J e_l‘)tb(x, a, o) X F(el‘)th1 (a,t,x), e)“’tvh1 (a,t, x))docda
0 0o Jo

(16)

1
o= |Bal As - A, AZKPIBIZ,

c, x A ASKIBIZ,.  (19)

Now, as h and v, are known, the remainder of (9) can be
rewritten as following

ou+0,u—Au+f (a)u=g(at,x)inQy,
Al

u(0,t,x) = J B (@)u(t,a,x)dainQr,
0

u(a,0,x) = py(a, x) inQy,

du=00nk,

(20)

where 7, (a) =Ay+p,(a) and g(atx)=e M f -
e~ Mot _[?2 F(eMu(a,t, x),e Mv(a,t, x))da.

As A is fixed, (7; € L, (0, A)) and g € L™ (Q,) because
f1 € L*(Q,) and F is bounded.

According to the results in [20], (20) has a unique

nonnegative solution #, in L? (Q,).
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Multiplying (20) by %, integrating over Q, and using
Young’s inequality, we get

1 1
o Tt vdadtac ol )+l il oy + JQ 72 (a1, x)dadtdx
(21)

1 (T 1 4, g
+ = J J ﬁf, (0,t, x)dadtdx + — J (J F(el"th (a,t, x), eA°tvh (a,t, x))doc) dadtdx.
2 Jo Jq 2 0

Q

Usmg now Cauchy Schwarz’s 1nequa11ty, 1/26_2)'°tj (I F(eMh(a,t, x), et vy, (e t, x))da)*dadtdx.
i1} (a,t, x)dadtdx < 1/2;[P0||L2(Q )+ 1/2||f1||L2 @t we obtaln
fQ (a,t x)dadtdx + 1/2[ .[ (0 t, x)dadtdx +

1 1 1
(ha =58, 1) it dmdrae <ol o, y #3110

1 1
. E,ax§1<2||b||f>on 1 (a, £, x)dadtdx + EAIAZKZIIbIIiOJQ vl (@ £, x)dadrdx.

(22)
Then, one gets
[ ot sz (I, ) bl o) il ooy W) @
h Ah = ﬁh’ (25)
where
1 where i, is the unique solution of (20).
C, = For any h;,h, € [*>(Q;), we denote by
Ao — (1/2)A, ”ﬁl”oo (24) V=e M (@, —ﬁhz)ianzl, 1% 1sa\tisﬁes the following
equations

1
xmax{ <AK 1612, EAIAZKZIIbIIiOQ)}.

Denote by A: L2 (Q,) — L2 (Q,), the application given by

A,
0,V +0,V—AV +(y, +u, (a)V = —e Vot J F(e)“’th1 (a,t, x), e)t"‘vh1 (a,t, x))d(x+
0

A
e Wt JOZ F(el"thz (a,t, x),e’\"tvh2 (a,t, x))doc inQy,
1 A, (26)
V(0,t,x) = J B, (a)V (t, 4, x)dain Qp,
0
V(a,0,x) =0inQ, ,
[ 0,V =00nZ,,
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where v, i = 1,2 is solution of

atvhi + auvh[ -

Vi (a,0,x) = g5 (a,x) in Qup
| 0,vi, = 00nZ,.

Multiplying (26) by V and integrating over
(0,A;) x (0,t) x Q, on gets
! 2
A J Via,s, x dadtdx <
0 0|| ( )||L2(QA1)

%“/BIH;AI(J; j: JQV(a, s,x)zdtdx> +% J

A, (A,
oMot J J b(x,a, oc)F(erthi (a1, x), "'y, (a1, x))docda inQy,
o Jo ;

Avy, + (A + 4y (@), = ef’l"tf2 inQ,,

A,
vy, (0,8, x) = Jo B, (a)vy, (a,t, x)da+

t A Ay
j j j (A§||b||§01<2|(h1—hz)(a,s,x)|2+A2||b||§01<zj thl—vhz)((x,s,x)rdoc)dadsdx.
0Jo Q 0

And we also have

1 2 1 ¢
</\0 —(5A1||/51||00 + 5)) J.O IV (a,s, x)"iZ(QAI)
t
< A|b|2, K JO |(h, - hy) (a, s,x)"iz(QA) (29)

N A2A1||b||ioK2J (7, = v1.) (@ s,

()%

By recalling the inequality (18) in (29), we deduce that,
there exists a constant C,, such that

[/, -7 o(as)

hz) (a) S,

| (30)
<C. 0w -m) s ol )
where
) 1
(sl -am) (31)

X(AMBIGK* + Ay A 6K C)

Let us define on L2(Q) the metric d by: for any
hy,hy € L2(Qy),

7
(27)
A
J J V2 (a, s, x)dadsdx+ (28)
0 Q
T ) (1/2)
d(hy,hy) = (JO [y — By) (t)||L2(QAl)exp{—2C4t}dt) .
(32)

So,
T

[d(am, A)) = [ @,

uhz (t) LZ(QA )exp{—2C4t}dt

0

T
C4J exp{-2C,t J"(h hz)(s)”iz(QAl)dsdt.
(33)

Using the Fubini’s theorem, we conclude that:

[d(Ahy, Al,)]? <C, J exp{-2C,t J @
=J J C4exp{—2C4t}||(h1

T
( I(hy hz)(s)Hiz(QAl)L C4exp{—2C4t}ds>.
(34)

)(s)||i2(QAl)dsdt

2) (s)||iz(QA])dtds

From here we have:

L d(h,h)
\/z 1>"*2)
Then, A is a contraction on the complete metric space

L*(Q,) and using Banach’s fixed point theorem, we con-
clude the existence of a unique fixed point u, nonnegative

d(Ahy, Ahy) < (35)
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for A, so the unique couple (uy,v},) is the unique solution of
9). Hence, we deduce that the couple
(p,q) = (eM'uy, ety )is the unique solution to the problem
(2). From the explicit expression of the constant C;, we see
that it is always possible to choose A, so that C; < 1. Replace h
by u,, in (14) and in (23), summing the inequalities (14) and
(17), we conclude that there exists a constant C independent
on T such that

luallz 0,y Il () < C(IIPoIIiz(QAI) +||qolliz(QA2)
(36)

Al @) 1l o)

0,9+0,q9+p,(a)g = finQ,

A

AZ
q(0,t) = JO B, (a)q(a,t)da + J

p(a,0) = py(a)in (0, A),
| q(a,0) = g, (a)in (0, A).

0

Theorem 2. Under the assumptions (A,)-(A,), for all
(Po>qo) € L' (0, A)* and f € C([0,T],L' (0, A,)), the system
(37) admits a unique solution in C([0,T],L'(0,A,))x
C([0,T], L' (0, A,)).

0,9+0,q9+p,(a)g= finQ,
A

A

Ay
a0.0 = [ " (@aanda+ |

p(a,0) = py(a)in (0, A),
| 9(a,0) = g, (a)in (0, A).

0

Integrating the system (38) along the characteristic
curves a —t = ¢, we obtain implicit formulas for the solu-
tions of (2) stated below:

A
) p(0,t) = Jo B (a)p(t,a)dain (0,T),

| po0)= jol B, (a)p(t, a)dain (0,T),

And the inequalities (7) follow clearly. O

3. Spatially Homogeneous Solutions

Let consider the following spatial homogeneous system
deduced from (2):

) A
0,p+0,p+u (a)p=- Jo F(p(a,t),q(a,1))dainQ,

(37)

‘ JAZ b(a, )F (p(a,t),q (e t))dadain (0,T),
0

Proof. To simplify the calculations and without losing sight of

the generality, we set A = max{A,, A,}. Let set Y = C([0,T],

L'(0,4)) endowed with the norm [hly = sup;or e M

A1l 1 o,4yWhere A is a positive constant that will be choosed later.
We fix p in Y. Consider now the following system

) A
O,p+0,p+p(a)p=- JO F(p(at),q(at))dainQ,

(38)

‘ JAZ b(a, ®)F (P (a, 1), q (e t))dadain (0,T),
0
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T (@
! [l (@)

o i A
[T, (s+a-1t) Jo F(p(s+a-t,s),q(as))dads, axt,p(a,t)= H(a) Jo By (s)p(s,tfa)dsfj

plat) =

M, @-0pya-0- | a M @ (39)

0]_[, (s) IAF(ﬁ(s,ertfu),q(a,ertfa))dotds, a<t,
0

I1; (@)

q(a,t) =

I, (@ ] (40)

[T s+ta-t) f(s+ta-t9)d >t,q( t)fl_[()JA () (s, t — a)d +J'AJA;,( VE(B(s,t —a),q (o t — a))dad +J I (a)
| (s+a f(s+a—-t,s)ds, ax=t,q(a, =1 a Oﬂzsqs, a)ds R s,Q)F(p(s,t —a),q(at —a))dads TGO FGt-asad a<t

T (a- g a-t)+ jo

Let us fixed ge Y and define the mapping G: Y — Y by:
for every ge Y and for all (¢,a) € Q,

G(@(a,t) =q(a,t)

Hz (a)
! Hl (a)
=4[ @@a-tgy(a-1t)+ y A (A a
{ JOH, (s+a-1t) f(s+a—t5s)ds, aztl_[(a)“0 By ($)q(s, t - a)ds + JO IO b(s,a)F(}(s,t—a)ﬁ(a,t—a))dzxds] + JO m (S)f(s,tl_{la(j)s)ds, a<t.
(41)
For all (a,t) € Q such that a>t, So, we have
A — _
-\ = 1 Mol 0.4y T AKIBl 1Py + AK Bl lIglly + 111
e J G (@) (a,D)lda < |qo] 1 0.0 + pUALS (42)  1G@ly < 0] 0.0 i v Al
‘ A=B.
And for a<t,
<00,
t t
e M jo IG@) (. Olda< B, e JO e MG @) (5Dl o di+ (45)

For A large enough, thus G(g) €Y.
: Now, for all q,,q, € Y, for all (a,t) € Q such that a<t;
(43) one has

>| =

(AK|bll,lIplly + AKIblo g1y )
Summing of the previous inequalities, we get
t
e MG @) GO o < Bl jo e MG @) (Dl o di+

_ 1 1
(AKIBlolPlly + AKIBloohe) 5 + 14010, 511
(44)

t t rA
[ le@) - c@)@nlaasl., JO JO 4 (5.t — ) — g, (5.t — @)|dsda
t A A - -
bl jo JO JO F(B(st - )y (at —a)) ~ F(P(s,t - ), 45 (a t - a))|dadsda

t A t A
<18 JO e JO Iy (5,1) — g, (s, D|dsdl + AK]b]l, JO e jo 12 (o0 ) — g5 (o, )| daxdl.
(46)

Finally, it follows that
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[/ (@) - @) @.0jda

- At

— 1-
< (IB:lollas = @l + KibhooAlgs - @) x—
(47)
Multiplying the inequality (47) by e™*, we get
t
[ [6@) - 6@) @ lda
(48)

<1 (IBalols - ol + K1bl Al - Tl )

It is obvious that for all (a,t) € Q such thata >t, we have

A(P)(at) = p(at)

A
[ 6@ - 6@ @ nda
(49)

1 _
<1 (Bellclla: = @2l + Kibleo Al - 22l )-

Combining the inequalities (46) and (47) it follows that

_ _ 2AK|bll gy — —
G -G <——g; — .
“ (QI) (‘b)"y P 2"[;2”00"‘11 ‘h"y

For A large enough, it is clear that G is a contraction in Y/
and the (40) have a unique solution g in Y.

Now, define the mapping A: Y — Y by: for every pe Y
and for all (t,a) € Q,

(50)

1_[1 (a)
¢ l_L (a)
[T, (@a-t)py(a—1t) -
- o ) Ioﬂl(s+u—t)J F(p(s+a-t,s),q(a',s))da'ds, a>tHa)J Bi(s)p(s,t —a)ds - J - ()J o I—)[l((u)’ e
1 (s p(s,s+t—a)qla,s+t—a))dads, a<t.
(51)
A . 2AK (|lp
For every (a,t) € Q such that a>t, one has 1Ay < ”POHL (O’A); "/5 "("p"Y +laly)
A A TPl
e‘“J IA(P) (a,)lda <|po|l;: o.a + = (IPlly +lglly),
. || 0||L 0.4 7 ) Y Y <A”P0"L1 (0.4 + 2AK]plly
L h 52 -IBls
nda for a <t, we have
N J A 0.0)lda 2KA( o1 ) + AK Bl Bl +1£1ly)
0 (A= [B:)oo) (A = (18] + AKTEN,))
e [C oy - (54)
<Blle™ [ MIAD DI gt )

K, _
e (I2ly +lqly)-

By adding the inequalities (52) and (53) and using (45),
one gets

0
Ats—t

A A
L |(A( )= A(p,)(a,1)) |da<J J J |(p1(s+a—t,s),q1((x,s))—F(E(s+a—t,s),q2((x,s))|docdsda

.

IN

It is clear that

t rA rA
151 (Ls) - By (1, 9)|dids + K JO Jt JO |1 (2 5) — 4, (@ 9)|dadads

A t
KA j e J 151 (1s) - By (1, 9)|dlds + KA J &
0 0 0

Therefore, A(p) €Y for p fixed in Y.
For all p;,p, €Y, for all (a,t) € Q such that a>t; we
have

(55)

A
Se jo |a: (. 5) — g, (@, 5)|daxdDs.

[ a2 @ e
(56)

- l—e™
<KA(|[p: - pally +las - 2.lly) B
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Multiplying the inequality (56) by e *, we get And for a <t, we have

A
[ 1A E) - AE) (@1)|da
(57)

KA, —
T (I = P2y +l: - aally)

[ @) - @) @0ldas |l [ [ oD - pas nlasars

S

t
AK J| (s,s+t—a)— pz(ss+t—a)|dsda (58)

(=]

0
+KJ J J |9, (s +t —a) — q, (a5 + t — a)|dadsda.
0JO0

In other hand, one has Combining the inequalities (57) and (59), we deduce that

I;|(A(171)—A(172))(a,t)|da IA(P) - A(py)]y < - ”ﬁ " ("pl Pally +la: - %“)

(61)

_ 1-¢e
<(IBilclpr = polly + AK [Py = Polly + Ay = qally) —— , ,
where g, and g, are solutions of (39) and (40) associated
(59) respectively to p; and p,.
Multiplying the inequality (59) by e M, we get Then, we have for all (a,t) € Q such that a<t,

e [ A ) - A (72) @D

1
;(llﬁllioollpl P2||Y+ AK|p; - P2||y+ AK|q, - ‘12" )
(60)

A —_ —_
J|(q1 ) (a, t)|da<||ﬁ2||mj J (a1 - 42) (s, D|dsdl + KAJb, J JO Py - 7) (s D|dsdl+

t rA
KAlbl., JO JO a1 - o] (@ Ddacdl (62)

— At

. 1-
= ("/32"00“‘11 = @[y + Kbl A Pr = Pally + KlibllooAllgs - ‘12”y) /\e

2 -
a1~ Dy <57 UB2lleldr — 22lly + Kbl Allpr — P
o oo i o =l =<3 (IBeLoll el I7: - 7l

! J 101~ 2 @.0)da +K1blooAllg, - 42y )-
0 (64)
! =5 (63) .
<< (Bl Mg = @2y + Klbl oo Allpr - P2l Erom (64), we obtain
: la: - 42y < 24Kl |21 - 22| (65)
+K"b”00A||Q1 - QZ”Y)' boRIvE 2("/32"00 + AK”b”oo)" 17 Pally

We deduce from (63) that By combining the inequalities (61) and (65), we get
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2KA( 2|3 ],)
A= [Biloo) (A = 2(B2ll + AKIEIL )

"A(E) - A(E)“Y < (

|21 - P2l
(66)
For A large enough such that
1
A>2 (1Bull + 2182l + 2AKIB, + 24K )+

. (1/2)

5[("/31 lo = 2lBall, - 24Kl + 24K)* + 164K (bl | .
(67)

where K is a Lipschitz constant, one gets clearly that A is a
contraction in Y. Therefore, the (37) and (38) have a unique

Ov+0,v+(A+u,(a)y= e_Mf inQ,,

A
u(0,t) = Jo B (a)u(t,a)dain (0,T),

u(a,0) = py(a)in (0,4,),
[ v(a,0) = gy (a)in (0, A,).

Fix h in L*((0, A;) x (0,T)) and consider the following
system:

ov+0,v+(A+p,(a)v= ef’ufin Q,,

Al
| uco.6) = JO B, (a)u(t,@)dain (0,T),

u(a,0) = py(a)in (0,4,),
[ v(a,0) = gqy(a)in (0, A,).

Multiplying the second equation of (70) by v, integrating
over (0,A4,)x (0,T) and using Young and Cauchy-
Schwarz’s inequalities, we get

A DY R )t A
v0.0 = [ “Bram@ndase™ [ [ baaF( a0,y (@)dadain (0.1),

solution p in Y. The couple (p,q) is the unique solution to
the system (35) because the problem (35) is equivalent to
solve the equations (39)-(42). (see [21])

We have also the following result: O

Theorem 3. Under the assumptions (A,)—(A,), for all
(Po»90) € L*(0,A;) x L*(0, A,) and  f € L*((0, A,)x
(0,T)), the system (37) admits a unique solution in
L2((0, A;) x (0,T)) x L*((0, A,) x (0,T)). Moreover, there
exists a positive constant C = C (I llo 182lloo> 18]l oo
A, A, K, T), such that

”P“iz ((0.4,)x0.1))° ||q||i2 ((0.4,)x(0.T))

(68)
< C("Po"iz (0a) * o]z (0.4) PIFIZ2 (0.a)x0m) )

Proof. Let u=e *p and v = e *q. The system becomes

s A2
Ou+0,u+(A+p (a)u= —e M J F(e}”u(a, 1), v (a, t))dcx inQ,
0

(69)

A, A (A
v0.) = [ “Bram@nda+e™ | | baaF(e e v (e n)dodain (0,7,
0 0 0

) A,
Ou+0,u+ A+ (a)u= M J F(e)”th(a, t), EMV((X, t))doc inQy,
0

(70)
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A,

T A, 1 4 1 (T 1 (T
/\J J Iv(a,t)lzdadtS—J vz(a,O)da+—J vz(O,t)dt+—J J
0Jo 2 0 2 0 2 oJo

JOT (JOA B, (a)v(a, t)da)

1 2 1 ) 1 T A, ) 2 T A, )
SEH%HB (04,) §||f||L2 ((0.4)x01) T3 JO JO v* (a, t)dadt +[|B, |, A JO ,[o v*(a, t)dadt

A

1 (T (4
£ (a,t)dadt+EJ J V2 (a, t)dadt+
0

0

? LS VR A (de A 2
+J . tIIbIIOOAlAZJ j [Fe  (a, 1), (a, )] da’ dadt
0 0 0

(71)

T A T
0 0

2 A]
+||b||§OA§A2K2J JO vz(a,t)dadt+||b||§oA1A§K2J jo 1 (a, t)dadt.

Therefore, we deduce that For every v in L?((0, A,) x (0,T)), we define the map-
ron ping Wi L2((0, ;) x (0,1)) —> L*((0,A)) x (0,T)) by
JO JO v* (a, t)dadt Y (V) = v, where v satisfies the following equations:
5 , (0,v+0,v+(A+u,(a)y=-"finQ,
C(”%”Lz (0.4,) AL ((0.8)w0.my) FIAL2 ((o,A,)x(o,n))
<

A= (Bl s #1014 ALK + (12)

A,
oo, v(0,8) = J B, (a)v(a, )da+
0

(72) - At JA] jAz b / At At— .
e (a,a )[F(e h(a,t),e v(oc,t))]docda in (0,7T),

0 0

where C is a constant that does not depend on A. L v(a,0) = g, (a,0)in (0, A,).
For A large enough, we showed that

v e L*((0,4,) x (0,T)).

(73)

Set w = v, — v,, then w solves the system:

[ O,w+ 0w+ (A+u, (a)w= —e’“fin Q,,

w(0,¢) = JAI B, (a)w(a, )da+
. 0 (74)

e M j:l sz b(a,a) [F(e}“h (a, t),e’hv1 (a, t)) - F(ehh(a, t), e}“v2 (a, t))]d(xda in (0,7T),

[ w(a,0) =0in (0, 4,).

Multiplying (74) by w, integrating over (0, A,) x (0,T)
and using Young and Cauchy-Schwarz’s inequalities, we get

T (4 T /[ (A, 2
)LJO jo w” (a,t)dadt < .[o (Jo B, (a)w(a,t)dadt) +

T A (4, :
J(ehj | b(a,a)[F(e’“h(a,t),e“vl(a,t))—F(e“h(a,t),e“vz(oc,t))]docda) e (79)
0

0 0
2 (T (% 2 203012 42 T — — 2
<alBall, || wr @ ndade « kwIALA, [ ] G0 - 7 (o0t

That is, “\{/ (V_l) - (V_Z) “iz ((0.4,)x(0.7))

_KATA bl

[e9)

= ) - )| .
/\—Aznﬁzniou 1 Iz ((0,4,)x(0,1))
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Hence, for A large enough, ¥ is a contraction in Now, v and h are being known. So, the first equation of
L*((0, A,) x (0,T)) and using Banach’s fixed point theorem, (70) has a unique solution in L ((0, A,) x (0,T)).
Y has a unique fixed point v which is a unique solution to the Multiplying the first equation of (70), integrating over
system (73). (0,A,) x (0,T) and using Cauchy—Schwarz and Young’s

inequalities, one gets

AJT JAI i (a, 0ydadt <2 po s ooy + B A jT JAI 2 (a, )dadt+
0oJo ’ T2 Polliz (0.4,) WP Hleo™ 1 Jo ]y ’
(77)
(T, 1o o (T (Y2 1 2 (T (M 2
—J j W (a, )dadt + - A2K J j 1 (a, t)dadt + ~A,A K J j V (a, t)dadt.
2J)oJo 2 0Jo 2 0Jo
Thus,
ToA C 5 oA oA
J j u’ (a,t)dadt < . <||po||Lz(0A)+j I h (a,t)dadt+J J v (a,t)dadt><oo, (78)
0Jo /\—<(1/2)||/31||00A1 +(1/2)> s Jodo 0Jo
where C is also a constant that does not depend on A. For every h € L?((0, A;) x (0,T)), ®(h) = u where uisa

Now, let us define the mapping ®: L?((0,A;)x  unique solution of the system
(0,T)) — L*((0, A;) x (0,T)) by:

AZ
O+ 0,u+(A+py (a))u=—e™ J F(e’hh (a,t),e"v(a, t))da’' inQ,,
0

u(0,t) = J:l B, (@)u(t,a)dain (0,T), (79)

u(a,0) = py(a)in (0,4,).

For every h, and h, in L*((0,A;) x (0,T)) such that u, and u, are the solutions of (79) corresponding respec-
@ (hy) = u; and @ (h,) = u,, we set again w = u; — u, where  tively to h; and h,.
So, w solves the following system:

A,
ow+o,w+(A+p (a)w= e M J [F(e’\th2 (a,1), eMv2 (a, t)) - F(e)uh1 (a, t),e’uv1 (e, t))]d(x inQ,
0

A 80
w(0,t) = J B (@)w(t,a)dain (0,T), (80)
0
w(a,0) = 0in (0, A,),
where v; and v, are solutions of (73) corresponding re- Multiplying the (80) by w, integrating over (0,A;) x
spectively to h; and h,. (0,T) and using Young and Cauchy-Scharz’s inequalities,

we deduce that
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A

T A 1 (T 1
AJ J wz(a,t)dadtgij w? (a, t)dadt+
0

0 0

1 T
w2 (0, )dadt + - J J
2 Jo

0

1 (T (4 A, 2
_J J e—zAt(J 'F(thz(a,t),emvz(oc,t))—F(thl (a,1),e"v, (oc,t))|d0£> dadt
2J)oJo 0 (81)
1 2 T A, 1 T A
sl | | et @odade s [ [ @ndades
2 ®©JoJo 2J)oJo
s o T A 3 5 T A, )
KAZJ J Ihy (1) — hy (a,8)f (@, )dadt + K A2A1J J vy (o £) — v, (@ 1) *dacdt.
0Jo 0 0
We also have
Finally, we obtain
(r —(1||/3 I.A +l>> JT JAI jw(a, I (a, t)dadt
2 1 0 1 2 0 0 > >
) 2 T A 2
<K AZI I |hy (a,t) = by (a,1)]" (a,t)dadt+  (82)
0Jo
) T A, 2
K AZAIJ J vy (06 £) = v, (@ )| dadt.
0Jo
T (A, 5
AJ J (v, = ) (@ D (a, H)dadt
0Jo
T [/ (A 2
SJ (j ﬂz(a)w(a,t)da) dr
0 0
T A (A, 2
+j (a“] J b(a,a)[F(e“h(a,t),e“vl(a,t))—F(e“h(a,t),e%(a,t))]dada> dt (83)
0 0 0
2 T A, ) ) ) ) T A, )
< AR5, w” (a,t)dadt + K*||b|l2 AT A, vy (@, £) = v, (a,1)| dadt
0Jo 0Jo
T (A 5
+K2||b||§oA§J J |hy (a,t) — hy (a, )| dadt.
0Jo
So, one has
2 2 207112 T4 2
(2= (18 + 3 AKCIE) ) [ [ " i@ = vy (@) )
T (A , (84)
gK2||b||f,oA§j j Ihy (@) — by (a, 1) dadt.
0Jo
K242\ A =([|B,]}. A, + A2A,K?|b]? K*A3A, b
Combining the inequalities (83)) and (84), we get C) = 2[ (”ﬁzu‘x’ 2+ AAK ”00)] i APl .
2 2 A= 2)|B7, (AL + (1/2) A =B, Ay + A2 ALK IBI2,
o )~ 0 )l oy <O~ ol yomy e

(85)
And, it is clear that for A large enough, that is A > A; with
where
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1/1 1
Yo =5 (GBI AL +1BalE Az + AT ALK b1, + K243 43 )+

1
2

C(A)<1. So, ® is a contraction in L*((0, A,) x (0, T)),
hence ® has a unique fixed point u. So, the couple
(u,v) € L*((0, A}) x (0,T)) x L*((0, A)) x (0,T)) is a
unique solution of the system (82).

Replacing h by u in (85) and in (78) and summing the
inequalities (85) and (90), we deduce (81). O

da +1q(a) =0inQ, ,

s A
p(0) = jo B, (@)p(a)da,

A,
. B, (@)g(a)der +

A

q(0)=J

J

Theorem 4. Under the hypothesis (A,)— (A,), the system
(88), admits at least one non-trivial positive solution in
L1(0,A)) x L1 (0, A)).

0

Proof. Let  (p,q) € L1 (0,A;) x L} (0,A,) — L} (0, A})x
L' (0,A,) and denote by T:L!(0,A,)xL!(0,4,) —
L1 (0,A;) x L1 (0, A,), the application given by:

da+#rq(a) =0inQ,,

] A,
p(0) = jo B, (@)p(a)da,
A

0

A,
4(0) = JO B, ()q (a)da + J

The comparison theorem (see [20]) imply that, for any
(ﬁ) Q) € L}r (0) A]) X Li (0» AZ):

0<p<pand0<g<y, (91)
where p and g satisfy respectively
Pa+uip(a) =0inQy ,
(92)

~ A1 —_
O = I8, |, Plaa.

And

(I

(I

(87)

1 1 2 (1/2)
[(gnﬂl s =Bl — AR, + K247 +3) + 4K A3, ||b||io] :

4. Spatially Homogeneous Stationary Solutions

We now consider problem (2) and we look for spatial
homogeneous stationary solutions i.e for solutions
that are constant in time and space. The System (2)
becomes:

, .
petip(@ = - [ “F(p@iq@)dainQ,,

(88)

AZ
. b(a,0)F (p(a);q(a))da

oo

I'(p,q) =(p:9):

where (p; q) is a solution of the following uncoupled system

(89)

, .
potmpla) == [ F(plarg(@)dainQ,,

(90)
:2 b(a )F ((a); q(a))da)da.
Go+ g (a) =0inQy,,
700) =(|B.l., + AlblooIFll, ) jj 7(a)da. )
Consider now the set f={(p,q €L'(0,A))x

L'(0,A;)suchthat0< p< pand0<g<g}.

It clear that ® is a closed convex set and I'(R) c &
because I'(p,q) € & for every (p,q) € .

We fix (7,() € L' (0, A;) x L' (0, A,) and set (#,() the
corresponding solution of (90). Let (p,) and (g,) be two
convergent sequences respectively in L'(0,A,)s and in
L'(0, A,) such that p, — 7 in L'(0,A,) and g, — ( in
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L'(0,A,). Set (p,.q,) the corresponding solution of (90).
Then (p,,q,) solves

Pu(@ +pp,(@) = —f,(@)inQy,
4,(a) + i p, (@) = 0in Qy,

Al
1 p00) = j B, (a)p, (a)da, (94)

A,
4O = [ B (g, (@da s g,

where Iga) 42 F(pn (a);g,(a))daa.ein (0,A;) and
= JO (f b(a, a)F(IA?,,(a) q, (a))da)da.
Denotebyf(a) J F(7(a); {(a))daa.ein (0,A;) and

g (?gﬁ (1-{8 b(a, 0)F (7 (a); { (a))da)da.

"fn - f“Ll (0.4,) s A2K”§n - ﬁ"L‘ (0.4,)
3 (95)
+ AiK]q, -, (0.4) 0

And
19, ol < KAMBI B~ .0,

- (96)
+ KA Bl oo |G = €l (0.4, — ©-

So, f, — finL'(0,A,) and g, — ginR".
By elementary calculations, the first equation of (94)
yields:

Al
pu(@ =, (@ | B, (@)p, (a)da

[ e[ @aofan ae @a)
(97)

Multiplying (93) by 3, and integrating over (0, A,;), we
get

A A
<1 - jo 7, ()8, (5)ds> JO B, (@)p, (@)da
(98)

A s s
= —J B (S)J fn(r)exp{—j yl(e)de}dr.
The sequence Jn = Jo (T)CXP{ I # (G)de}dr con-

verges to j= f(T)expr j y (0) de}dr in R* be-
cause |j, — ]|< olfu— 11 (T)exp¥ J 78 (9)d9}d‘r<||fn

fllsf“’ﬁ B (a)p,(@)da —> . Thus,
y(a)a.e (0, A 1) and

v(@) = 7, (@)l - JO f('r)exp{— J “ (G)de}dr,

pn(a) —

(99)
ae (a;A)).
So, we see that y solves
Y (@) +p (@)y=-f(a)inQ,,
(100)

A]
y(0)=1I= JO B, (a)y (a)da.

The uniqueness properties of the solutions of (100) give
that y = .

The solution of the second equation in (92) can be re-
written as

A,
q,(a)=m, (a)(JO B,(a)g, (a)da + gn>, € (0,4,).
(101)

As before, we multiply (97) by f, and integrate over
(0,4,). We get

A,
(I—J ﬁz(s)nz(s)ds)J. B, (a)g, (a)da
0

A,
. j B, (a), (a)da.
0

Then, (J?z B, (a)q, (a)da) converges to h. So, (97) im-
plies that (g, (a)) converges to ¢ (a). And, one has

(102)

¢ (a) = my (a)h + gm, (a). (103)
By derivation of (105), we see that ¢ satisfies
¢’ (@) +p, (a)p = 0inQy ,
(104)

A,
0(0) =h= JO B, (a)g(a)da + g.

Using again uniqueness properties, we conclude that
9=

We have shown that I' is a continuous application in
L1(0,A;) x LL (0, A,).

Integrating the first equation of (94) over (0,A4,), we
obtain

A Ay
| w@p,@da=p,(4) - [ B @, @da
0 0
(105)

- J: £, (a)da.

The right hand term of this equality is bounded then the
left hand one is bounded too. This also implies that (¢, p,,) is
bounded. Therefore, by the first equation of (94), we deduce
that (p,) is bounded. Since (p,) and (p,) are both bounded.
Then, (p,,) is bounded in € W1 (0, A,). Similarly, we show
also that (g,,) is bounded € W1 (0, A,).

From the compact injections of W'!(0,4,) into
L'(0,A,) and W' (0, A,) into L' (0, A,), we deduce that
['(8) is relatively compact. By invoking Schauder’s theorem
[22], T has at least one fixed point ( p, q) which is the solution
of (90). O

5. Numericals Simulations

We use the finite difference method to approximate the
solution of problem (35) ([23, 24]). Let us denote by u; ()
and v;(¢) the approximations of u(a;,t) and v(a;t) re-
spectively, where a; = iAa, 0<i<N, Aa = (A/N).

We consider that F(p,q) = p+q and b(a, «) = b,. And
we use the discrete approximation
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ou; (t) _u; (t) —u;_y ()

da Aa

and (106)

v, (1) _vi(t) —viy (),

=12,...,N.
da Aa

We approximate the boundary condition by replacing

the integrals with the series [25]. This yields
A AY 0)u (0, Au (At 60 4
JO ﬁl(a)u(ﬂ,t)daEﬁ;ﬂlui(t)+ﬂl( u( )'*’2131( Ju(A,t)
70 | ]
and
A A A 80 + u
J B, (a)v(a, t)da+I J b(a,a) (u(at) + v(a )dada
0 0 0 90 |- |
N/ 2 N
= % < 12 * %)vi(t) + ATbO Zuk (t) +ﬁ2 (O)V(O) t) ;ﬁz (A)V(A’ t)' 100 E 1 1 1 1 1 1 1 1 1 3
= = 0 10 20 30 40 50 60 70 80 90 100
(107) nz = 2828

F1GURE 1: Matrix G.
Finally, the initial conditions are replaced by

u; (0) = u’ (a;),
v;(0) =+ (a;) fori =1,2,...,N.

Substituting (106)-(109) into (37) and replacing the
(108) approximate equalities with equalities, yields,

’ du; (£) ! i AY
u(;t( ) (1) = a [y (1) — u; (8)] — pu; (£) — A (t) — ﬁk;vk (t),
dv; (t)

1 i
i (t) = E [V,'_l (t) - Vi (t)] ~ Vi (),

=23 g0
uy(t) ==Y Bu;(t), i=1,...,N,
0 Nkzlﬁl (109)

AL i Ab A’y ¢
v (D)= Z(/S’z + WO)W 0+ =7 D (0,
k k=1

=1

u; (0) = u’ (@),

v,(0) = ° (a;),

where we set pi=u (a), Bi=p(a), p=p,(a), whereG= (g ?), see (Figure 1).
B, =B, (a;) fori=1,2,...,N. ) )
Set U(t) = (4 (£, .., 1y (), v, ()., vy (t)* and . The matrix C, D, E and F are square matrix of order N
U(0)=Uy = (4, (0),...,uyn(0),v,(0),...,vy(0)"  the with
linear system (5) becomes
dU (¢
ﬁ=GU(t), i=1,...,N,

d (110)

U(O) = UO)
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(AIN)B) +k; (AIN)BY ... (AIN)BY™" (A/N)BY
1 k, 0 0
C = (1/Aa) 0 ,
1 Ky 0
0 0 1 Ky
1 1
D = —(A/N) ,
1 ... 1
((A%)IN) ... ... ((A%,)IN) (111)
b 0 0 ,
0 .0
d +c¢ ¢ CN_1 CN
1 d, 0 0
F=(l/Aa)| 0 -
1 dy, O
0 0 1 dy
. : (@) =05(A-a)”"
And k;=-Aa(yi +A)-1; ¢; = (AIN)f5 + by (A%/N), .,
d;=-Aay,,—1fori=1,2,...,N. #y(a) =1.05(A-a) 5

We visualize in Matlab the general form of the matrix G
(see Figure 1).

All the numerical tests run on Matlab.

For numerical simulations, we take the functions

w(a)=2(A-a)",

(@) = (A-a)l,

Pi(a) = 10°a* (A - a)’e (A/z))2

B, (a) ={ (100a — 5A) e~ 0521004547

0, otherwise.

04<a<17,

(112)

With the initial conditions u, () = 10e~2(@= (AB3)" and
vy (61) 20e” 0.3(2a— A)

Att =0, we have a large prey population, in particular
the prey which has an age between a=0.2 and a =1.1
(yellow zone, see (Figure 2). This population generates
significant births especially between the instants ¢ = 0.03 and
t = 0.8 (yellow zone).

No birth is observed in the population of predators between
the instants t = 0 and t = 0.3 The consumption of prey under
the action of biomass increases the fertility of predators so there
are births between the instants t = 0.3 and t = 0.6. These births
are important at times t > 0.7. The population of predators then
increases from £ > 0.8 and at the same time leads to a decrease in
that of preys.

We also take the following functions

Bi(a) = 10°a° (A- a)ze—3(a—(A/3)z);

8, (@) {(((100a_5A)4e—0452(10a—5A)2)/F(S)), 0.4<a<l.7,
2 \a) =

0, otherwise.

(113)

With the initial conditions u,(a) = 10e~2(@= (A3)" and
Vo (a) — 106—02(211 A)

Preys are rare so the predators population does not
develop. As soon as the preys population began to be
abundant from t >3, that of predators also becomes im-
portant from t >4 (see Figure 3).

To account for the effect of predation on the evolution of
the two populations, we present cases where the transfor-
mation of the biomass is more or less important ( b, = 1.25
or b, = 0.01):

The transformation of biomass is important, preys con-
sumed benefits predators by considerably increasing their fer-
tility, which increases their births (see Figure 4). So the
population of predators increases but on the other hand that of
prey decreases.The biomass is important, but the predators do
not live long so they do not have the time to procreate which
leads to their decrease therefore the prey population increases
with many births (see Figure 5).

In Figure 6, the biomass is low so the prey consumed does
not influence the fertility of predators so births are very low.
So the predator population is decreasing and that of the prey
too because the prey does not live long enough to procreate.

An example of code under Matlab to get Figure 6.
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FIGURE 2: Approximate solution of the problem (37) with T =1, A = 2.
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FIGURE 4: Approximate solution of the problem (37) with T =1 and A =2 and b, = 1.25.



International Journal of Mathematics and Mathematical Sciences

Times

Times

Times

Preys Predators

1
.4
0

A NN oo o

w
Times

—_ N W

02 04 06 08

12 14 16 18 02 04 06 08

Ages

Ages

2 14 8

FIGURE 5: Approximate solution of the problem (37) with T'=1 and A =2 and b, = 1.25.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

O

Preys Predators

NW R YNNI 0 O

[T
f=]
—

02 04 06 08

2
. 900
. 800
. 700
. 600
500
. 400
. 300
. 200
. 100

02 04 06 08

1
0.9
0.8
0.7
0.6

g

E 05

H
0.4
0.3
0.2

0

2 8 02 04 06 08 2 14 8
Ages Ages
FIGURE 6: Approximate solution of the problem (37) with b, = 0.01.
Preys Predators

Times

6 02 04 06 08
Ages

FIGURE 7: Approximate solution of the problem (37) with b,

Ages

=0.01.

1.4 8

o

=)

'y

)

o

o)

~

(=)

w

[N

w

[ S}

—_

=N W R Y N e O

21



22 International Journal of Mathematics and Mathematical Sciences

The biomass is almost zero, so the preys are eaten
without contribution on the fertility of the predators so the
births are very low. The predator population is decreasing
and the prey population is increasing see (Figure 7).

6. Conclusion and Perspectives

We have analyzed in this work existence results of a
predator-prey model. Existence results already exist on
predator-prey models but these models do not simulta-
neously take into account the variables of space, time and age
and use classical functional response functions (see [1, 2]).
Thus, we have proposed the model that we consider much
more complete with a more general functional response
subject to the condition of K—lipschitz. This model has been
analyzed in the different previous sections under these
different variants proving that the cohabitation of predators
and prey in our model is possible.

The numerical simulation section confirms the theo-
retical results and shows that the quantity of prey and
predators present also depends strongly on the biomass
conversion rate b: Indeed, a high biomass conversion rate
increases the fertility of predators by the amount
fol (b(a,x,t)F (p;q) (a; x,t))da therefore leads to a large
population of predators that consume almost all prey from at
a given time see (Figure 4). And if the biomass is very low
then the consumption of prey does not benefit the birth rate
of predators so their number does not increase and end up
disappearing under the effect of mortality see (Figure 7).

In practice, it will be difficult to control the behavior of
these two populations by acting on the biomass conversion
rate since it is an intrinsic and biological factor of predators.
So the investigation of (2) is not yet complete. We believe
that it is possible to control the model (2) through the
external functions f, and f,. In other words, by taking the
functions f, and f, as controls in a bounded domain of (), it
is possible to have the extinction either the population of
prey or that of predators or both simultaneously from of a
time T as we did in [17].
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