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We aimed to study constant mean curvature foliations of noncompact Riemannian manifolds, satisfying some geometric
constraints. As a byproduct, we answer a question by M. P. do Carmo (see Introduction) about the leaves of such foliations.

1. Introduction

Consider a codimension-one foliation of a Riemannian
manifold, whose leaves have a constant mean curvature.
When the ambient manifold is compact, there are a bunch of
results stating that such a foliation is totally geodesic,
provided some geometric assumption is satis�ed [1, 2]. �is
kind of phenomenon is sometimes true in the noncompact
case as well. Meeks in [3] proved that any codimension-one
constant mean curvature foliation of the three-dimensional
Euclidean space is totally geodesic. Oshikiri [4] proved the
analogous result in a Riemannian manifold with nonneg-
ative Ricci curvature, provided the leaves have quadratic
volume growth.

In this article, we prove that the leaves of any codi-
mension-one constant mean curvature foliation of a Rie-
mannian manifold with nonnegative Ricci curvature are
totally geodesic, provided they are parabolic (�eorem 4).
�eorem 4 generalizes Oshikiri’s result, as quadratic volume
growth implies they are parabolic.

�en, we consider a Riemannian manifold N with zero
volume entropy (Section 2), and we prove that, if F is a
codimension-one foliation of N such that any leaf L has
constant mean curvatureHL, then inf |HL| � 0 (�eorem 2).
Notice that having zero volume entropy is a weaker as-
sumption than having nonnegative Ricci curvature, by
Bishop’s comparison theorem [5] (Corollary 2.1.1).

Finally, we point out that if the leaves of a foliation F

have the same constant mean curvature, then the leaves are
stable as shown in [6], Proposition 3, and Section 3, where a
sketch of the proof is given.

We recall that do Carmo in [7] asked the following
question: is a noncompact, complete, stable, constant mean
curvature hypersurface of Rn+1, n≥ 3, necessarily minimal?

Our result yields a positive answer to do Carmo’s
question, provided the hypersurface is a leaf of a foliation
such that the leaves have the same constant mean
curvature.

�e answer was already known to be positive for n � 2
[8] ([9], when the ambient manifold is the hyperbolic space).
Later, the answer was proved to be positive for n= 3 and 4 by
Elbert et al. [10] and independently by Cheng [11], using a
Bonnet–Myers’ type method. Moreover, the authors gave a
positive answer to do Carmo’s question in the following
cases: (1) a hypersurface with zero volume entropyof a space
form of any dimension [12] (Corollary 8). (2) a hypersurface
of Rn+1, Hn+1, n≤ 5 with total curvature with polynomial
growth [13] (Corollary 6.3).

2. Basic Notions

Let N be a complete, noncompact Riemannian manifold.
We de�ne the entropy associated with the volume of geo-
desic balls in N [14, 15].
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Definition 1. Let BN
σ (R) be a geodesic ball in N of radius R,

centered at a fixed point σ ∈ N, and denoted by |BN
σ (R)|as its

volume. +e volume entropy of N is

μN ≔ lim sup
R⟶∞

ln B
Ν
σ (R)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

R
⎛⎝ ⎞⎠. (1)

+e notion of volume entropy does not depend on the
center σ of the balls. It is worthwhile to notice that μΝ � 0 is
equivalent to

lim supr⟶∞
B
Ν
σ (R)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

e
αr � 0, ∀α> 0. (2)

+en, it is natural to say that NΝ has subexponential
growth if μN � 0 and exponential growth if μN > 0.

We observe that having subexponential growth is a
weaker assumption than being bounded by a polynomial of
any degree. For example, if |BΝσ (R)| � erβ and β< 1, then N
has subexponential growth.

+e volume entropy of a manifold N is strictly related to
the bottom of its essential spectrum and to the Cheeger
constant. Let us be more precise about this.

Let Δ be the Laplacian on N, then the bottom of the
spectrum σ(Ν) of − Δ is

λ0(N) � inf σ(N){ } � inf
f∈C∞0 (N)

f≠ 0

􏽒Ν|∇f|
2

􏽒Νf
2

⎛⎝ ⎞⎠. (3)

+e bottom of the essential spectrum σess(N) of − Δ is

λess0 (N) � inf σess(N)􏼈 􏼉 � sup
K

λ0
N

K
􏼒 􏼓, (4)

where K runs through all compact subsets of N.
+e Cheeger constant hN of a Riemannian manifold N is

defined as hN � infΩ|zΩ|/|Ω|, where Ω runs over all com-
pact domains of N with piecewise smooth boundary zΩ.

Cheeger [16] and Brooks [14] proved the following
important comparison result between the bottom of the
essential spectrum, the volume entropy, and the Cheeger
constant.

Theorem 1 (Brooks–Cheeger’s +eorem). If N has infinite
volume, then

h
2
Ν
4
≤ λ0(N)≤ λ0

N

K
􏼒 􏼓≤ λess

0 (N)≤
μ2Ν
4

, (5)

where K is any compact subset of N.

We finally recall that a Riemannian manifold is called
parabolic if it does not admit a nonconstant positive
superharmonic function. Parabolicity is strictly related to the
volume growth of a manifold. In fact, quadratic area growth
implies parabolicity [17] (Corollary 7.4) [6].

3. Foliations of Manifolds with Zero
Volume Entropy

In this section, we study foliations, with constant mean
curvature leaves, of manifolds with zero volume entropy. In
the article, F will be a C3 codimension-one foliation of a
manifold N and N will be a C3 unit vector field of N normal
to the leaves of F.

We have the following result.

Theorem 2. Let N be a manifold with zero volume entropy.
Let F be a codimension-one C3 foliation of N such that any
leaf L has constant mean curvature HL ≥ 0. -en, infHL � 0.

Before doing the proof of +eorem 2, let us state a
consequence in the case of a constant mean curvature
foliation.

Corollary 1. Let N be a manifold with zero volume entropy.
Let F be a codimension-one C3 foliation of NΝ by leaves of
constant mean curvature H. -en, H � 0.

As we remarked in Introduction, the leaves of a constant
mean curvature foliation are stable, provided all the leaves
have the same mean curvature ([2], Proposition 3).

We give a sketch of the proof of the latter for the sake of
completeness.

By [2] (Proposition 1), one has

Ric(N, N) + |A|
2

+ |θ|
2

� divL ∇NN( 􏼁, (6)

where N is a unit vector field defined in N, perpendicular to
F at any point, A is the second fundamental form of L, θ is
defined by θ(X) � 〈∇NN, X〉 for every vector field X

tangent to L, and |θ|2 � 􏽐
n
i�1 θ(Ei)

2, where E1, . . . , En􏼈 􏼉 is a
local orthonormal base of the tangent space to L.

Recall that the second variation of the volume of a leaf L

is

V″(0) � 􏽚
L
|∇f|

2
− f

2 Ric(N, N) +|A|
2

􏼐 􏼑, (7)

where f is any smooth function on N with compact support.
+en, by using equality (6) multiplied by f, one gets

V″(0) � 􏽚
L
|∇f|

2
− f

2
Ric(N, N) +|A|

2
􏼐 􏼑 � 􏽚

L
|∇f|

2
+ f

2
|θ|

2
− f

2divL ∇NN( 􏼁

� 􏽚
L
|∇f|

2
+ f

2
|θ|

2
− divL f

2∇NN􏼐 􏼑 + ∇NN f
2

􏼐 􏼑

� 􏽚
L
|∇f + fθ|

2 ≥ 0.

(8)
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+en, V″(0)≥ 0; this means that the leaves are stable.
+e stability of the leaves of such a foliation suggests to

inquire if we can answer Carmo’s question [7]: is a non-
compact, complete, stable, constant mean curvature hy-
persurface of Rn, n≥ 3, necessarily minimal?

Corollary 1 yields a positive answer to Carmo’s question,
provided the hypersurface is a leaf of a foliation with
constant mean curvature leaves.

Proof of -eorem 2. If there is a minimal leaf L, we have
nothing to prove. +en, we may assume that infHL > 0, and
let N be the unit vector field normal to the leaves ofF given
by the normalized mean curvature vector. +en, there exists
c> 0 such that HL ≥ c for every leaf L. By straightforward
computation, we obtain the following:

nH(p) � divΝN(p), (9)

where H is the mean curvature of the leaf passing through p.
+en, we integrate (9) on a ball of radius R of N, say BR,

􏽚
BR

nH(p) � 􏽚
BR

divNN(p) � 􏽚
zBR

〈N, ]〉≤ vol zBR( 􏼁, (10)

where the last equality is by the divergence theorem. Keeping
into account that H(p)≥ c at any point p ∈ Ν, (10) yields

nc≤
vol zBR( 􏼁

vol BR( 􏼁
. (11)

In particular,

nc≤ inf
R

vol zBR( 􏼁

vol BR( 􏼁
� hΝ. (12)

+en, the Brooks–Cheeger’s theorem stated in Section 2
yields μΝ ≥ hΝ > 0 that is a contradiction.

Using the Gauss formula, one can prove the analogous of
+eorem 2 for foliations of constant scalar curvature. □

Theorem 3. Let N be a manifold with zero volume entropy
and nonpositive sectional curvatures. Let F be a codi-
mension-one C3 foliation of N such that any leaf L has
constant scalar curvature SL ≥ 0. -en, infSL � 0.

Proof. By the Gauss formula, one has

SL � 􏽘
i< j

K ei, ej􏼐 􏼑 + H
2
L − |A|

2
, (13)

where e1, . . . , en is a base of the tangent space to a leaf L,
K(ei, ej) is the sectional curvature of NΝ along span ei, ej􏽮 􏽯,
|A| is the norm of the second fundamental form of L, and HL

is its mean curvature.
+en, being the sectional curvatures of NN non-

positive,one has that SL <H2
L; hence, SL > c implies HL >

�
c

√
,

and one can apply +eorem 2.
An immediate consequence of +eorem 2 is the fol-

lowing result. □

Corollary 2. Let N be a manifold with zero volume entropy
and nonpositive sectional curvatures. Let F be a codi-
mension-one C3 foliation of NΝ by leaves of constant scalar
curvature S. -en, S � 0.

Remark 1. It is worthwhile noticing that all the results of this
section hold for foliations given by complete graphs of
constant mean or scalar curvature, when they exist.

4. Minimal Parabolic Foliations of
Manifolds with Nonnegative Ricci Curvature

In this section, we prove a kind of Bernstein’s theorem for the
leaves of a minimal foliation of a Riemannian manifold with
nonnegative Ricci curvature, provided the leaves are parabolic.

Theorem 4. Let N be a Riemannian manifold with non-
negative Ricci curvature and let F be a codimension-one
foliation of N by minimal leaves. If the leaves of the foliation
are parabolic, then they are totally geodesic.

+eorem 4 is a generalization of+eorem 1 in [4]. In fact,
quadratic area growth implies parabolicity ([17], Corollary
7.4, and [6]). When the ambient space is Rn+1, for n � 2, the
leaves of a minimal foliation must be totally geodesic [3],
while for n≥ 4, there is no parabolic complete minimal
hypersurface ([18], Proposition 2.3).

Proof of -eorem 4. We first need a definition. We say that v

is an exhaustion function on L if v is continuous on L and
such that all the sets Br: � p ∈ L : v(x)≤ r􏼈 􏼉 are pre-
compact. Notice that the latter is equivalent to say that
v(p)⟶∞ as p⟶∞ (that is, p leaves every compact).

By [12] (+eorem 7.6), a manifold L is parabolic if and only
if there exists a smooth exhaustion function v on L such that

􏽚
∞ dr

FluxzBr
v

�∞, (14)

where FluxzBr
v � 􏽒

zBr
〈∇v, ]〉, being the outward unit

normal to zBr.
Equality (6) in Section 3 holds for the minimal leaf L, and

integrating it on Br yields

􏽚
Br

Ric(N, N) +|A|
2

+|θ|
2

� 􏽚
Br

divL ∇NN( 􏼁 � 􏽚
zBr

θ(]),

(15)

and for the last equality, we used the divergence theorem.
As Ric(N, N) and |A|2 are nonnegative, we have

􏽚
Br

|θ|
2 ≤􏽚

zBr

θ(])≤ 􏽚
zBr

|θ|2

|∇v|
􏼠 􏼡

1/2

􏽚
zBr

|∇v|􏼠 􏼡

1/2

, (16)

where the last inequality is by the Cauchy–Schwarz inequality.
By defining f(r) � 􏽒

Br
|θ|2, the coarea formula yields

f(r) � 􏽒
r

0 􏽒
zBs

|θ|2/|∇v|ds. +en, f′(r) � 􏽒
zBs

|θ|2/|∇v|ds.
Assume that f(r)≠ 0. With this notation, the square of

(16) is written as
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1
FluxzBr

v
≤

f′(r)

f
2
(r)

. (17)

We integrate inequality (17) between a fixed r0 and R

(where f is nonzero), and we get

􏽚
R

r0

dr

FluxzBr
v
≤

1
f r0( 􏼁

−
1

f(R)
. (18)

By letting R go to ∞, inequality (18) gives a contra-
diction. In fact, as f is a nondecreasing function, then the
right-hand side is bounded, while by hypothesis, the left-
hand side tends to infinity.

+en, f ≡ 0, that is ∇N, N ≡ 0, on the leave L, and
equality (6) yields R(N, N) + |A|2 ≡ 0. As the Ricci curva-
ture is nonnegative, we get |A|2 ≡ 0, i.e., L is totally
geodesic. □
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