
Research Article
Roll of Newtonian and Non-Newtonian Motion in Analysis of
Two-Phase Hepatic Blood Flow in Artery during Jaundice

Abha Singh ,1 Rizwan Ahmad Khan ,2 Sumit Kushwaha ,3 and Tahani Alshenqeeti4

1College of Science and �eoretical Studies, Dammam-Female Branch, Saudi Electronic University, Riyadh, Saudi Arabia
2Department of Mathematics, Shri Krishna University, Chhatarpur 471001, India
3Department of Computer Applications, University Institute of Computing, Chandigarh University, Mohali 140413, India
4College of Science and �eoretical Studies, Medinah-Female Branch, Saudi Electronic University, Riyadh, Saudi Arabia

Correspondence should be addressed to Rizwan Ahmad Khan; rizwankhanchp@gmail.com

Received 13 April 2022; Revised 10 June 2022; Accepted 13 June 2022; Published 12 July 2022

Academic Editor: Chin-Chia Wu

Copyright © 2022 Abha Singh et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Biomathematics is an interdisciplinary subject consisting of mathematics and biology, which is widely applicable for the analysis
of biological problems. In this paper, we provide a mathematical model of two-phase hepatic blood �ow in a jaundice patient’s
artery. �e blood �ow is thought to be a two-phased process. �e clinical data of a jaundice patient (blood pressure and
hemoglobin) is gathered. To begin, hemoglobin is transformed into hematocrit, and blood pressure is turned to a decline in blood
pressure. For the examination of hepatic arteries in Newtonian and non-Newtonian movements, a mathematical model is
constructed.�e relationship between two-phase blood �ow �ux and blood pressure reduction in the hepatic artery is established.
For various hematocrit levels, the blood pressure decrease is determined. �e patient’s states are de�ned by the slope of the linear
relationship between computed blood pressure decrease and hematocrit.

1. Introduction

Due to globalization and the multidisciplinary development
of life science and mathematical science, mathematical
modeling becomes a topic of interest for the scienti�c
community. Mathematical modeling plays a signi�cant role
to understand the intricacies of infectious diseases [1–3]. It
helps to study the mechanisms responsible for observed
epidemiological patterns, assesses the e�ciency of control
policies, and predicts epidemiological inclinations. Nowa-
days, human beings su�er from many disorders due to
global warming, pressure, and stress to lifestyle [4]. Some
physiological elements that occur during exposure to
weightlessness may include alteration in blood �ow to the
liver. So many disorders can be seen like diabetes, blood
pressure, and other diseases estimation of hepatic blood
�ow.

Bio-mathematics is an emerging and dynamic �eld. �e
term bio-mathematics refers to the use of quantities and
mathematical methods to solve biological problems [1, 2].

�e bio-mathematics is an interdisciplinary subject to
understand the mechanical properties of living tissues,
anatomy and physiology in health and illness, and intro-
ductory biomechanics: from cell to organisms, blood �ow,
and microcirculation [5–7]. Bio-�uid mechanics is a well-
established branch of bio-mathematics with the help of its
normal functions, changed due to alternation via mathe-
matical analysis [7].

It is well known that the heart circulates blood in the
body using elastic tubes: the arteries, capillaries, and veins. A
proper �ow of blood is necessary for good health as it
circulates oxygen and other essential nutrients to various
parts of the body. Twomain factors that a�ect the blood �ow
are known as the blood vessels and the properties of blood.
�erefore, the modeling of blood �ow is very complex as
compared to other �uid �ows. Blood is a non-Newtonian
�uid; hence its viscosity is not constant, resulting in non-
linearity of stress and strain rate relation [8]. However, this
fact can be approximated by the power law or Casson �uid
model [9]. �e walls of blood vessels are elastic and disobey
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Hooke’s law. )e curvature of the wall can also affect the
properties of blood flow. Due to the composite elastic
materials of the wall, a nonlinear stress-strain relation exists.
Blood flow is pulsatile resulting in the periodic nature of
pressure gradient and the fluid velocity [10]. It is caused due
to the beating of the heart. )e radii of the tube are variable
and can be further divided into multiple veins. Most of the
flow is not fully developed due to the high Reynolds’s
numbers and only inlet flow occurs. Blood is a non-
homogeneous, unsteady, and pulsatile flow that flows from
the elastic tube which is branched repeatedly.

)e first attempt to understand the mechanism of blood
flow through various types of vessels was made by Leonardo da
Vinci and Descartes [11]. Later, Aird and Silverman explained
the nature of the circulation of blood in the cardiovascular
system [11, 12]. In 1899, the first mathematical model of
propagation of arterial pulse waves is given by Frank [13].
Sharan and Popel [14] explained the execution of the two-phase
model for the blood flow in slim tubes and explained how the
powerful extended viscosity near the wall affects blood flow
[14].)e viscosity of human blood concerning its performance
ability in a high static magnetic field is discussed by Haik et al.
[15]. Formaggia et al. [16] have studied the one-dimensional
nonlinear system, which defines the blood as compliant with
arteries [16]. )ey used the Navier–Stoke′s equation, which
shows the algebraic relation between intramural pressure and
vessel. Jiang et al. [17] concentrated on the physical demon-
stration and propelled reproductions of fuel-fluid two-stage
stream streams in atomization and splashes [17]. It was pro-
posed that the large blood vessels behave like a Newtonian.)e
proposed model calculates the parameters of blood flow have
no restrictions on the vessel size [18]. )e precarious and
incompressible stream of non-Newtonian liquid through
composite stenosis was also considered [19]. )e two phases
Bingham model was proposed by Ahnert et al. [20, 21]. )ey
used the differential equation for solutions and solve the
mathematical problems. )ey also used the drift-flux model
which defines the behavior of the model like the resistance of
the flow and also use the different types of parameters.
Kumawat et al. [22] mathematically analyze two-phase blood
flow through a stenosed curved artery with hematocrit and
temperature dependent viscosity [22]. A patient-specific artery
geometry in the presence of stenosis (plaque) was considered.
In 2016, Achaba et al. [23] studied the blood flow in arteries
through a non-Newtonian viscosity model [23]. )ey define
the two major difficulties. )e first is a constitutive equation.
No onemodel accepted the behavior of blood viscosity, and the
second is the highly nonlinear equation for bloodmotion.)ey
used a two-dimensional equation. )e study reveals that the
power law model is better for non-Newtonian blood flow.
Mekheimer and their research group did extensive work on the
nanoparticles drug delivery to blood hemodynamics in dis-
eased organs [24–28]. Sharma et al. [29] proposed entropy
analysis of thermally radiating MHD slip flow of hybrid
nanoparticles (Au-Al2O3/Blood) through a tapered multi-
stenosed artery [29]. Bhatti and Abdelsalam [30] studied the
peristaltic propulsion of hybrid nanofluid flow with Tantalum
and Gold nanoparticles under magnetic effects [30].

In this article, we consider the hepatic blood flow in
arterioles with respect to the nature of the hepatic circulatory
system in humans. )e Herschel–Bulkley non-Newtonian
model in Bio-fluid physiological is investigated.

2. Important Formulations

In this section, we discuss the meaning of Newtonian and
non-Newtonian flow. )e mathematical formulation can be
found in our previous articles [31–35].

2.1.CovariantVectors. A set of n functionAi of n coordinates
in a coordinate system (xi) are said to form the components
of covariant vectors if they transform to another coordinate
system (xi) according to the following rule [36]:

Ai �
zx

k

zx
i
Ak. (1)

2.2. Contravariant Vectors. A set of n function Ai of n
coordinates in a coordinate system (xi) are said to form the
components of covariant vectors if they transform to another
coordinate system (xi) according to the following rule [36]:

A
i

�
zx

i

zx
k
A

k
. (2)

2.3. Tensors of Second Order

2.3.1. Covariant Tensors of Order Two. A set Aij of n2

functions of n coordinates in a coordinates system (xi) are
said to form the components of a covariant tensor of order
two if they transform to another coordinate system (xi) as
follows [37]:

Aij �
zx

r

zx
i

zx
s

zx
j
Ars. (3)

2.3.2. Contravariant Tensors of Order Two. A set Aij of n2
functions of n coordinates xi in a coordinates system (xi) are
said to form the components of a contravariant tensor of
order two, if they transform to another coordinate system
(xi) as follows [37]:

Aij �
zx

i

zx
r

zx
j

zx
sA

rs
. (4)

2.3.3. Mixed Tensors of Order Two. A set Aij of n2 functions
of n coordinates xi in a coordinates system (xi) are said to
form the components of a mixed tensor of order two, if they
transform to another coordinate system (xi) as follows [37]:

A
i

j �
zx

i

zx
r

zx
s

zx
j
A

r
s . (5)
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2.4. Christoffel’s Symbols

2.4.1. Christoffel Symbol of First Kind. )e Christoffel 3
index symbol of the first kind are denoted by [ij, k] and
defined by the following equation [37]:

[ij, k] �
1
2

zgjk

zx
i

+
zgik

zx
j

−
zgij

zx
k

􏼠 􏼡, (i, j, k � 1, 2 . . . n). (6)

2.4.2. Christoffel Symbol of Second Kind. )e Christoffel 3

index symbol of the second kind is denoted by l

i j
􏼨 􏼩 and

defined by the following equation [37]:

l

i j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� g

lk
[ij, k]

�
1
2
g

lk
zgjk

zx
i

+
zgik

zx
j

−
zgij

zx
k

􏼠 􏼡, (i, j, k � 1,2 . . . n).

(7)

3. Modeling of Blood Flow through Vessels

3.1. Numerical Analysis for Hepatic Arteries. )e power law
equation of continuity is written as follows [38]:

1
�������

g

�����

(gv)
i

􏽱􏽲 � 0.
(8)

)e motion equation is expressed as follows [39]:

ρm

zv
i

zt
+ ρmv

j
v

i
j � T

ij
j , (9)

where Tij is power law constitutive equation. )e blood
density equation is

ρm � Xρc +(1 − X), (10)

where X � H/100 is the volume ratio of blood cells and H is
hematocrit. )e viscosity of a mixture of blood is expressed
as follows:

ηm � Xηc +(1 − X)ηp. (11)

In cylindrical form,

x
1

� r,

x
2

� θ,

x
3

� z.

(12)

Tonsorial form in cylindrical coordinates,

gij􏽮 􏽯 �

1 0 0

0 r
2 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

)e conjugate metric tensor is as follows:

g
ij

􏽮 􏽯 �

1 0 0

0
1
r
2 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

)e nonvanishing Christoffel’s symbols of 1st kind are as
follows:

[22, 1] � −r[21, 2]

� [12, 2]

� r.

(15)

And, all other Christoffel’s symbols of 1st kind are zero.
)e nonvanishing Christoffel’s symbols of 2nd kind are as
follows:

1

2, 2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� −r

2

2, 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

�

2

1, 2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

�
1
r
.

(16)

And, all other Christoffel’s symbols of 2nd kind are zero.
Relation between contravariant and component of velocity
of-blood flow is as follows:

�����

g11v
1

􏽱

� vr⇒v
1
,

�����

g22v
2

􏽱

� vθ⇒rv
2
,

�����

g33v
3

􏽱

� vz⇒v
3
.

(17)

)e component of: p,jg
ij are ���

gij

􏽰
p,jg

ij. )e compo-
nents of shearing stress tensor,

T′
ij

� ηm e
ij

􏼐 􏼑
n

� ηm g
jk

v
i
k + g

ik
v

j

k􏼐 􏼑
n

�

0 0 ηm
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􏼠 􏼡

n

0 1 0

ηm
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􏼠 􏼡

n

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

)e covariant derivative of T,
ij
j is
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T,
ij

j �
1
��
g

√
z

zx
j

T
ij ��

g
√

􏼐 􏼑 + T
jk

i

jk

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (19)

3.2. Solution for Newtonian. )e blood flow in the artery is
symmetric with respect to the axis. Hence, vz, vr, and P do
not depend upon θ, also vθ � 0. Since only one component of
velocity, which is along the axis is effective. Now
vr � 0, vθ � 0, and vz � v. Flow is steady, then obtain the
following equation [39]:

zp

zt
�

zvr

zt

�
zvθ

zt

�
zvz

zt

� 0.

(20)

Equation of continuity reduces to

zvz

zz
� 0⇒vz

� v(r).

(21)

Equation of motion reduces to

−
zp

zz
� 0⇒p

� p(z).

(22)

Z-component,

−
zp

zz
+
ηm

r

z

zr
r

zvz

zr
􏼠 􏼡􏼢 􏼣 � 0. (23)

Let us assume that the pressure gradient of blood flow in
arteries is p � dp/dz.

p �
ηm

r

d
dr

r
zvz

zr
􏼠 􏼡􏼢 􏼣,

d
dr

r
zvz

zr
􏼠 􏼡􏼢 􏼣 �

pr

ηm

.

(24)

Integration gives us,

r
dv

dr
� −

pr
2

2ηm

+ A, (25)

where r � 0, v � v0 are boundary conditions and A is
constant.

r
dv

dr
� −

pr
2

2ηm

. (26)

Integration of equation (26) is as follows:

v � −
pr

2

4ηm

+ B. (27)

Again, using the second boundary condition v � 0, then
from equation (27), we get the constant of integration value
B is

B �
pR

2

4ηm

. (28)

Putting the above-given value of B from equation (27),
we obtain the following equation:

v � −
pr

2

4ηm

+
pR

2

4ηm

�
p

4ηm

R
2

− r
2

􏼐 􏼑, (29)

where R is the radius of artery. If Q is the flux through the
artery tube, then

Q � 􏽚
R

0
2πrvdr

� 􏽚
R

0

P(z)

4ηm

R
2

− r
2

􏼐 􏼑2πrdr,

Q �
P(z)

4ηm

πR
2
r
2

−
πr4

2
􏼢 􏼣

R

0

� πR
4P(z)

8ηm

.

(30)

)erefore,

P(z) � −
zp

zz
. (31)

Now,

Q �
πR

4

8ηm

−
zp

zz
􏼠 􏼡. (32)

Integration of both sides with limit initial to final,

8ηm 􏽚
f

i
Qzz � −πR

4
􏽚

f

i
zp,

8ηmQ z{ }
zf

zi
� −πR

4
P{ }

pf

pi
,

8ηmQ zf − zi􏽮 􏽯 � −πR
4

pf − pi􏽮 􏽯,

8ηmQΔz � πR
4Δp,

Q �
πR

4

8ηm

Δp
Δz

,

(33)

3.3. Solution for Non-Newtonian. Now vr � 0, vθ �

0, and vz � v
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)e blood flow,

zp

zt
�

zvr

zt

�
zvθ

zt

�
zvz

zt

� 0.

(34)

Equation of continuity reduces to,

zvz

zz
� 0⇒vz

� v(r).

(35)

Equation of motion reduces to,

zp

zz
� 0⇒p

� p(z).

(36)

Z-component,

−
zp

zz
+
ηm

r

z

zr
r

zv

zr
􏼠 􏼡

n

􏼢 􏼣 � 0. (37)

Let us assume that the pressure gradient (p) of blood
flow in arteries is dp/dz. )en,

p �
ηm

r

d
dr

r
dv

dr
􏼠 􏼡

n

􏼢 􏼣,

d
dr

r
dv

dr
􏼠 􏼡

n

􏼢 􏼣 �
pr

ηm

.

(38)

We arrive at,

r
dv

dr
􏼠 􏼡

n

� −
pr

2

2ηm

+ A. (39)

Let us consider boundary conditions; r � 0, v � v0 and
A � 0. We arrive at

r
dv

dr
􏼠 􏼡

n

� −
pr

2

2ηm

,

−
dv

dr
�

pr

2ηm

􏼠 􏼡

(1/n)

.

(40)

After integration,

v � −
p

2ηm

􏼢 􏼣

(1/n)
r

(1/n)+1

(n + 1/n)
+ B. (41)

Under no slip boundary condition (v � 0, r � R),
equation (41) can be written as follows:

B �
p

2ηm

􏼢 􏼣

(1/n)
r

(1/n)+1

(n + 1/n)
. (42)

By inserting the value of B in (41),

v �
p

2ηm

􏼠 􏼡

(1/n)
n

n + 1
R

(1/n)+1
− r

(1/n)+1
􏽮 􏽯. (43)

Equation (43) describes the velocity of blood flow in
arteries. Total flux flow of blood (Q) through a tube of
arteries is defined as follows:

Q � 􏽚
R

0
v2πrdr

�
n

n + 1
􏼒 􏼓 􏽚

R

0
2πr

P(z)

2ηm

􏼠 􏼡

(1/n)

R
(1/n)+1

− r
(1/n)+1

􏽮 􏽯dr,

Q �
nπ

3n + 1
P(z)

2ηm

􏼠 􏼡

(1/n)

R
(1/n)+3

.

(44)

)us,

Q
n

�
nπ

3n + 1
􏼒 􏼓

n P(z)

2ηm

􏼠 􏼡R
1+3n

,

P(z) � Q
n2ηm

3n + 1
nπ

􏼒 􏼓
n 1
R
1+3n

.

(45)

Equation of motion,

P(z) �
zp

zz

� Q
n2ηm

3n + 1
nπ

􏼒 􏼓
n 1
R
1+3n

.

(46)

Integration of equation (46) gives us the pressure drop of
blood.

􏽚
f

i
zp � Q

n2ηm

3n + 1
nπ

􏼒 􏼓
n

􏽚
f

i

dz

R
1+3n

,

Δp � Q
n2ηm

3n + 1
nπ

􏼒 􏼓
n Δz
R
1+3n

.

(47)

4. Analysis for Hepatic Arteries

4.1. ForNewtonianMotion. If Q is the flux through the tube,
then

Q � 􏽚
R

0

P(z)

4ηm

R
2

− r
2

􏼐 􏼑2πrdr,

Q �
P(z)

4ηm

πR
2
r
2

−
πr4

2
􏼢 􏼣

R

0

� πR
4P(z)

8ηm

.

(48)
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Using (21), equation (48) can be written as follows:

Q �
πR

4

8ηm

−
zp

zz
􏼠 􏼡. (49)

Now,

8ηmQ zz � −πR
4
zp . (50)

Integration of both sides with limit initial to final,

8ηm 􏽚
f

i
Qzz � −πR

4
􏽚

f

i
zp,

8ηmQ zf − zi􏽮 􏽯 � −πR
4

pf − pi􏽮 􏽯,

Δp �
8ηmQ

πR
4 Δz.

(51)

Table 1 demonstrates the measured hemoglobin and
standard BP of a jaundice patient (name: A, age: 43, and
sex: F). Firstly, the hemoglobin is converted to hematocrit
using the relation mentioned in Table 2. After that, the BP
drop is assessed from standard BP using the following
relation [31]:

BP drop � S −
S + D

2
, (52)

where S is systolic and D is diastolic. Later, the BP drop is
converted to BP (in Pa). Let us consider that H � 0.02858
and blood pressure drop is 4332.9. Equation (11) gives us,

ηc

0.02858
100

+ 0.0013 1 −
0.02858
100

􏼒 􏼓 � 0.0034,

ηc � 7.477795Pa.

(53)

)e relation between flow flux and blood pressure drop
of two-phase blood flow in the hepatic artery is expressed as
follows:

Δp �
8QΔz
πR

4 ηm. (54)

Using (10) & (63), the solution of equation (54) is
obtained as follows:

Δp � 3959.3742H + 68.9047. (55)

Different values of H gives us the blood pressure drop
(Table 1). Figure 1 demonstrates the BP drop as a function of
hematocrit. It is observed that the BP drop is increased as
hematocrit enhances, which means that the hemoglobin of
the patient is normal.

4.2. ForNon-NewtonianMotion. )e total flow-flux of blood
through a tube of the arteries is Q defined by the following
equation:

Q � 􏽚
R

0
2πrVdr,

Q �
n

n + 1
􏼒 􏼓 􏽚

R

0
2πr

P(z)

2ηm

􏼠 􏼡

(1/n)

R
(1/n)+1

− r
(1/n)+1

􏽮 􏽯dr,

Q �
nπ

3n + 1
P(z)

2ηm

􏼠 􏼡

(1/n)

R
(1/n)+3

.

(56)

Both sides take power n,

Q
n

�
nπ

3n + 1
􏼒 􏼓

n P(z)

2ηm

􏼠 􏼡R
1+3n

,

P(z) � Q
n2ηm

3n + 1
nπ

􏼒 􏼓
n 1
R
1+3n

.

(57)

We know that the P(z) � zp/zz for non-Newtonian
motion. Hence,

zp

zz
� Q

n2ηm

3n + 1
nπ

􏼒 􏼓
n 1
R
1+3n

. (58)

Integration of both sides with limit initial to final,

􏽚
f

i
zp � Q

n2ηm

3n + 1
nπ

􏼒 􏼓
n

􏽚
f

i

dz

R
1+3n

. (59)

Pressure drop of blood,

Δp � Q
n2ηm

3n + 1
nπ

􏼒 􏼓
n Δz
R
1+3n

. (60)

Table 1: Clinical data and calculated BP values of jaundice patient (name: A, age: 43, and sex: F).

Date Hemoglobin (mmHg) Hematocrit (kg/m3) BP BP drop BP (Pa) BP drop (using (64))
08/08/16 9.8 0.0277 150/70 40.0 5332.8 178.698
13/08/16 9.9 0.0281 144/70 37.0 4932.9 179.807
20/08/16 10.1 0.0286 140/75 32.5 4332.9 182.064
25/08/16 10.3 0.0292 135/78 28.5 3799.7 184.321
30/08/16 10.6 0.0300 125/80 22.5 2999.8 187.686

Table 2: Clinical data of jaundice patients (name: A, age: 43, and
sex: F).

Parameters Magnitudes Ref.
1mmHg at 0°C 133.322 Pa [40]
Hematocrit (three times of
hemoglobin/Density of
blood)

(1060 kg/m3)

Viscosity of mixture (ηm) 0.0034 Pa [41]
Viscosity of plasma (ηp) 0.0013 Pa [42]

Blood flow flux

Q� 800–1000ml/min
Q� 900ml/min (average)
Q � 1.5 × 10− 5 (1000ml/
min� 1.666 ×10− 8m3/s)

Length of hepatic artery (Δz) 3.25 cm [43]
Radius of hepatic artery (R) 0.0022m [44]
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Let us consider that H� 0.02858 and BP drop� 4332.90
and

P(z) �
Δp
Δz

�
4332.90
0.0325

� 133320.

(61)

Using equation (11),

ηc � 7.4778 Pa. (62)

Again, by using equation (11), we arrive at,

ηm � 0.07476H + 0.0013. (63)

Rearrangement of (59) provides the blood flow flux (Q),

Q �
nπ

3n + 1
P(z)

2ηm

􏼠 􏼡

(1/n)

R
(1/n)+3

. (64)

Solution of equation (64) gives the value of n,

n � 0.951. (65)

Inserting the values of n, Q, ηm, and Δz in (60), we
arrive at,

Δp � 2777.028H + 48.2896. (66)

By inserting the value of H in equation (66), we get a BP
drop (Table 3).

Figure 2 demonstrates the relation between the calcu-
lated BP drop (Δp) and hematocrit (H) for non-Newtonian
motion. It is observed that the BP drop increases as the
hematocrit increases.

Figures 3(a) and 3(b). Mathematical data of BP drop
(calculated using (66)) and BP (in Q) as a function of
Hematocrit for non-Newtonian motion. Solid lines repre-
sent the linear fitting.

Rheological properties of the Reiner–Rivlin fluid
model for blood flow through a tapered artery with
stenosis have been studied by Akbar et al. [45]. Elogail and
Mekheimer [46] implemented a numerical study that
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Figure 1: Mathematical data of BP drop (calculated using (66)) and BP (in Pa) as a function of hematocrit, by Table 1.

Table 3: Clinical data and calculated BP values of jaundice patient (name: A, age: 43, and sex: F).

Date Hemoglobin (mmHg) Hematocrit (kg/m3) BP BP drop BP (Pa) BP drop (using (66))
08/08/16 9.8 0.0277 150/70 40.0 5332.8 125.2133
13/08/16 9.9 0.0281 144/70 37.0 4932.9 126.3241
20/08/16 10.1 0.0286 140/75 32.5 4332.9 127.7126
25/08/16 10.3 0.0292 135/78 28.5 3799.7 129.3788
30/08/16 10.6 0.0300 125/80 22.5 2999.8 131.6004
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Figure 2: Mathematical data of BP drop (calculated using (66)) and
BP (in Pa) as a function of hematocrit, by Table 3.
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simulates blood flow through a microvessel involving
oxytactic microorganisms and nanoparticles [46]. )e
oxytactic microorganisms exhibit negative chemotaxis to
gradients of oxygen (oxygen repellents). )ese micro-
organisms are to batter infected hypoxic tumor cells as
drug carriers [46]. Awad et al. [47] studied the flow of a
non-Newtonian fluid with nonzero yield stress [47].
Navier stokes equation is used to simulate this subject
mathematically.)e elasticity on the stenosis arterial walls
is simulated by Rubinow and Keller model and the
Mazumdar model [47]. Kumawat et al. [22] mathemati-
cally analyze two-phase blood flow through a stenosed
curved artery with hematocrit and temperature dependent
viscosity [22].

Last but not least, we developed mathematical for blood
flow in arteries during jaundice. We collected the blood
pressure data of jaundice patients from the hospital and later
applied a mathematical model to analyze the data.

5. Conclusion

We developed a deterministic model of the link between
hematocrit and blood pressure fluctuations in jaundice
patients in this study. )e mathematical analysis is vali-
dated on the clinical data and calculated BP values of the
jaundice patient (name: A, age: 43, and sex: F). )e role of
blood flow and hemoglobin malfunction is investigated in
this research. It is feasible to propose a patient for better
therapy based on the trend line of the association between
hematocrit and BP decline. With the use of model New-
tonian motion and non-Newtonian motion, if the trend
line exhibits positive slope, then the patient’s hemoglobin is
normal. If the trend line indicates a negative slope, how-
ever, the management of jaundice patients should be
modified. )is study is useful to predict the hemoglobin
status of jaundice patients on the basis of blood pressure
measurement.
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