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Linear and quadratic discriminant analysis are two fundamental classi­cation methods used in statistical learning. Moments
(MM), maximum likelihood (ML), minimum volume ellipsoids (MVE), and t-distribution methods are used to estimate the
parameter of independent variables on the multivariate normal distribution in order to classify binary dependent variables. �e
MM and ML methods are popular and e�ective methods that approximate the distribution parameter and use observed data.
However, the MVE and t-distribution methods focus on the resampling algorithm, a reliable tool for high resistance. �is paper
starts by explaining the concepts of linear and quadratic discriminant analysis and then presents the four other methods used to
create the decision boundary. Our simulation study generated the independent variables by setting the coe�cient correlation via
multivariate normal distribution or multicollinearity, often through basic logistic regression used to construct the binary de-
pendent variable. For application to Pima Indian diabetic dataset, we expressed the classi­cation of diabetes as the dependent
variable and used a dataset of eight independent variables. �is paper aimed to determine the highest average percentage of
accuracy. Our results showed that the MM and ML methods successfully used large independent variables for linear discriminant
analysis (LDA). However, the t-distribution method of quadratic discriminant analysis (QDA) performed better when using small
independent variables.

1. Introduction

Logistic regression is a standard statistical algorithm used to
classify binary dependent Logistic regression is a standard
statistical algorithm to classify binary dependent variables
based on independent variables. Nevertheless, the critical as-
sumption of logistic regression is that there is a linear decision
surface between the dependent and independent variables.
Furthermore, logistic regression requires an average amount of
or no multicollinearity problems between independent vari-
ables. Linearly separable data and multicollinearity in data are
often found in real-world situations. It is hard to determine
complicated relationships using logistic regression. More
powerful and concise algorithms such as discriminant analysis
[1] can easily exceed the performance of this algorithm.

Discriminant analysis is used for classi­cation, dimen-
sion, and data visualization. �e classi­cation was explored

in a study of discriminant analysis [2] that has been used in
many classi­cation problems [3, 4]. When performing
discriminant analysis, users can discuss classi­cation
methods in which two or more groups and one or more
independent variables are placed into one of the measured
characteristics. Medical scientists investigate how groups
(characterized by blood pressure, blood glucose levels, and
age) di�er across independent variables. One study used
discriminant analysis to determine which patients had
previously su�ered a heart attack [5] to classify whether the
patient would survive based on other variables. Two dis-
criminant analyses are interesting: linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA).

LDA can be interpreted from decision boundaries at two
points. �e ­rst is a probabilistic interpretation, and the
second is an interpretation of Fisher [6]. �e ­rst inter-
pretation helps consider the assumptions of LDA. �e

Hindawi
International Journal of Mathematics and Mathematical Sciences
Volume 2022, Article ID 7829795, 11 pages
https://doi.org/10.1155/2022/7829795

mailto:autcha.ar@kmitl.ac.th
https://orcid.org/0000-0002-4293-048X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7829795


second interpretation provides a better understanding of
how LDA performs classification. Fisher [7] introduced an
LDA that identified a linear combination of the independent
variables with a maximum class separation ratio. LDA’s
ability to successfully distinguish between tumor classes [8]
using gene expression data was an essential feature of a new
approach to cancer classification. LDA assumes that the
variance between all classes is equal, and the decision
boundary is calculated in a linear function. In other words,
when each class has an individual covariance matrix, this is
QDA, and the decision boundary shows in the form of a
quadratic function. %e LDA and QDA [9] should be rec-
ommended when using NIR data to classify an ill-posed
problem.%e principal component analysis [10] was applied
with LDA and QDA for discriminants between healthy
control and cancer samples based onMS data sets.%e seven
classification methods [11] were tested with binary logistic,
probit, and cumulative probit regression, LDA, QDA, ar-
tificial neural networks, and naı̈ve Bayes classification, to
examine skeletal sex estimation. Consequently, LDA may be
more preferred in skeletal sex estimation than other
methods. LDA and QDA proposed flow regime identifica-
tion [12] to combine responses from a non-intrusive optical
sensor for air and water’s vertical upward gas-liquid flow.

%e LDA and QDAmethods use the multivariate normal
distribution of independent variables as a classification rule.
%e parameter of prior probability, mean, and covariance
matrix of each class also create the discriminant function for
the boundary of classes. %e two classes are assumed to have
the normal distribution, the most common and default
distribution in real-world applications. %erefore, if the
normal distribution is considered for the two classes where
the covariancematrices are assumed to be equal, the decision
boundary of classification is in the form of a linear dis-
criminant function. When the covariance matrices are as-
sumed to be unequal, the decision boundary of classification
is in the form of a quadratic discriminant function.

%is study aimed to investigate the parameter estima-
tions for LDA and QDA. We proposed commonly-used
methods, namely the moments (MM) and maximum like-
lihood (ML) methods, and the iterative algorithm, namely
the minimum value ellipsoid (MVE) and t-distribution
methods, to determine which conditional distribution was
from the multivariate normal distribution.

Traditionally, LDA and QDA are estimated using the
first and the second theoretical moments, also called theMM
method introduced by Bowman and Shenton [13] in their
concept of the central limit theorem. %is method estimated
population parameters that expressed population moments
as the parameter of interest in terms of the functions. %ese
functions were then set equal to the sample moments, and
the number of equations was the same as the number of
parameters. %e equations were then used to estimate the
parameters of interest before the estimators were solved to
approximate these parameters.

%e ML method [14] was a technique that was widely
used for estimating probability distribution function pa-
rameters based on the observed data. %e parameters were

estimated by maximizing the likelihood function of obser-
vation. %e logarithm was then based on the likelihood
function. Taking the derivative with respect to a parameter
was straightforward, and when set to zero, theML estimators
produced a pleasant result.

Rousseeuw [15, 16] studied the resampling algorithm
using the minimum volume ellipsoid method. %is method
generated a robust estimation of multivariate location and
scale. It estimated a low bias and expedient for outlier in-
spection via multivariate data, often through the benefit of
robust distances on the MVE estimate. %e MVE properties
included breakdown value, affine equivariance, and
efficiency.

%e suitable t-distribution method [17] used the sta-
tistical modeling finite mixtures model to classify multi-
variate data sets. Its advantages were that it was the most
comfortable method for modeling, and it obtained in-
creasing determination. Multivariate normal data had been
used because of their easy computation. Modeling that uses
a mixture of t-distribution methods can be fitted using an
ML iteration [18] expectation-maximization (EM)
algorithm.

%e debate on using machine learning or discriminant
analysis (LDA and QDA) has been one of the critical
questions in classification. Generally speaking, the dis-
criminative classifiers model directly depends on the
probability distribution function and thus needs fewer pa-
rameters; this alleviates the difficulty of parameter estima-
tion problems. Machine learning is concerned with the
algorithms that learn how to assign a class label to an ex-
ample from the problem domain. On the other hand, be-
cause class probability distributions are known, LDA and
QDA have unique advantages in dealing with multi-
collinearity data. %e ML, MM, MVE, and t-distribution
methods are approximate mean and covariance from the
multivariate normal distribution that plays important role in
classification.

%is study compares the MM, ML, MVE, and t-distri-
bution methods depending on the LDA and QDA. %ese
methods were used to classify the binary dependent variables
related to the multicollinearity of independent variables.
%eir percentage of accuracy determined the performance of
the four methods. Additionally, we clarified some of the
simulation study’s theoretical concepts and real data.

2. The Concept of Linear and Quadratic
Discriminant Methods

%e probability density function for multivariate normal
distribution, or x ∼ N(μ, 􏽐), is written as:

f(x|μ,Σ) �
1

��������

(2π)
p
| 􏽐 |

􏽱 exp −
(x − μ)

T
􏽐

− 1
(x − μ)

2
􏼠 􏼡, (1)

where x � (x1, x2, ..., xp) is the independent variable, μ �

(μ1, μ2, ..., μp) is the mean of the independent variables, and
Σ is the covariance matrix.

2 International Journal of Mathematics and Mathematical Sciences



2.1. Linear Doscriminant Analysis (LDA). LDA [19] assumes
that the binary classification has the equal covariance matrix
Σ1 � Σ2 � Σ. %erefore, the equation (1) becomes:

1
��������

(2π)
p
| 􏽐 |

􏽱 exp −
x − μ1( 􏼁

T
􏽐

− 1
x − μ1( 􏼁

2
􏼠 􏼡π1

�
1

��������

(2π)
p
| 􏽐 |

􏽱 exp −
x − μ2( 􏼁

T
􏽐

− 1
x − μ2( 􏼁

2
􏼠 􏼡π2,

exp −
x − μ1( 􏼁

T
􏽐

− 1
x − μ1( 􏼁

2
􏼠 􏼡π1

� exp −
x − μ2( 􏼁

T
􏽐

− 1
x − μ2( 􏼁

2
􏼠 􏼡π2,

(2)

where π1 and π2 are the prior probability of the two classes
and μ1 and μ2 are the mean of the two classes.

Using the natural logarithm from two sides of the
equation, we get the simplified term:

−
1
2

x − μ1( 􏼁
T
􏽘

− 1

x − μ1( 􏼁 + ln π1( 􏼁 �

−
1
2

x − μ2( 􏼁
T
􏽘

− 1

x − μ2( 􏼁 + ln π2( 􏼁,

−
1
2
x

T
􏽘

− 1

x −
1
2
μT
1 􏽘

− 1

μ1 + μT
1 􏽘

− 1

x + ln π1( 􏼁

� −
1
2
x

T
􏽘

− 1

x −
1
2
μT
2 􏽘

− 1

μ2 + μT
2 􏽘

− 1

x + ln π2( 􏼁,

(3)

where equation (3) is xT􏽐
− 1μ1 � μT

1 􏽐
− 1

x, and when each
side is multiplied by 2, we get:

2 􏽘
− 1

μ2 − μ1( 􏼁􏼠 􏼡

T

x + μ2 − μ1( 􏼁
T
􏽘

− 1

μ2 − μ1( 􏼁􏼠 􏼡

+ 2 ln
π2
π1

􏼠 􏼡 � 0.

(4)

Equation (4) shows the form of a linear term. LDA
discriminant function the two classes as:

δ(x) � 2 􏽘

− 1

μ2 − μ1( 􏼁􏼠 􏼡

T

x + μ2 − μ1( 􏼁
T
􏽘

− 1

μ2 − μ1( 􏼁􏼠 􏼡

+ 2 ln
π2

π1
􏼠 􏼡 � 0.

(5)

%e class of instance x is defined by:

􏽢c(x) �
1, if δ(x)< 0,

2, if δ(x)> 0.
􏼨 (6)

%e LDA Algorithm.

(1) Input independent variables x � (x1, x2, ..., xp) of n

sample.
(2) Compute the mean of each class μ1 and μ2.
(3) Calculate the prior probability of each class π1 and

π2.
(4) Compute the covariance matrix for each class Σ1 and
Σ2.

(5) Approximate the pooled covariance matrix as
􏽢Σ � (n1 − 1) 􏽢􏽐1 + (n2 − 1) 􏽢􏽐2/n − 2,, n � n1 + n2.

(6) Calculate the LDA discriminant function as in
equation (5).

(7) Assign the class label as in as in equation (6).

2.2. Quadratic Doscriminant Analysis (QDA). QDA [19] for
binary classification is defined as the unequal covariance
matrix Σ1 ≠Σ2. %erefore, equation (2) can be adjusted in
term of unequal covariance as:

1
���������
(2π)

p
􏽐1

􏼌􏼌􏼌􏼌
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2
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T
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2
􏼠 􏼡π2.

(7)

%e natural logarithm taken from equation (7) is:

−
p
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(8)

We multiplied the sides of the previous equation by 2
and got:
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2
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To obtain Equation (8) in the quadratic form
xTAx + bTx + c � 0, we brought the expression to the QDA
discriminant function as:

δ(x) ≔ x
T

􏽘
1

− 􏽘
2
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2
μ2 − 􏽘

− 1

1
μ1⎛⎝ ⎞⎠

T
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2
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+ ln
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼠 􏼡 + 2 ln

π2

π1
􏼠 􏼡 � 0.

(10)

%e classification term is shown in equation (6).
%e QDA Algorithm.

(1) Input independent variables x � (x1, x2, ..., xp) of n

sample.
(2) Compute the mean of each class μ1 and μ2.
(3) Calculate the prior probability of each class π1 and

π2.
(4) Compute the covariance matrix for each class Σ1 and
Σ2.

(5) Calculate the QDA discriminant function as in
equation (10).

(6) Assign the class label as in as in equation (6).

3. The Estimation Methods

%e classification of these methods focused on the proba-
bility density function for multivariate normal distribution
from equation (1), x ∼ N(μ, 􏽐), and is written as:

f(x|μ,Σ) �
1

��������

(2π)
p
| 􏽐 |

􏽱 exp −
1
2
(x − μ)

T
􏽘

− 1

(x − μ)􏼠 􏼡. (11)

%is section estimated parameters from multivariate
normal distribution across the four methods.

3.1. Moments (MM) Method. %e MM method relates the
equivalent of sample and theoretical moments. Sample
moments are denoted where E(Xk) is the kth moment of the
distribution for k � 1, 2, ..., and Mk � 1/n 􏽐

n
i�1 Xk

i is the kth

sample moment for k � 1, 2, ....
For multivariate normal distribution, the first sample

moment approximates the origin by.
M1 � 1/n 􏽐

n
i�1 xi � x to the first theoretical moment

E(X). %en, the second sample moment approximates the
origin using M2 � 1/n 􏽐

n
i�1 x2

i � 1/n 􏽐
n
i�1 xixT

i to the second
theoretical moment E(X2). %e first and the second

theoretical moments approximate the origin by E(Xi) � μ
and. E(X2

i ) � Σ + μμT.

%e first theoretical moments approximate the origin
with the sample moment and the moment estimator of μ is:

E Xi( 􏼁 � 􏽢μmm �
1
n

􏽘

n

i�1
xi. (12)

%e second theoretical moment approximates the origin
with the sample moment and we obtain:

E X
2
i􏼐 􏼑 � Σ + μμT

�
1
n

􏽘

n

i�1
x
2
i

�
1
n

􏽘

n

i�1
xix

T
i ,

(13)

where 􏽢μmm � 1/n 􏽐
n
i�1 xi, and the moments estimator of Σ is

approximated as:

􏽢ΣMM �
1
n

􏽘

n

i�1
xix

T
i − 􏽢μMM􏽢μT

MM

�
1
n

􏽘

n

i�1
xi − 􏽢μMM( 􏼁 xi − 􏽢μMM( 􏼁

T
.

(14)

3.2. Maximum Likelihood (ML) Method. From the proba-
bility density function, the likelihood function is created by

L(μ,Σ) � (2π)
− np/2

| 􏽘 |
− n/2 exp −

1
2

􏽘

n

i�1
xi − μ( 􏼁

T
􏽘

− 1

xi − μ( 􏼁⎛⎝ ⎞⎠,

(15)

where x � (xi1, xi2, ..., xip) and μ � (μ1, μ2).
%e likelihood function is calculated using the logarithm

to the log likelihood function:

l(μ,Σ) � −
np

2
log(2π) −

n

2
log| 􏽘 | −

1
2

􏽘

n

i�1
xi − μ( 􏼁

T
􏽘

− 1

xi − μ( 􏼁.

(16)

Taking the derivative with respect to μ is straightforward:

zl(μ,Σ)
zμ

� 􏽘
n

i�1
xi − μ( 􏼁

T
􏽘

− 1

, (17)

and setting to zero we obtain a pleasant result:

􏽢μML �
1
n

􏽘

n

i�1
xi. (18)
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%e ML estimator is the mean in the sample mean. %e
covariance matrix is approximated by taking the derivative
with respect to the matrix from Σ− 1 using equation (16).

zl(μ,Σ)
z􏽐

− 1 �
n

2
Σ −

1
2

􏽘

n

i�1
xi − μ( 􏼁

T
xi − μ( 􏼁. (19)

Finally, setting to zero yields the ML estimator:

􏽢ΣML �
1
n

􏽘

n

i�1
xi − 􏽢μML( 􏼁 xi − 􏽢μML( 􏼁

T
. (20)

It can be concluded that the ML and the MM estimators
used the same equation and values.

%e MM and ML Algorithm.

(1) Input independent variables x � (x1, x2, ..., xp) of n

sample.
(2) Select the sample sizes of each class n1 and n2.
(3) Calculate the mean of each class 􏽢μ1 � 􏽐

n1
i�1 xi and

􏽢μ2 � 1/n 􏽐
n2
i�1 xi

(4) Compute the covariance matrix for each class 􏽢Σ1 �

1/n 􏽐
n1
i�1(xi − 􏽢μ1)(xi − 􏽢μ1)

T and
􏽢Σ2 � 1/n 􏽐

n2
i�1(xi − 􏽢μ2)(xi − 􏽢μ2)

T

3.3. Minimum Value Ellipsoid (MVE) Method. %is method
[20] depends on the MVE, which covers the least point h of
the n observations. %e multivariate data is defined as x �

(x1, x2, ..., xp) with independent variables p and
xi � (xi1, ..., xip)T; i � 1, 2, ..., n. Computing the MVE for a

set of data x requires the examination of all n

h
􏼠 􏼡 ellipsoids

that contain the observed h � n + p + 1/2 of x for the
smallest ellipsoid volume. %e MVE algorithms defined
ellipsoids by including the subsets of observed p + 1 on data
x. For each subset of size p + 1, indicated by
J � i1, ..., ip+1􏽮 􏽯 ⊂ 1, ..., n{ }, the sample mean and sample
covariance matrix were computed by:

􏽢μMVE(J) �
1

p + 1
􏽘

p+1

j�1
xij

, 􏽢ΣMVE(J) �
1

p + 1
􏽘

p+1

j�1
xij

− xJ􏼒 􏼓 xij
− xJ􏼒 􏼓

T

.

(21)

%e covariance matrix ΣJ is a nonsingular covariance
matrix when the subset of p + 1 is in general rank. If the
subset of p + 1 was not in general rank, then the observed
data from x were included until a subset with the sample of
nonsingular covariance matrix was achieved.

%e MVE Algorithm.

(1) Input independent variables x � (x1, x2, ..., xp) of n

sample.
(2) Compute the standard choice h � n + p + 1/2.

(3) Require examination of all n

h
􏼠 􏼡 ellipsoids.

(4) Search to ellipsoids determined by subsets consisting
of p + 1 obsavations.

(5) Compute mean 􏽢μMVE(J) and covariance 􏽢ΣMVE(J).

3.4. !e T-distribution Method. %e modeling of a mixture
of t-distributions [17] is considered a robust estimator that
fits the data set with the ML via the expectation-maximi-
zation (EM) algorithm [18]. %e t-distribution proposes a
longer-tailed distribution that is closed to the normal dis-
tribution for large sample sizes.

%e data set is denoted by x � (x1, x2, ..., xp) with p

independent variables from sample sizes n. In a normal
mixture model based on these data, each data set is assumed
to be a comprehension of the random variables of dimen-
sional vector p with the g-component normal mixture
probability density function on data set x:

f(x;Ψ) � 􏽘

g

j�1
πjϕ x; μj,Σj􏼐 􏼑, (22)

where the proportions πj are nonnegative and all propor-
tions sum to one. %en

ϕ x; μj,Σj􏼐 􏼑 � (2π)
− p/2

| 􏽘 |
− 1/2

× exp −
1
2

x − μj􏼐 􏼑
T

􏽘

− 1

j

x − μj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(23)

denotes the p-variate multivariate normal probability
density function with mean μi and covariance matrix
􏽐j(j � 1, . . . g). Here Ψ � (π1, ..., πg− 1, θ

T)T where θ is
composed of the components of the μj and the distinct
components of the Σj(j � 1, ..., g).

%e t mixture model depending on the normal distri-
bution is obtained with the location parameter μ, positive
covariance matrix Σ, and ] degrees of freedom,

f(x; μ,Σ, ]) �
Γ(] + p/2)|Σ|− (1/2)

(π])
1/2Γ(]/2) 1 + δ(x, μ,Σ)/]􏼈 􏼉

1/2
(v + p)

,

(24)

where δ(x, μ,Σ) � (x − μ)TΣ− 1(x − μ).
%e implementation of the EM algorithm for ML esti-

mation in the case of a single component t-distribution has
been discussed in MaLachlan et al. [21]. For the EM algo-
rithm at the iterations (k + 1) th, π(k+1), θ(k+1) , and ](k+1)

can be computed independently of each other. To compute
the weight sample mean and sample covariance matrix, we
used:

􏽢μ(k+1)
j �

􏽐
n
i�1 τ

(k)
ij u

(k)
ij xi

􏽐
n
i�1 τ

(k)
ij u

(k)
ij

,

􏽢Σ(k+1)

j �
􏽐

n
i�1 τ

(k)
ij u

(k)
ij xi − μ(k+1)

j􏼐 􏼑 xi − μ(k+1)
j􏼐 􏼑

T

􏽐
n
i�1 τ

(k)
ij

.

(25)

Where u
(k)
ij � ]k

j + p/]k
j + δ(xi, μ

(k)
j ;Σ(k)

j ) and τ(k)
ij � πk

jf

(xi; μ
(k+1)
j , ](k+1)

j )/f(xi;Ψ(k+1)).
It can be seen that 􏽢μ(k+1)

i and 􏽢Σ(k+1)

j were selected after
weighted least squares estimation. %e E-step drew the
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weights u
(k)
ij while the M-step successfully chose 􏽢μ(k+1)

i and
􏽢Σ(k+1)

j using the weighted least squares method, which we
called the EM algorithm.

%e t-distribution Algorithm.

(1) Input independent variables x � (x1, x2, ..., xp) of n

sample.
(2) Assume x � (x1, x2, ..., xp) to be the g-component

normal mixture probability density function.
(3) Obtain the parameter mean and covariance to

t-distribution.
(4) Implement EM algorithm at the iterations (k + 1) th,

π(k+1), θ(k+1) , and ](k+1).
(5) Compute the weight sample mean and sample

covariance matrix as 􏽢μ(k+1)
j and 􏽢Σ(k+1)

j .

4. Simulation and Results

%e objective of this study was to classify the binary de-
pendent variables using LDA and QDA via MM, ML, MVE,
and t-distribution methods. %e independent variables (x)
were simulated from the multivariate normal distribution in
two, four, six, and eight sets of independent variables and
constant correlation (ρ) values of 0.1, 0.5, and 0.9. %e
multivariate normal distribution function of the indepen-
dent variables (x) consisted of mean (μ) and covariance
matrix (Σ):

f(x|μ,Σ) �
1

��������

(2π)
p
| 􏽐 |

􏽱 exp −
1
2
(x − μ)

T
􏽘

− 1

(x − μ)􏼠 􏼡, (26)

where

x �

xi1

xi2

...

xip

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, μ �

μ1
μ2
...

μp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Σ �

σ21 ρσ1σ2 ... ρσ1σp

ρσ2σ1 σ22 ... ρσ2σp

... ... ... ...

ρσpσ1 ρσpσ2 ... σ2p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

p � 2, 4, 6, 8, i � 1, ..., n.

(27)

%e mean (μ) was fixed to generate at zero and the
standard deviation (σi, i � 1, 2, ..., p) was fixed to generate as
6. %e regression coefficients were denoted by
β � (β0, β1, ..., βp)T for the set of two, four, six, and eight
independent variables. Finally, the dependent variables (y)
were approximated by the logit function πi � 1/1 + e− x β

from the logistic regression model.
If πi ≥ 0.5, the dependent variables were defined as

yi � 1, and yi � 0, when πi < 0.5. %e R program employed
simulation data at 1,000 replications with sample sizes of
200, 300, 400, and 500. %e MM, ML, MVE, and t-distri-
butionmethods approximated LDA and QDA parameters to
predict the dependent variable. %e confusion matrix was
used to report the classification performance on a set of
estimated data to compare with the real data using the
percentage of accuracy (Table 1).

%e percentage of accuracy was computed as (Table 1):
Percentage of Accuracy � TP + TN/TP + TN + FP + FN ×

100.

%e average percentage of accuracy of the MM, ML,
MVE, and t-distribution methods for two, four, six and,
eight variables are presented in Tables 2–5 according to
their correlation coefficient (0.1, 0.5, or 0.9). %e mean of
over 1,000 replications was used to compute the average
percentage of accuracy. %e maximum average percentage
of accuracy values are shown in bold letters.

Tables 2–5 present the average accuracy of all methods
for several correlation coefficients. Based on the results, it
could be seen that the average percentage of accuracy for the
MM and ML methods had both the highest and equal values
across all tables. %e MM and ML methods in QDA also
showed the highest average percentage of accuracy in Ta-
ble 2. Additionally, the MM and ML methods in LDA had
the highest average percentage in Tables 3–5. Meanwhile, the
t-distribution method had the second highest average per-
centage of accuracy and a minor difference from the MM
andMLmethods. When the independent variable increased,
the average percentage of accuracy decreased. When the
sample sizes were large, the average percentage of accuracy
was good. However, when the correlation coefficients in-
creased, the average percentage of accuracy was shown to be
a slightly different value.

5. Application of a Real Dataset

We applied LDA and QDA to classify a healthy person and a
diabetic patient from the Pima Aboriginals diabetes dataset
from the Applied Physics Laboratory of John Hopkins
University. %is dataset was obtained from the University of
California, Irvine website (https://archive.ics.uci.edu/ml/
datasets/).%e binary dependent variables were 0 or 1, with 0
indicating a healthy person and 1 indicating a diabetic
patient. %e independent variables were defined by the
number of pregnancies (x1), years of age (x2), diabetes
pedigree function (x3), triceps skin fold thickness (x4), 2-h
serum insulin (x5), plasma glucose concentration (x6), di-
astolic blood pressure (x7), and body mass index (kg/m2)
(x8). %ese data consisted of 768 records: 500 healthy person
records and 268 diabetic patient records. Table 6 presents the
descriptive statistics related to the diabetic disease dataset.

Pearson’s correlation analysis was used to determine
whether there was a relationship between the eight con-
tinuous independent variables. %e formula for computing
the correlation between two variables was:

r �
􏽐

n
i�1(xi− x) yi − y( 􏼁

�������������������������

􏽐
n
i�1 (xi− x)

2
􏽨 􏽩 􏽐

n
i�1 (yi− y)

2
􏽨 􏽩

􏽱 . (28)

Table 1: %e confusion matrix of real data and estimated data.

Estimated data
Real data

yi � 1 yi � 0

􏽢yii � 1 True positive (TP) False positive (FP)
􏽢yi � 0 False negative (FN) True negative (TN)
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%e correlation coefficients of the independent variables
are presented in Table 7 and Figure 1. %e hypothesis testing
for the significance of the relationship is defined as:

H0: ρ � 0 , H1: ρ≠ 0 , and the t-statistics were used
for computing the significance of Pearson’s correlation by
t � r

����������
n − 2/1 − r2

√
with a degree of freedom (df ) n-2.

Finally, when the p-value of the t-statistics was less than
0.05, that indicated a significant relationship between two
variables shown in Table 7.

Based on our findings, a significant positive relationship
at a moderate level was found in most cases such as in x1, x6
and x3 to x8, and a significant relationship at a strong level

Table 2: %e average percentage of accuracy of moments (MM), maximum likelihood (ML), minimum value ellipsoid (MVE), and t-
distribution (t) methods under two independent variables.

Sample sizes (n) Correlation Coefficient
Linear discriminant analysis Quadratic discriminant analysis

MM ML MVE t MM ML MVE t

200
0.1 98.15 98.15 97.61 97.92 98.18 98.18 98.00 98.12
0.5 98.12 98.12 97.70 97.90 98.27 98.27 98.00 98.21
0.9 98.15 98.15 97.72 97.93 98.22 98.22 98.05 98.21

300
0.1 98.47 98.47 98.10 98.31 98.55 98.55 98.36 98.48
0.5 98.45 98.45 98.07 98.29 98.50 98.50 98.39 98.49
0.9 98.37 98.38 98.05 98.21 98.45 98.46 98.43 98.43

400
0.1 98.58 98.58 98.28 98.49 98.66 98.66 98.64 98.67
0.5 98.67 98.67 98.28 98.51 98.69 98.69 98.62 98.66
0.9 98.60 98.60 98.30 98.46 98.66 98.66 98.65 98.65

500
0.1 98.75 98.75 98.40 98.61 98.78 98.78 98.74 98.74
0.5 98.72 98.72 98.37 98.58 98.76 98.76 98.73 98.73
0.9 98.73 98.73 98.39 98.60 98.81 98.81 98.73 98.71

Table 3: %e average percentage of accuracy of moments (MM), maximum likelihood (ML), minimum value ellipsoid (MVE), and t-
distribution (t) methods under four independent variables.

Sample sizes (n) Correlation Coefficient
Linear discriminant analysis Quadratic discriminant analysis

MM ML MVE t MM ML MVE t

200
0.1 97.59 97.59 97.32 97.29 97.49 97.49 96.75 97.27
0.5 97.60 97.60 97.28 97.40 97.49 97.60 97.28 97.36
0.9 97.65 97.65 97.33 97.39 97.50 97.50 96.51 97.32

300
0.1 97.95 97.95 97.75 97.74 97.83 97.83 97.38 97.69
0.5 97.97 97.97 97.65 97.73 97.81 97.81 97.42 97.66
0.9 97.94 97.94 97.71 97.74 97.81 97.82 97.41 97.61

400
0.1 98.10 98.10 98.91 97.90 97.95 97.96 97.77 97.81
0.5 98.10 98.10 98.96 97.93 97.93 97.94 97.72 97.84
0.9 98.21 98.21 98.00 98.05 98.05 98.06 97.83 97.91

500
0.1 98.32 98.32 98.09 98.11 98.16 98.17 97.99 98.05
0.5 98.31 98.31 98.09 98.13 98.16 98.16 97.93 98.03
0.9 98.32 98.32 98.16 98.13 98.19 98.19 97.96 98.05

Table 4: %e average percentage of accuracy of moments (MM), maximum likelihood (ML), minimum value ellipsoid (MVE), and t-
distribution (t) methods under six independent variables.

Sample sizes (n) Correlation Coefficient
Linear discriminant analysis Quadratic discriminant analysis

MM ML MVE t MM ML MVE t

200
0.1 97.27 97.27 97.01 97.00 96.98 96.98 95.76 96.74
0.5 97.26 97.26 97.03 96.95 97.07 97.08 96.00 96.80
0.9 97.30 97.30 97.04 97.04 97.17 97.18 96.06 96.84

300
0.1 97.59 97.59 97.47 97.46 97.28 97.29 96.71 97.10
0.5 97.61 97.61 97.39 97.39 97.32 97.32 96.63 97.09
0.9 97.88 97.88 97.37 97.37 97.23 97.23 96.60 97.03

400
0.1 97.88 97.88 97.65 97.65 97.46 97.46 96.99 97.28
0.5 97.84 97.84 97.60 97.60 97.45 97.46 97.00 97.26
0.9 97.84 97.85 97.66 97.66 97.51 97.51 97.04 97.30

500
0.1 98.02 98.02 97.83 97.83 97.67 97.67 97.30 97.49
0.5 98.02 98.02 97.83 97.83 97.66 97.67 97.30 97.46
0.9 98.03 98.03 97.82 97.82 97.69 97.69 97.28 97.50
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was shown in some cases such as x1, x2 and x4, x5. Most of
the independent variables had a significant relationship
except for x2, x3, x2, x4, and x2, x5.

%e Pearson correlation matrix from Table 7 is re-
written in Figure 1, and is easier to understand using
different shades. %e light shade signifies a moderate
correlation, and the dark shade denotes a strong corre-
lation. Most of the independent variables have the light
shade, which means there were either correlations among
the independent variables or multicollinearity problems.

%e MM, ML, MVE, and t-distribution methods via LDA
and QDA were approximated to compute the accuracy
percentages in Table 8. %e sets of two, four, six, or eight
independent variables were similar to those of the sim-
ulation data. %e two, four, and six independent variables
were selected when the correlations were at the significant
0.05 level.

From Table 8, it is apparent that the MM and ML
methods showed equal accuracy percentages across all cases
and the highest accuracy percentages in most cases.

Table 5: %e average percentage of accuracy of moments (MM), maximum likelihood (ML), minimum value ellipsoid (MVE), and t-
distribution (t) methods under eight independent variables.

Sample sizes (n) Correlation Coefficient
Linear discriminant analysis Quadratic discriminant analysis

MM ML MVE t MM ML MVE t

200
0.1 97.11 97.11 96.72 96.82 96.85 96.85 95.12 96.41
0.5 97.04 97.04 96.72 96.74 96.81 96.81 95.14 96.45
0.9 97.13 97.14 96.78 96.87 96.90 96.90 95.18 96.47

300
0.1 97.38 97.38 97.10 97.07 96.92 96.92 95.99 96.65
0.5 97.28 97.28 97.13 97.05 96.91 96.92 95.91 96.60
0.9 97.32 97.32 97.12 97.06 96.89 96.90 95.88 96.61

400
0.1 97.62 97.62 97.17 97.34 97.17 97.17 96.47 96.91
0.5 97.54 97.54 97.38 97.30 97.10 97.10 96.37 96.83
0.9 97.57 97.57 97.40 97.35 97.16 97.16 96.50 96.90

500
0.1 97.74 97.74 97.56 97.50 97.27 97.27 96.79 97.30
0.5 97.74 97.74 97.55 97.49 97.31 97.31 96.78 97.07
0.9 97.77 97.77 97.58 97.60 97.32 97.32 96.77 97.08
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Figure 1: %e graph of the correlation matrix between eight independent variables.
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However, the accuracy percentage of the t-distribution
method was good in two independent variables using QDA.
%erefore, the MM and ML methods outperformed with
LDA for four, six, and eight independent variables, which
was the same as the simulation results. When the number of
independent variables increased for two or four, the accu-
racy percentage was slightly different. However, the large
independent variables demonstrated excellent performances
in the diabetes dataset.
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Figure 2: %e histogram of eight independent variables.

Table 6: Descriptive statistics of the diabetic patient dataset.

Variables Mean Median Std. Dev. Min Max
x1 3.84 3.00 3.36 0.00 17.00
x2 33.24 29.00 11.76 21.00 81.00
x3 0.47 0.37 0.33 0.07 2.42
x4 20.54 23.00 15.95 0.00 99.00
x5 79.80 30.5 115.24 0.00 846.00
x6 120.90 117.00 31.97 0.00 199.00
x7 69.10 72.00 19.35 0.00 122.00
x8 31.99 32.00 7.88 0.00 67.10

Table 7: Pearson correlation matrix for the relationship between
eight independent variables.

Variables x1 x2 x3 x4 x5 x6 x7 x8

x1 1.00 0.54∗ − 0.03 − 0.08 − 0.07 0.13∗ 0.14--
> 0.02

p-value <0.05 1.00 0.21 0.33 <0.05 <0.05 1.00
x2 — 1.00 0.03 − 0.11∗ − 0.04 0.26 0.23∗ 0.03
p-value 1.00 0.02 1.00 <0.05 <0.05 1.00
x3 — — 1.000 0.18∗ 0.18∗ 0.13∗ 0.04 0.14∗
p-value <0.05 <0.05 <0.05 1.00 <0.05
x4 — — — 1.000 0.43∗ 0.05 0.20∗ 0.39∗
p-value <0.05 0.79 <0.05 <0.05
x5 — — — — 1.000 0.33∗ 0.08 0.19∗
p-value <0.05 0.14 <0.05
x6 — — — — — 1.000 0.15∗ 0.22∗
p-value <0.05 <0.05
x7 — — — — — — 1.000 0.28∗
p-value <0.05
x8 — — — — — — — 1.000
p-value
Note. ∗, %e significant correlation at 0.05 level.
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6. Discussion

%e simulated results are listed in Tables 2–5.%e number of
independent variables and sample sizes influenced the av-
erage accuracy percentage. QDA outperformed on the small
independent variables, but the large independent variables
were more appropriate for LDA. However, the average
accuracy percentages of the large independent variables were
less than the percentages for the small independent variables.
%e correlation coefficient increase did not affect the clas-
sification because the average accuracy percentage showed
slightly different values. If the sample size increased, the
accuracy of all methods increased in all cases.

For the real data results in Table 8, the MM, ML, and
t-distribution methods showed the highest accuracy per-
centages for two independent variables. We found that the
independent variables of real data demonstrated skewed
data (Figure 2). %e Shapiro-Wilk test [22] was used to
confirm that all independent variables showed non-nor-
mality. However, the MM and ML methods supported
classification on large independent variables. %e multi-
variate normal distribution generated the simulation
dataset. %erefore, the real data results were different from
the simulation study in some cases. Overall, it is clear that
the MM and ML methods are most suitable for classifying
diabetes.

%e Pima Indian diabetic dataset is popular to analyze
for classification and to improve medical diagnosis. Gupta
et al. [23] compared Gaussian process, LDA, QDA, statistical
gradient descent, ridge regression classifier, support vector
machines, k-nearest neighbors, decision tree, naı̈ve Bayes,
logistic regression, random forest, and ELM for multi-
quadric, RBF, sigmoid activation functions. %e results
suggested that the logistic regression performs better than
the other techniques. Chang et al. [24] proposed an e-di-
agnosis system based on a machine learning algorithm:
Näıve Bayes classifier, random forest classifier, and J48
decision tree models to be trained and tested using the Pima
Indians diabetes. It can be concluded that a Näıve Bayes
model works well with a more fine-tuned selection of fea-
tures for binary classification. Abedin et al. [25] studied a

hierarchical ensemble model to combine two classifiers that
had been trained, a decision tree and a logistic regression
model, and feed the output of those models to a neural
network. %e proposed model achieved classification ac-
curacy by using PIMA Indian diabetes database.

7. Conclusion

%is paper proposes the classification of binary data by
applying MM, ML, MVE, and t-distribution methods based
on LDA and QDA for data multicollinearity. %e solutions
provide the advantages and disadvantages of these
methods. %e advantage of the QDA results when using
small independent variables, MM andML, outperformed in
classifying all correlation coefficients, but these methods
are slightly different from the other methods. However, the
LDA results showed that MM and ML perform the same
when provided with four to eight independent variables.
%ese methods did not relate to the classification perfor-
mance when considering the correlation coefficient.
However, the large sample sizes showed good perfor-
mances across all cases. Eight independent variables were
selected for the medical data when using real data to classify
diabetes patients. We selected two, four, six, and eight
independent variables for large correlation. %ese results
showed that the t-distribution was efficient on two inde-
pendent variables via QDA. However, the MM and ML
methods were effective at classifying four to eight variables
based on LDA. %erefore, we concluded that MM and ML
methods could classify in the presence of multicollinearity.
Medical data classification has been extended to study a
novel random vector functional link [26] and a novel
random vector functional link with ε-insensitive Huber loss
function [27]. A fuzzy-based Lagrangian twin parametric-
margin support vector machine [28] reduced the effect of
the outliers in medical data.

Data Availability

%e data used to support the findings of this study are
available from the author on request.

Table 8: %e percentage of prediction accuracy on two, four, six, and eight independent variables.

Number of independent variables Independent variables
Linear discriminant analysis Quadratic discriminant analysis
MM ML MVE t MM ML MVE t

2

x1, x2 66.53 66.53 65.10 66.53 65.88 65.88 65.75 67.44
x1, x7 66.53 66.53 64.97 66.53 65.88 65.88 65.75 67.44
x3, x4 66.53 66.53 65.75 66.53 65.88 65.88 65.75 67.44
x5, x8 66.53 66.53 65.75 66.53 65.88 65.88 65.49 67.44
x6, x7 66.53 66.53 65.49 66.53 65.88 65.88 65.62 67.44
x7, x8 66.53 66.53 65.10 66.53 65.88 65.88 65.75 67.44

4

x1, x2, x4, x8 67.96 67.96 66.01 67.44 67.31 67.31 65.75 66.92
x2, x5, x6, x8 67.96 67.96 67.05 67.44 67.31 67.31 66.40 66.92
x2, x3, x4, x8 67.96 67.96 66.14 67.44 67.31 67.31 66.53 66.92
x3, x5, x7, x8 67.96 67.96 65.57 67.44 67.31 67.31 66.01 66.92

6 x2, x3, x5, x6, x7, x8 76.51 76.51 74.47 76.04 76.43 76.43 70.44 72.39
x1, x2, x3, x4, x6, x7 76.52 76.51 75.00 76.04 76.43 76.43 72.00 72.39

8 x1, x2, x3, x4, x5, x6, x7, x8 78.38 78.38 77.77 77.21 76.43 76.56 74.21 73.3
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