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�is research aims to compare estimating the con�dence intervals of variance based on the normal distribution with the primary
method and the Bayesian approach. �e maximum likelihood is the well-known method to approximate variance, and the Chi-
squared distribution performs the con�dence interval. �e central Bayesian approach forms the posterior distribution that makes
the variance estimator, which depends on the probability and prior distributions. Most introductory prior information looks for
the availability of the prior distribution, informative prior distribution, and noninformative prior distribution. �e gamma, Chi-
squared, and exponential distributions are de�ned in the prior distribution. �e informative prior distribution uses the Markov
Chain Monte Carlo (MCMC) method to draw the random sample from the posterior distribution. �e Fisher information
performs theWald con�dence interval as the noninformative prior distribution.�e interval estimation of the Bayesian approach
is obtained from the central limit theorem. �e performance of these methods considers the coverage probability and minimum
value of the average width. �e Monte Carlo process simulates the data from a normal distribution with the true parameter of
mean and several variances and the sample sizes. �e R program generates the simulated data repeated 10,000 times in each
situation. �e results showed that the maximum likelihood method employed on the small sample sizes. �e best con�dence
interval estimation was when sample sizes increased the Bayesian approach with an available prior distribution. Overall, the Wald
con�dence interval tended to outperform the large sample sizes. For application in real data, we expressed the reported airborne
particulate matter of 2.5 in Bangkok, �ailand. We used the 10–1000 records to estimate the con�dence interval of variance and
evaluated the interval width. �e results are similar to those of the simulation study.

1. Introduction

Statistical inference is the process of using detailed statistics
on the observation data set (i.e., the mean and the variance),
called a statistic, that refer to the properties of the parameter
with the population. It assumes that the observed data set is a
random sample from a large population. Parameter esti-
mation and hypothesis testing are part of statistical inference
related to a statistic and the parameter.

�e parameter estimation consists of point and interval
estimations. Point estimation contains a single value for
estimating the population parameter or called an estimator
by using the sampled data, a single number. Some error is
associated with the point estimator that may be smaller or
larger than the true parameter. Instead of a point estimate,
con�dence interval estimation uses the sampled data to

approximate the range of lower and upper bounds of the
population parameter. �e desire of con�dence interval is
computed by the mean of the estimators from point esti-
mation plus and minus the variation in that estimate based
on the con�dence level.

�e normal distribution is a continuous probability
distribution consisting of parameters, namely mean and
variance, which is often used in the natural and social sci-
ences. One important parameter of the normal distribution is
the variance that measures the dispersion of the data set
around its mean. In statistics, variance can be computed by
taking the sum of the squared di�erences dispersed around
the mean and dividing by the total sample sizes and then
squaring the di�erences to make them positive.

Several tools are available for estimated variance using
sample data: the moments method, maximum likelihood
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method, least-squares method, and Bayesian method. %e
maximum likelihood method is a primary method for es-
timating the parameter of probability distribution function
given observation. %e estimator is approximated by max-
imizing the likelihood function given the parameter. %e
maximum likelihood estimator is an interesting method
because most estimators present in a class of a minimum
variance unbiased estimator [1]. %en, the variance esti-
mator from the maximum likelihood method is used to
create the interval estimation fromChi-squared statistics [2].
Smithpreecha and Niwitpong [3] presented four approaches
to construct confidence intervals for the common variance
of normal distributions and compared the results based on
the generalized confidence intervals. Iliopoulos and Kour-
ouklis [4] constructed a confidence interval for the gener-
alized variance of a matrix normal distribution with
unknown mean and improved on the usual minimum size.

%e Bayesian approach method mentions the probability
distribution given the parameter related to the prior dis-
tribution. Resolution of the prior distribution impacts
obtaining the posterior distribution [5].%e case of the prior
distribution is defined as the available prior distribution,
informative prior distribution, and noninformative prior
distribution. %e posterior distribution is estimated by the
available prior information shown in the appropriate dis-
tribution. So, the Bayesian estimator is obtained from the
mean of the posterior distribution. Severini [6] studied the
relationship between Bayesian and non-Bayesian confidence
intervals by deriving asymptotic extensions of the posterior
probability for computing the confidence regions based on
the likelihood ratio test statistics. Next, Severini [7] was
interested in creating an interval estimate for the population
parameter and constructed the posterior probability such
that the parameter lays in the interval in some specified
value. Ali and Riaz [8] studied the Bayesian methodology for
designing Bayesian control charts and noticed that the
performance of the Bayesian charts is biased.

%e computer algorithm has been developed to draw a
random sample from the posterior distribution in an in-
formative prior distribution [9]. Most used the Markov
Chain Monte Carlo (MCMC) [10] method as an informative
prior distribution because it can draw an approximate
sample from the prior distribution. %en, Gibbs sampling
[11] is a process of MCMC to generate the sample values
from the posterior distribution. %e conjugate prior is the
same family as the prior and posterior distributions. %e
construction of the posterior distribution is in a closed form
of conjugate distribution that is made to approximate the
MCMC estimator. Atchadé [12] constructed the confidence
interval for the asymptotic variance and proposed that the
confidence interval converges to standard central limit
theorems for the Markov chains. Mahmoud et al. [13]
proposed Markov Chain Monte Carlo techniques to com-
pute the maximum likelihood estimation and the confidence
intervals of coefficient of variation.

%e approximation of the confidence interval of variance
[14] is studied by using the sample sum of squared deviations
from the mean. %e confidence interval of minimum length
is raised concerning the shortest unbiased interval for the

variance of a normal distribution. Typically, the estimated
confidence interval of variance is used in the Chi-squared
distribution to create the lower and upper bounds. %eir
importance is partly due to the central limit theorem. Rajić
and Stanojević [15] considered the confidence intervals for
the ratio of two variances. %e F-statistic and central limit
theorem proposed the confidence interval. %e central limit
theorem proposes the Bayesian of the available and infor-
mative prior distributions, which performs the confidence
interval using the mean and variance from the posterior
distribution. Abu-Shawiesh et al. [16] approximated as-
ymptotic confidence interval for the population of standard
deviation based on the sample Gini mean difference.

Another problem with the prior information is that if the
parameter of the prior distribution is entirely appropriate, it
should be incorporated into the posterior distribution. %is
is not a severe problem since the noninformative prior
distribution leads to discussion. Kass and Wasserman [17]
stated two different interpretations of noninformative
priors. %e ignorance of noninformative priors was formal
representations, and the prior distribution was defined as the
constant value when there is insufficient information.
Andrés and Álvarez Hernández [18] evaluated the confi-
dence interval on noninformative prior distribution from
Jeffrey’s Bayesian method. %e Wald method was deter-
mined to create the confidence interval of a binomial
proportion. Agresti and Coull [19] suggested the Wald
confidence interval based on inverting the binomial test.

We set out to compare the confidence interval of vari-
ance using the maximum likelihood method. %e Bayesian
approach depended on the available prior distribution, in-
formative prior distribution, and noninformative prior
distribution. %e data are simulated from the normal dis-
tribution with varying true parameters and sample sizes.

2. Estimated Methods

%e variance of the normal distribution is estimated by the
maximum likelihood method and the Bayesian approach as
the point estimation. %en, the confidence intervals are
computed from the point estimation to construct the lower
and upper bounds depending on the significance level. %e
central limit theorem is the main point in creating the
confidence interval of the Bayesian approach.

2.1. Maximum Likelihood Method. %e maximum likeli-
hood method is the most popular method to approximate a
parameter on several distributions. %e concept of the
maximum likelihood method is to start from the likelihood
function of a random variable X. Let X1, . . . , Xn be inde-
pendent and identically distributed (iid) random variables
via normal distribution with parameter μ and σ2 ; hence, the
probability density function is written by

f xi |μ,σ
2

􏼐 􏼑�
����
2πσ2

√
􏼐 􏼑

−1
exp −

xi −μ( 􏼁
2

2σ2
􏼠 􏼡, −∞<xi <∞.

(1)

And it is defined as X ∼ N(μ, σ2).
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%e likelihood function has used the multiplication of
probability function as follows:

L μ,σ2􏼐 􏼑�􏽙

n

i�1
f xi|μ,σ2􏼐 􏼑 � 2πσ2􏼐 􏼑

−n/2
exp −

􏽐
n
i�1 xi −μ( 􏼁

2

2σ2
􏼠 􏼡.

(2)

From (2), take ln on likelihood function following

ln L μ, σ2􏼐 􏼑 � −
n

2
ln(2π) −

n

2
ln σ2 −

􏽐
n
i�1 xi − μ( 􏼁

2

2σ2
. (3)

From (3), differential with respect to parameter σ2,

z

zσ2
ln L μ, σ2􏼐 􏼑 � −

n

2σ2
+

􏽐
n
i�1 xi − μ( 􏼁

2

2 σ2􏼐 􏼑
2 � 0. (4)

We obtain the 􏽢σ2 � 􏽐
n
i�1 (xi − μ)2/n , so this estimator is

a biased estimator, but it is a sufficient and consistent es-
timator. %e performance estimator has supported this
property such as unbiased estimator, minimum of variance,
consistency, and sufficiency. %is estimator is adjusted from
the maximum likelihood estimator and defined the property
as 􏽢σ2Aj.ML � 􏽐

n
i�1 (xi − μ)2/n − 1. We know that x is an

unbiased estimator, and we get the unbiased estimator in
terms of x following 􏽢σ2Aj.ML � 􏽐

n
i�1 (xi − x)2/n − 1.

%e confidence interval at (1 − α)100% of σ2 is ap-
proximated from 􏽢σ2Aj.ML by using the concept of Chi-
squared distribution at degree of freedom n − 1 [2] following
((n − 1)􏽢σ2Aj.ML/σ

2) ∼ χ2n−1; then it can be rewritten as

P
(n − 1)􏽢σ2Aj.ML

χ2α/2,n−1
< σ2 <

(n − 1)􏽢σ2Aj.ML

χ21−α/2,n−1

⎛⎝ ⎞⎠ � 1 − α. (5)

%e code for the maximum likelihood method in R
programming language is as follows (the example of 90%
confidence interval)

> MLE� var(x)
> l90_percen�(n− 1)/qchisq(1–0.1/2,n− 1)
> u90_percen�(n− 1)/qchisq(0.1/2,n− 1)
> LCL90_MLE�MLE ∗ l90_percen
> UCL90_MLE�MLE ∗ u90_percen

2.2. Bayesian Approach with Available Prior Distribution.
From the maximum likelihood method, we know that the
probability density function of random variables is a normal
distribution as X ∼ N(μ, σ2) %e estimation of the Bayesian
approach is considered by adjusting the parameter of normal
distribution by X ∼ N(μ, ϕ− 1), where ϕ− 1 � σ2 and μ is a
constant value; then, the probability distribution function
from (1) can be rewritten by

f xi|μ,ϕ( 􏼁�
ϕ
2π

􏼠 􏼡

1/2

exp −
ϕ
2

xi −μ( 􏼁
2

􏼠 􏼡, −∞<xi<∞. (6)

From (2), the likelihood function is changed parameter
by

L(μ, ϕ) �
ϕ
2π

􏼠 􏼡

n/2

exp −
ϕ
2

􏽘

n

i�1
xi − μ( 􏼁

2⎧⎨

⎩

⎫⎬

⎭. (7)

%e prior distribution of ϕ is considered in form of a
gamma distribution with parameter α, λ denoted by
Gamma(α, λ) or rewritten as

g(ϕ; α, λ) �
λα

Γ(α)
ϕα− 1 exp −ϕλ􏼈 􏼉, ϕ> 0. (8)

%e resulting posterior distribution is a gamma distri-
bution that is implied by the conjugate distribution from
normal distribution on (6) and gamma distribution on (8) as

h ϕ|xi( 􏼁∝L(μ,ϕ)g(ϕ;α,λ)

∝
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(9)

Recognizing that this result is displayed in the form of
gamma distribution:

h ϕ|xi( 􏼁∝ ϕA− 1 exp −ϕB􏼈 􏼉∝
B

A

Γ(A)
ϕA− 1 exp −ϕB􏼈 􏼉

� Gamma(A, B),

(10)

where A � n/2 + α and B � λ + (1/2) 􏽐
n
i�1 (xi − μ)2. μ is

approximated by using x; then, it can be rewritten as B �

λ + (1/2) 􏽐
n
i�1 (xi − x)2 [5].

With the parameterization, the posterior distribution of
σ2 � 1/ϕ isf(σ2|x1, x2, ..., xn) ∼ IG(A, B) , where IG(A, B) is
called the inversegammadistributionwithparametersAandB .

%e inverse gammadistribution [20] is the samedistribution
as the reciprocal of a gamma distribution and the relationship of
Y � 1/X, (X ∼ Gamma(α, λ)) is defined to the inverse gamma
distribution asY ∼ IG(α, λ).%e inverse gamma distribution in
the form of random variable Y is written as

fY(y; α, λ) �

λα

Γ(α)
y

−α−1
e

(−λ/y)
, y> 0

0, otherwise

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

%e mean of inverse gamma distribution is
E(Y) � λ/α − 1, and the variance is Var(Y) �

λ2/(α − 1)2(α − 2).
A similar way to estimate the variance of the Bayesian

method is defined as

􏽢σ2Bayes � E σ2|x1, . . . ,xn􏼐 􏼑 �
B

A −1
�
λ+(1/2)􏽐

n
i�1 xi − x( 􏼁

2

(n/2+α) −1
,

(12)

and the variance of Bayesian estimator is calculated as
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Var σ2|x1, ..., xn􏼐 􏼑 �
B
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2
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2
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2
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(13)

To evaluate our proposed method, the prior distribution
of ϕ is proposed in the form of gamma distribution with
parameters α and λ or denoted by Gamma(α, λ). %en, the
parameter of gamma distribution is an available prior dis-
tribution as the gamma, Chi-squared, and exponential
distributions by Gamma(2, 1), Gamma(2, 0.5), and
Gamma(1, 0.2), shown in Figure 1.

From central limit theorem [15] with n⟶∞, it can
approximate in the form of standard normal distribution by

Z �
􏽢σ2Bayes − σ2

�������
Var σ2􏼐 􏼑

􏽱 �
(B/A − 1) − σ2

����������������

B
2/(A − 1)

2
(A − 2)

􏽱 ∼ N(0, 1). (14)

%is is an asymptotic confidence interval that will only
give an approximation as the large sample size, which has
better coverage rates for small samples [21].

%e definition of the confidence interval can be
expressed as

P −Zα/2 ≤Z≤Zα/2( 􏼁 � 1 − α. (15)

Putting these together, (14) and (15), it is often written as
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%e confidence interval at (1 − α)100% of σ2 is ap-
proximated by

P
B
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(18)

where A � (n/2) + α and B � λ + (1/2) 􏽐
n
i�1 (xi − x)2.

%e code of R programming language for the Bayesian
approach with available prior distribution is set as the
constant values of prior distribution as follows (the example
of 90% confidence interval).

> lamma_bayes.g� 2; alpha_bayes.g� 1
> lamma_bayes.c� 2; alpha_bayes.c� 0.5
> lamma_bayes.e� 1; alpha_bayes.e� 0.2
> B.g� lamma_bayes.g+var(x) ∗ (n− 1)/2); A.g� alpha_
bayes.g+ (n/2)
> B.c� lamma_bayes.c+ (var(x) ∗ (n− 1)/2); A.c� alpha_
bayes.c+ (n/2)
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Figure 1: Gamma probability density with parameters (α, λ) as
Gamma(2, 1), Gamma(2, 0.5), and Gamma(1, 0.2).
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Figure 2: Normal probability density with parameters (μ, σ2) as
N(2, 2), N(2, 6), and N(2, 12).

Table 1:%e range of the fixed confidence interval depended on P0.

P0 %e range of the fixed confidence interval

0.90 (0.8941, 0.9058)
0.95 (0.9457, 0.9542)
0.99 (0.9880, 0.9919)
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> B.e� lamma_bayes.e+ (var(x) ∗ (n− 1)/2); A.e� alpha_
bayes.e+ (n/2)
> Bayes.g�B.g/(A.g− 1); Bayes.c�B.c/(A.c− 1); Bayes.e�

B.e/(A.e− 1)
> SE_Bayes.g� sqrt((B.ĝ 2)/(((A.g− 1)̂2)∗(A.g− 2)))
> SE_Bayes.c� sqrt((B.ĉ 2)/(((A.c− 1)̂2)∗(A.c− 2)))

> SE_Bayes.e� sqrt((B.ê 2)/(((A.e− 1)̂ 2)∗(A.e− 2)))
> LCL90_Bayes.g�Bayes.g− (qnorm90_percen ∗ SE
_Bayes.g)
> LCL90_Bayes.c�Bayes.c− (qnorm90_percen ∗ SE
_Bayes.c)
> LCL90_Bayes.e�Bayes.e− (qnorm90_percen ∗ SE
_Bayes.e)

Table 2: %e coverage probability (CP) and average width (AW) via 90% confidence interval.

σ2 n
ML

Bayesian approach with prior distribution
MCMC Wald

Gamma Chi-squared Exponential
CP AW CP AW CP AW CP AW CP AW CP AW

2

10 0.9025 4.345 0.9456 — 0.9373 — 0.9512 — 0.9480 — 0.8196 —
50 0.8994 1.407 0.9112 — 0.9220 — 0.9140 — 0.9151 — 0.8810 —
100 0.8986 0.961 0.9084 — 0.9116 — 0.9097 — 0.9098 — 0.8924 —
300 0.8930 — 0.8962 0.540 0.8981 0.543 0.8970 0.543 0.8958 0.545 0.8904 —
500 0.8997 0.419 0.9019 0.417 0.9023 0.419 0.9021 0.419 0.9011 0.420 0.8990 0.416
1000 0.9041 0.295 0.9052 0.294 0.9053 0.295 0.9052 0.295 0.9042 0.295 0.9028 0.294

6

10 0.9025 13.03 0.8522 — 0.9044 11.32 0.9094 — 0.9480 — 0.8196 —
50 0.8994 4.222 0.8878 — 0.9021 4.117 0.9050 4.167 0.9151 — 0.8810 —
100 0.8986 2.885 0.8958 2.807 0.9031 2.849 0.9049 2.866 0.9083 — 0.8924 —
300 0.8930 — 0.8924 — 0.8942 1.623 0.8950 1.626 0.8952 1.635 0.8904 —
500 0.8997 1.257 0.8995 1.250 0.9010 1.254 0.9011 1.255 0.9018 1.260 0.8990 1.248
1000 0.9041 0.885 0.9027 0.883 0.9040 0.884 0.9045 0.885 0.9047 0.886 0.9028 0.882

12

10 0.9025 26.07 0.8229 — 0.8812 — 0.8982 24.05 0.9496 — 0.8196 —
50 0.8994 8.446 0.8811 — 0.8974 — 0.9018 8.305 0.9157 — 0.8810 —
100 0.8986 5.771 0.8915 — 0.9009 5.680 0.9031 5.723 0.9089 — 0.8924 —
300 0.8930 — 0.8916 — 0.8932 — 0.8944 3.250 0.8955 3.171 0.8904 —
500 0.8997 2.514 0.8988 2.499 0.9006 2.506 0.9010 2.510 0.9011 2.525 0.8990 2.497
1000 0.9041 1.771 0.9023 1.766 0.9037 1.768 0.9039 1.770 0.9043 1.773 0.9028 1.765

Note. %e appearance in AW denotes CP in the range of the fixed confidence interval between 0.8941 and 0.9058 and italics minimum of AW.

Table 3: %e coverage probability (CP) and average width (AW) via 95% confidence interval.

σ2 n
ML

Bayesian approach with prior distribution
MCMC Wald

Gamma Chi-squared Exponential
CP AW CP AW CP AW CP AW CP AW CP AW

2

10 0.9506 5.714 0.9657 — 0.9832 — 0.9669 — 0.9628 — 0.8538 —
50 0.9531 1.706 0.9517 1.628 0.9614 — 0.9554 — 0.9568 — 0.9256 —
100 0.9480 1.155 0.9495 1.129 0.9537 1.147 0.9500 1.146 0.9511 1.159 0.9381 —
300 0.9467 0.649 0.9470 0.644 0.9495 0.647 0.9475 0.647 0.9479 0.649 0.9404 —
500 0.9510 0.500 0.9505 0.498 0.9505 0.499 0.9504 0.499 0.9505 0.500 0.9483 0.496
1000 0.9504 0.352 0.9516 0.351 0.9519 0.351 0.9517 0.351 0.9506 0.352 0.9500 0.350

6

10 0.9506 17.14 0.8865 — 0.9307 — 0.9346 — 0.9617 — 0.8538 —
50 0.9531 5.118 0.9297 — 0.9442 — 0.9466 4.965 0.9562 — 0.9256 —
100 0.9480 3.467 0.9397 — 0.9457 3.395 0.9476 3.415 0.9511 3.477 0.9381 —
300 0.9467 1.947 0.9415 — 0.9445 — 0.9454 — 0.9478 1.949 0.9404 —
500 0.9510 1.500 0.9495 1.490 0.9496 1.494 0.9499 1.496 0.9509 1.501 0.9483 1.488
1000 0.9504 1.056 0.9500 1.052 0.9511 1.054 0.9515 1.054 0.9507 1.056 0.9500 1.051

12

10 0.9506 34.28 0.8607 — 0.9081 — 0.9241 — 0.9627 — 0.8538 —
50 0.9531 10.23 0.9246 — 0.9384 — 0.9438 — 0.9567 — 0.9256 —
100 0.9480 6.934 0.9379 — 0.9434 — 0.9459 6.820 0.9511 6.957 0.9381 —
300 0.9467 3.894 0.9401 — 0.9435 — 0.9444 — 0.9482 3.898 0.9404 —
500 0.9510 3.001 0.9489 2.978 0.9496 2.987 0.9498 2.991 0.9511 3.003 0.9483 2.976
1000 0.9504 2.112 0.9488 2.104 0.9508 2.107 0.9512 2.109 0.9515 2.113 0.9500 2.103

Note. %e appearance in AW denotes CP in the range of the fixed confidence interval between 0.9457 and 0.9542 and italics minimum of AW.
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> UCL90_Bayes.g�Bayes.g + (qnorm90_percen ∗ SE_
Bayes.g)
> UCL90_Bayes.c�Bayes.c + (qnorm90_percen ∗ SE_
Bayes.c)
> UCL90_Bayes.e�Bayes.e + (qnorm90_percen ∗ SE_
Bayes.e)

2.3. Bayesian Approach with Informative Prior.
Evaluation of the suitable value on the prior distribution is
an important problem because of the difficulty of estimating
parameters via the posterior distribution. %e solution
problem of available prior information has been developed
using a sampling algorithm, such as this Markov Chain
Monte Carlo (MCMC) method or called the informative
prior. %is algorithm of the MCMC method is to draw a
random sample from the posterior distribution without the
conveniently estimated prior distribution. %e process is
employed by sampling parameters from the Markov Chain
method for estimating parameters on prior distribution by
the Gibbs sampling algorithm [10]. %en, the posterior
distribution uses a Markov Chain and Gibbs sampling to
approximate parameters from theMCMCmethod.We carry
out the rjags package, which provides an interface from R
[22] to rjags library to generate a sequence of dependent
samples from the posterior distribution. Sampling process
from the MCMC method is as follows:

(1) Draw X1, . . . , Xn from the normal distribution with
parameter mean μ and variance σ2.

(2) %e parameter μ is generated from the normal
distribution and the σ2 is generated from the inverse
gamma distribution with parameters a and b.

(3) Set initial value a
(t)
0 from an exponential distribution

and b
(t)
0 from the gamma distribution with constant

values.
(4) Generate σ2(t)

o from the posterior distribution based
on the inverse gamma distribution with parameters
a

(t)
0 and b

(t)
0 for t � 1, 2, . . . , T, where T is the

number of Gibbs sampling algorithm.
(5) Calculate the mean and standard deviation from the

posterior distribution function.

For each chain, the first 2000 iterations were discarded,
and the last 5000 iterations were used to obtain the posterior
distribution of the parameter.

%us, the MCMC estimator is 􏽢σ2MCMC � 􏽐
T
t�1 σ

2(t)/T.
%e confidence interval is created by computing the

mean and the variance from the MCMC process as

E 􏽢σ2MCMC􏼐 􏼑 �
􏽐

T
t�1 σ

2(t)

T
andVar 􏽢σ2MCMC􏼐 􏼑 �

􏽐
T
t�1 σ2(t)

− 􏽢σ2MCMC􏼐 􏼑
2

T −1
.

(19)

According to the central limit theorem with n⟶∞,
we have

Z �
􏽢σ2MCMC −σ2

�������
Var σ2􏼐 􏼑

􏽱 �
􏽐

T
t�1 σ

2(t)/T􏼐 􏼑 −σ2
����������������������

􏽐
T
t�1 σ2(t)

− 􏽢σ2MCMC􏼐 􏼑
2
/T −1

􏽱 ∼N(0,1),

(20)

and P(−Zα/2 ≤Z≤Zα/2) � 1 − α.
%erefore,

P −Zα/2≤
􏽐

T
t�1σ

2(t)/T􏼐 􏼑−σ2
���������������������

􏽐
T
t�1 σ2(t)

−􏽢σ2MCMC􏼐 􏼑
2
/T−1

􏽱 ≤Zα/2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠�1−α. (21)

Table 4: %e coverage probability (CP) and average width (AW) via 99% confidence interval.

σ2 n
ML

Bayesian approach with prior distribution
MCMC Wald

Gamma Chi-squared Exponential
CP AW CP AW CP AW CP AW CP AW CP AW

2

10 0.9913 9.602 0.9841 — 0.9949 — 0.9826 — 0.9771 — 0.9000 —
50 0.9907 2.338 0.9825 — 0.9868 — 0.9834 — 0.9838 — 0.9697 —
100 0.9896 1.550 0.9849 — 0.9862 — 0.9852 — 0.9856 — 0.9774 —
300 0.9888 0.858 0.9862 — 0.9867 0.543 0.9865 0.543 0.9859 0.545 0.9848 —
500 0.9905 0.660 0.9895 0.654 0.9899 0.656 0.9897 0.656 0.9897 0.657 0.9883 0.651
1000 0.9886 0.463 0.9892 0.461 0.9893 0.462 0.9891 0.462 0.9895 0.462 0.9888 0.460

6

10 0.9913 28.80 0.9321 — 0.9629 — 0.9636 — 0.9765 — 0.9000 —
50 0.9907 7.014 0.9718 — 0.9793 — 0.9802 — 0.9840 — 0.9697 —
100 0.9896 4.651 0.9783 — 0.9824 — 0.9836 — 0.9856 — 0.9774 —
300 0.9888 1.947 0.9850 — 0.9861 — 0.9860 — 0.9864 — 0.9848 —
500 0.9905 1.980 0.9882 1.958 0.9894 1.964 0.9895 1.966 0.9896 1.973 0.9883 1.955
1000 0.9886 1.391 0.9888 1.383 0.9893 1.385 0.9892 1.386 0.9887 1.388 0.9888 1.382

12

10 0.9913 57.61 0.9096 — 0.9476 — 0.9561 — 0.9766 — 0.9000 —
50 0.9907 14.02 0.9687 — 0.9765 — 0.9793 — 0.9839 — 0.9697 —
100 0.9896 9.303 0.9765 — 0.9813 — 0.9824 — 0.9853 — 0.9774 —
300 0.9888 5.153 0.9846 — 0.9857 — 0.9860 — 0.9869 — 0.9848 —
500 0.9905 3.960 0.9876 — 0.9890 3.925 0.9893 3.931 0.990 3.946 0.9983 3.911
1000 0.9886 2.782 0.9830 2.765 0.9892 2.770 0.9893 2.772 0.9895 2.778 0.9888 2.765

Note. %e appearance in AW denotes CP in the range of the fixed confidence interval between 0.9880 and 0.9919 and italics minimum of AW.
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%en,

P −Zα/2

������������������

􏽐
T
t�1 σ2(t)

− 􏽢σ2MCMC􏼐 􏼑
2

T − 1

􏽳

≤
􏽐

T
t�1 σ

2(t)

T
􏼠 􏼡⎛⎜⎜⎜⎜⎝

−σ2 ≤Zα/2

������������������

􏽐
T
t�1 σ2(t)

− 􏽢σ2MCMC􏼐 􏼑
2

T − 1

􏽳

⎞⎟⎟⎟⎟⎠ � 1 − α.

(22)

We say that the confidence interval at (1 − α)100% of σ2
by MCMC at (1 − α)100% is

P
􏽐

T
t�1σ

2(t)

T
􏼠 􏼡−Zα

2

�����������������

􏽐
T
t�1 σ2(t)

− 􏽢σ2MCMC􏼐 􏼑
2

T−1

􏽳

⎛⎜⎜⎜⎜⎝

≤σ2≤
􏽐

T
t�1σ

2(t)

T
􏼠 􏼡+Zα

2

�����������������

􏽐
T
t�1 σ2(t)

− 􏽢σ2MCMC􏼐 􏼑
2

T−1

􏽳

⎞⎟⎟⎟⎟⎠ �1−α.

(23)
%e “rjags” package in the software R is used to estimate

the MCMC estimator and confidence interval following (the
example of 90% confidence interval):

> library(rjags)
> dataset = list(x= x, n=n)
> inits = list(mu= 0.01, tau = 0.01)

0.80

0.85

0.90

0.95

1.00

(n)

Co
ve

ra
ge

 P
ro

ba
bi

lit
y

10 50 100 300 500

ML
Gamma
Chi-square
Exponential
MCMC
Wald

(a)

ML
Gamma
Chi-square
Exponential
MCMC
Wald

0.80

0.85

0.90

0.95

1.00

(n)

 C
ov

er
ag

e P
ro

ba
bi

lit
y 

10 50 100 300 500

(b)

ML
Gamma
Chi-square
Exponential
MCMC
Wald

0.80

0.85

0.90

0.95

1.00

(n)

 C
ov

er
ag

e P
ro

ba
bi

lit
y 

10 50 100 300 500

(c)

Figure 3: %e trend of CP for all methods varies by the sample sizes at 90% confidence interval. (a) Variance� 2. (b) Variance� 4.
(c) Variance� 12.
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> jagmod<−jags.model(“model_normal.txt,” data-
= dataset, inits = inits,n.chains = 1, n.adapt =
2000)
> update(jagmod, n.iter = 20, progress.bar =
“text”)
> posterior = coda.samples(jagmod, c(“mu,”
“sigma”),n.iter = 5000, progress.bar = “text,” thin = 2)
> post = as.data.frame(as.matrix(posterior))
> var.mcmc= (post$sigma) ^ 2
> mcmc.est =mean(var.mcmc)

> SE_MCMC= sd(var.mcmc)
> LCL90_mcmc.est =mcmc.est− (qnorm90_percen ∗
SE_MCMC)
> UCL90_mcmc.est =mcmc.est + (qnorm90_percenv
∗ SE_MCMC)

2.4. Bayesian Approach with Noninformative Prior. %e
Bayesian theorem is dependent on the likelihood function
and the prior distribution, which is used to calculate the
posterior distribution. If the prior distribution defines the
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Figure 4: %e trend of CP for all methods varies by variance at 90% confidence interval. (a) n� 10. (b) n� 50. (c) n� 100. (d) n� 300.
(e) n� 500. (f ) n� 1000.

8 International Journal of Mathematics and Mathematical Sciences



prior information, it will approximate the estimator on the
posterior distribution. If we have no information on prior
distribution, we call it a noninformative prior. Agresti and
Coull [19] studied the approximation of the interval esti-
mation of binomial proportions based on inverting theWald
large-sample normal test. %en, we used the Wald confi-
dence intervals to construct the confidence interval of
variance. %e Fisher information in a single observation is
needed as

I σ2􏼐 􏼑 � E
z

zσ2
ln L μ, σ2􏼐 􏼑􏼠 􏼡

2

� −E
z
2

z σ2􏼐 􏼑
2 ln L μ, σ2􏼐 􏼑⎛⎜⎝ ⎞⎟⎠.

(24)

From (4) and (24), the Fisher information is defined
as

I σ2􏼐 􏼑 � −E
z

zσ2
−

n

2σ2
+

􏽐
n
i�1 xi − μ( 􏼁

2

2 σ2􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� −E
n

2 σ2􏼐 􏼑
2 −

(2) 􏽐
n
i�1 xi − μ( 􏼁

2

2 σ2􏼐 􏼑
3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� −
n

2 σ2􏼐 􏼑
2 +

E 􏽐
n
i�1 xi − μ( 􏼁

2
􏽨 􏽩

σ2􏼐 􏼑
3

�
n

2 σ2􏼐 􏼑
2.

(25)

%e asymptotic Wald confidence interval based on the
maximum likelihood estimator tends to the central limit
theorem as
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Figure 5: %e trend of CP for all methods varies by the sample sizes at 95% confidence interval. (a) Variance� 2. (b) Variance� 4.
(c) Variance� 12.
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Z �
􏽢σ2Aj.ML − σ2

�����
I σ2􏼐 􏼑

􏽱 �
􏽢σ2Aj.ML − σ2
�����������

n/2 􏽢σ2Aj.ML􏼐 􏼑
2

􏽱 ∼ N(0, 1), (26)

and P(−Zα/2 ≤Z≤Zα/2) � 1 − α.
We infer that in large sample, n⟶∞

P −Zα
2
≤

􏽢σ2Aj.ML − σ2

1/􏽢σ2Aj.ML

���
n/2

√ ≤Zα
2

⎛⎜⎝ ⎞⎟⎠ � 1 − α. (27)

%e Wald confidence interval at (1 − α)100% of σ2 at
(1 − α)100% is

P 􏽢σ2Aj.ML −Zα
2

􏽢σ2Aj.ML

�
2
n

􏽲

≤σ2≤􏽢σ2Aj.ML +Zα
2

􏽢σ2Aj.ML

�
2
n

􏽲

⎛⎜⎝ ⎞⎟⎠ �1−α.

(28)

%emotivation of noninformative prior is that the fisher
information indicates the amount of information by the
observation about the parameter. %e code for the Bayesian
approach with noninformative prior based onWald method
in R programming language is as follows (the example of
90% confidence interval).

> LCL90_Wald �MLE − (qnorm90_percen ∗ sqrt
(2/n) ∗ MLE)
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Figure 6: %e trend of CP for all methods varies by variance at 95% confidence interval. (a) n� 10. (b) n� 50. (c) n� 100. (d) n� 300.
(e) n� 500. (f ) n� 1000.
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> UCL90_Wald �MLE+ (qnorm90_percen ∗ sqrt(2/
n) ∗ MLE).

3. Simulation Study

%e details of simulated data and the results are stated in this
section. %e random variable X is generated from a normal
distribution with the R program by setting the true pa-
rameter as mean (μ) at 2 and variance (σ2) at 2, 6, and 12 as
shown in Figure 2.

%e sample sizes (n) are studied at 10 and 30 for small
sample sizes, 50 and 100 for moderate sample sizes, and 500
and 1000 for large sample sizes. %e estimated confidence
intervals are obtained from themaximum likelihoodmethod
and Bayesian approach at the confidence interval level 90%,
95%, and 99%. Suppose the estimated confidence intervals
cover the true parameter or population variance (σ2) as 2, 6,
and 12. We will count the number and compute the

proportion denoted by the coverage probability (CP). %e
coverage probability is compared with the fixed confidence
interval that we define the significance level at 0.05 (Z0.05/2
� 1.96). If the fixed confidence interval range can cover the
coverage probability, we will perform these methods and
consider the minimum of the average width. %e average
width of a confidence interval is evaluated by computing the
average of the difference values between the upper limit and
lower limit. Hence, the coverage probability covers the range
of the fixed confidence interval by computing

P0 − Zα/2

���������

P0 1 − P0( 􏼁

10, 000

􏽳

≤CP≤P0 + Zα/2

���������

P0 1 − P0( 􏼁

10, 000

􏽳

. (29)

In this case, we define P0 � 0.9, 0.95, and 0.99 that
followed the level of confidence interval 90%, 95%, and 99%.
%e range of the fixed confidence interval is shown in
Table 1.
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Figure 7: %e trend of CP for all methods varies by the sample sizes at 99% confidence interval. (a) Variance� 2. (b) Variance� 4.
(c) Variance� 12.
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%e R program generates data and estimates confidence
intervals at 10,000 replications in each situation. %e esti-
mating confidence intervals of variance by Maximum
Likelihood (ML), Bayesian approach with available prior
distribution (gamma, Chi-squared, and exponential distri-
butions), informative prior distribution (MCMC method),
and noninformative prior distribution (Wald confidence
interval) in Tables 2–4. %e first column shows the true
variance parameter, and the second column demonstrates
the several sample sizes. %e coverage probability (CP) and

average width (AW) are presented in the following twelve
columns for these methods. %e minimizing AW values
illustrate the performance of these methods in the form of
underline AW values. However, some AW values are shown
blank because the coverage probability is not in the range of
the fixed confidence interval from Table 1. By observing the
CP and AW, the results appear as follows.

Simulation results in Table 2 show that the maximum
likelihood (ML) method has a reasonable coverage proba-
bility for small sample sizes. Nevertheless, the Bayesian
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Figure 8: %e trend of CP for all methods varies by variance at 99% confidence interval. (a) n� 10. (b) n� 50. (c) n� 100. (d) n� 300.
(e) n� 500. (f ) n� 1000.
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approach with prior distribution in gamma, chi-squared,
and exponential distributions presents the most minimum
AW, especially with moderate sample sizes. For large sample
sizes, the Wald confidence interval has a good performance.
Furthermore, the AW is shown to decrease as sample sizes
increase. %e CP of all methods is represented in Figure 3.

From Figure 3, the CP values of ML and Wald present
the exact value of all variances for each sample size and play
in the range of the fixed confidence interval. %e CP of Wald
tends to increase when sample sizes increase. However, the
MCMC method decreases when sample sizes increase. All
methods fall in the range following the increasing sample
sizes. When the variance increases in Figure 4, the CP is
shown the slightly different in large sample sizes.

In Table 3, the ML and Bayesian approach results with
available prior distribution are similar to those in Table 2.
However, the ML method shows the minimum AW in large
variance at n� 300. %e trends of CP of all methods are
presented in Figure 5.

In Figure 5, the CP values of the Bayesian approach of
gamma, Chi-squared, exponential distributions, and Wald
trend to increase when the sample sizes also increase.
Furthermore, when the variance increases in Figure 6, there
is no affectation on the CP.

From Table 4, it is shown that the AW of ML has the
minimum at small and moderate sample sizes. When the
sample sizes are larger, the Wald has a good performance.
%e CP of all methods is presented in Figure 7.

Figure 7 shows that the CP values of ML are in the range
of the fixed confidence interval. For the large sample sizes
and variances, the CP values of all methods are in the range
of the fixed confidence interval shown in Figure 8.

4. Application in Real Data

%e real data are collected from the airborne particulate
matter 2.5 (PM 2.5: mg/m3) from the air monitoring quality
station of Bansomdejchaopraya Rajabhat University,
Bangkok, %ailand, from April 1, 2019, to 2022. %ese data
were obtained from %ailand’s Pollution Control Depart-
ment (https://www.aqmthai.com) and used 10–1000 records
for computing the confidence interval of variance. %e
distributions of PM 2.5 were presented in Figure 9, which
showed the right skewness for the large sample sizes. %us,
the Shapiro–Wilk test was used to test the normal distri-
bution of such data. From the p-values, it was evident that
the sample sizes (10, 50, and 100) confirmed normal dis-
tribution except for the large sample sizes (300, 500, and
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Figure 9: %e density of daily PM 2.5 in the six sample sizes.
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Figure 10: %e normal Q-Q plots of daily PM 2.5 in the six sample sizes.

Table 5: %e interval width via 90%, 95%, and 99% confidence interval.

Confidence Interval Level (%) n

Interval width of methods

ML
Bayes’ with prior distribution

MCMC Wald
Gamma Chi-squared Exponential

90

10 30.486 31.334 37.219 41.268 54.133 47.741
50 65.146 65.213 67.249 68.493 72.370 102.019
100 62.380 62.402 63.356 63.931 65.351 97.686
300 43.655 43.165 43.382 53.512 43.026 43.161
500 33.652 33.425 33.526 33.585 34.607 33.423
1000 26.154 26.066 26.105 26.128 26.065 26.002

95

10 36.326 37.337 44.350 49.173 64.503 59.260
50 77.627 77.707 80.132 81.614 86.235 84.665
100 74.330 74.356 75.494 76.178 77.871 77.579
300 52.162 51.434 51.693 51.847 51.269 51.430
500 40.165 39.828 39.948 40.020 41.237 39.826
1000 31.190 31.059 31.106 31.134 30.984 30.059

99

10 47.741 49.069 58.286 64.625 84.772 99.590
50 102.019 102.124 105.311 107.260 113.332 116.032
100 97.686 97.721 99.215 100.116 102.340 104.075
300 69.018 67.597 67.937 68.139 67.379 67.590
500 53.001 52.344 52.501 52.595 54.194 52.341
1000 41.074 40.819 40.880 40.917 40.720 40.018

Note. %e shortest interval width is shown in bold font.
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1000). Moreover, normal Q-Q plots were constructed to
show the normal distributions from the six sample sizes
(Figure 10), which verified that the small sample sizes fol-
lowed the normal distribution. Table 5 reported the interval
width of 90%, 95%, and 99% confidence interval for the
airborne particulate matter 2.5 (PM 2.5: mg/m3).

%e results show that the 10, 50, and 100 sample sizes of
the maximum likelihood (ML) method had the shortest
interval width, which corresponds with the simulation re-
sults. For the large sample sizes (500 and 1000), the Wald
method attended the shortest interval width, similar to the
simulation results. Furthermore, the MCMC method shows
the shortest of 300 sample sizes.%erefore, it is a good choice
for constructing the confidence interval when the data set
supports a nonnormal form.

5. Conclusion

In this research, we have concentrated on estimating the
confidence interval of variance via normal distribution by using
maximum likelihood and the Bayesian approach.%e coverage
probability and average width are the criteria for the efficient
method.%rough a simulation study, the maximum likelihood
method performs a reasonable method in small sample sizes
following the Chi-squared distribution that creates the confi-
dence interval (see [14]). %e Bayesian approach depends on
the gamma, Chi-squared, and exponential prior distribution,
making a suitable performance method in moderate sample
sizes.%eWald confidence is a reasonable working method for
the large sample sizes in all cases. In particular, the CP of the
Wald interval is such low values for the small sample sizes, but
the large sample sizes converge into the range. Surprisingly, the
MCMC method is weak even though the estimator obtains
from the sampling algorithm. However, approximate results
benefit normal distribution because of the inherent evolution of
exact distribution. Form real data, the airborne particulate
matter 2.5 is collected to estimate the confidence interval. It is
clear from the results that the maximum likelihood and Wald
methods are the reasonable working methods in small and
large sample sizes, same as the simulation data set.
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[15] V. C. Rajić and J. Stanojević, “Confidence intervals for the
ratio of two variances,” Journal of Applied Statistics, vol. 40,
no. 10, pp. 2181–2187, 2013.

[16] M. O. A. Abu-Shawiesh, A. Saghir, and B. M. Kibria, “Ap-
proximate asymptotic confidence interval for the population
standard deviation based on the sample gini’s mean differ-
ence,” Applied Mathematics & Information Sciences, vol. 13,
no. 5, pp. 699–706, 2019.

[17] R. E. Kass and L. Wasserman, “%e selection of prior dis-
tributions by formal rules,” Journal of the American Statistical
Association, vol. 91, no. 435, pp. 1343–1370, 1996.
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