
Research Article
A Stochastic Approach to Modeling Food Pattern

Komla Elom Adedje and Diakarya Barro
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In this paper, we propose a fractional di�erential equation of order one-half, to model the evolution through time of the dynamics
of accumulation and elimination of the contaminant in the human organism with a de�cient immune system, during consecutive
intakes of contaminated food. �is process quanti�es the exposure to toxins of subjects living with comorbidity (children not
breastfed, the elderly, and pregnant women) to food-borne diseases. �e Adomian Decomposition Method and the fractional
integration of Riemann Liouville are used in the modeling processes.

1. Introduction

Food safety is an important issue in the search for solutions
to the various pathologies such as food-borne diseases,
cancer, renal failure, diabetes, AIDS, Crohn’s disease, ul-
cerative colitis, and so on that the human species has been
facing in recent decades. �e continuous time model named
the Kinetic Dietary Exposure Model (KDEM) introduced in
[1] and later in [2] is a stochastic process which allows
modeling the phenomena of accumulation and elimination
of the contaminant from the human organism and which
gives an answer to this quest for a solution to the current
health problems. �eir model aims to represent the evo-
lution through time of a number of contaminants in the
human body.

Note that this theory developed to model the evolution
of contaminant dynamics in the body and does not take into
account a failing immune system. Subjects who have con-
tracted bacteria, malnourished children, diabetics etc., have a
weak immune system. So, the speed of elimination of the
contaminant in the body becomes slow. Note that the linear
pharmacokinetic model with one compartment is used in
the existing model to describe the phenomenon of elimi-
nation of the contaminant by the immune system. �e
quantity X(t) of the contaminant in the body between two
consecutive intakes decreases according to the linear dif-
ferential equation of the form:

dx(t)
dt

� −θx(t), (1)

where X(t) is given time t, θ> 0 is the removal rate of the
contaminant between the dates Ti and Ti+1, with
θ � ln2/DV, DV being the biological half-life of the con-
taminant (see more in [3]).

�e dynamics of the evolution of the accumulation and
elimination of the contaminant proposed in the KDEM
model is of the form:

Xn+1(t) � Xn.e
−θt + En+1, (2)

and the exposure E of an individual is calculated for all
p= 1, . . ., P as follows:

E �
∑Pp�1 QpCp

w
, (3)

where P is the product, Qp is the contamination of p foods,
Cp is the consumption of p foods, and w is the individual’s
body weight (see[3]).

�e structural properties of this exposure process have
been studied extensively in [5] using integrated Markov
chain analysis. Such autoregressive models with random
coe�cients have been widely studied in the literature.

In contrast to the KDEM model, we propose an ap-
proach in this paper based on fractional calculations, leading
to a process of the dynamics of the evolution of the
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accumulation and elimination of the contaminant. A process
that takes into account the delay in the elimination of the
contaminant when the immune system is weakened by a
pathogen or a situation of malnutrition in children and
pregnant women. However, we propose an FDE that models
this delay in elimination. Let us recall for this purpose, that
in biology, it was deduced that the membranes of cells of the
biological organism have electrical conductance of fractional
order [6] and then are classified in the group of models
models including noninteger values.

*e main contribution of this paper is to propose a
dynamic model that takes into account the accumulation
and elimination of contaminants from the human body of
subjects living with comorbidities. In this context, the ex-
posure process is described by a random variable X, which
represents the quantity of the contaminant ingested during a
short period.

*e rest of the paper is organized as follows: In section 2,
we will first lay the mathematical foundations to build the
stochastic process that will be used to dynamically model the
evolution of the accumulation and elimination of a con-
taminant when the human organ system fails. Section 3
proposes a stochastic model called the fractional differential
equation (FDE) of order 1/2 whose particularity is to take
into account the delay in the evolution of a phenomenon.
Moreover, we make a brief comparison of the existing
classical KDEMmodel that we implemented with the dioxin
dietary intake data and the first model that we elaborated
with the failed immune systems.

2. Materials and Methods

In this section, we summarise the fractional integration of
Riemann–Liouville and the Adomian decomposition
method. *ese mathematical tools turn out to be very im-
portant for our study.

2.1. An Overview of Fractional Integral of Riemann–Liouville.
Successive integer-order derivatives have been used to
model many life phenomena, including exposure to food
risks. Here, our approach is based on the fractional integral
of Riemann–Liouville (see [7, 8] for more details).

Let α ∈ R∗+, a ∈ R and f a locally integrable function
defined on [a, +∞), the integral of the order α of f of lower
bound a is defined for all t≥ α, such as

aI
α
t f(t) �

1
Γ(α)

􏽚
t

a
(t − τ)

α−1
f(τ)dτ, (4)

while Γ(x) � 􏽒
+∞
0 tx−1e−tdt is the well-known Euler gamma

function. *is integral is convergent, for all x> 0. Note that
the Beta function is related to the Gamma one and plays an
important role in fractional calculations which is defined by
[9] such as, for all x, y > rbin 0,

B(x, y) � 􏽚
1

0
t
x−1

(1 − t)
y−1

dt �
Γ(x)Γ(y)

Γ(x + y)
. (5)

Furthermore, the fractional left derivative of order α over
a given interval [a, b] of Riemann–Liouville is such as, for all
α> 0, x ∈ [a, b] and n� [α] + 1:

D
α
a+ f(x) �

1
Γ(n − α)

d
n

dx
n 􏽚

x

a
(x − t)

n− α−1
f(t)dt􏼒 􏼓, (6)

where [α] is the integer part of α.

2.2. An Overview of the Adomian Decomposition Method.
Suppose that we need to solve a functional equation of the
form,

Au � f; where A : H⟶ H, (7)

is a nonlinear operator defined on a real Hilbert space H, u is
the unknown function defined in H, and f is a function given
in H. First, we decompose the operator A into

A � L + R + N, (8)

where L is an operator inversible in the sense of Adomian, R
is the rest of the linear part, and N is the nonlinear part. So,
(7) provides the relation as follows:

Lu + Ru + Nu � f. (9)

*e operator L is inversible, and we obtain the Adomian
canonical form [10].

u � θ + L
−1

f − L
−1

Ru − L
−1

Nu, (10)

where θ is a constant such that Lθ � 0. In particular, the
solution of (7) is sought in the form of a series, and we
decompose the nonlinear part into

Nu � 􏽘
+∞

n�0
Ak u0, . . . , uk( 􏼁. (11)

Furthermore, one has

􏽘

+∞

n�0
un � θ+ L

−1
f − L

−1
R 􏽘

+∞

n�0
un

⎛⎝ ⎞⎠ − L
−1

N 􏽘
+∞

n�0
un

⎛⎝ ⎞⎠. (12)

So, we obtain the terms the following numerical series,
provideding convergence(􏽐

+∞
n�0un); for all n≥ 0, see [11].

u0 � θ + L
−1

f

un+1 � −L
−1

R un( 􏼁 − L
− 1

N un( 􏼁
.

⎧⎨

⎩ (13)

*e nonlinear part is obtained from the Adomian
polynomials defined as follows:

An �
1
n!

dn

dλn N 􏽘
+∞

i�1
λi

ui
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

λ�0

. (14)

In practice, the following formula is used to calculate
polynomials (see [12] for more details). For all n≥ 0, one has
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A0 � N u0( 􏼁,

An+1 �
1

n + 1
􏽘

n

k�0
(k + 1)uk+1

zAn

zuk

⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

*e following section deals with the main of our paper
results:

3. Main Results

In this paper, we propose an alternative method to the
existing ones by the noninteger order Riemann–Liouville
derivation, an integration that is the inverse operation of the
derivation, which effectively accounts for the delay in the
elimination of the contaminant from the body by the im-
mune system during the evolution of the phenomenon.
Before building the model, let us make the following
assumptions:

(C1):*e subjects living with comorbidities have a less
efficient immune system and therefore fail in contrast
to immunocompetent subjects.
(C2):*e amount of food toxins in the body today
depends on the amount accumulated yesterday. So, the
amount of contaminations depends on the time.

Let us notice that when the human organism is im-
munocompromised, the rate of elimination of the con-
taminant from the body by the immune system is slow
compared to an immunocompetent organism. Hence, there
is a need for a fractional differential equation that takes into
account the delay in the evolution of the phenomenon. Let
us begin with this example where we present the difference
between the noninteger derivation and the fractional deri-
vation in the sense of Riemann–Liouville of function is that
the noninteger one undergoes a delay in its evolution.

D
1/2
0+ x �

1
Γ(1/2)

d

dx
􏽚

x

0
(x − t)

−1/2
tdt􏼒 􏼓, (16)

where D1/2
0+ x is the variation in the amount of contaminants

in the body. Now, by using the well-known relationship, the
change of variable dt � x ds, s ∈ [0, 1].

It comes that

D
1/2
0+ x �

1
Γ(1/2)

d

dx
􏽚
1

0
(x − sx)

− 1/2
sx.xds, (17)

furthermore, after a simple calculation, one obtains

D
1/2
0+ x �

3
2
x
1/2 1
Γ(1/2)

Γ(1/2)Γ(2)

Γ(5/2)
�
2

��
x

√

��
π

√ . (18)

Remark 1. A relatively delayed stochastic process can be
modeled by a fractional differential equation.

3.1.Univariate StochasticProcess. Note that when a system is
disturbed or delayed, it allows a slowed motion; hence, there

is a need to model its trajectory by fractional derivation. So,
subjects living with comorbidities develop pathology more
quickly following exposure to food toxins. *is is due to the
slow elimination of toxins from their immune systems. *e
delay in the elimination of contaminants ingested during
dietary intake in comorbid individuals can be wellmodeled
by a fractional differential equation of order 1/2. Indeed, the
linear one-compartment pharmacokinetic model long used
by toxicologists is that of an ordinary differential equation of
order 1.

Proposition 1. Let A be the initial body burden of the
contaminant at date T0 � 0. Between two consecutive intakes,
the amount of contaminant in the immunodeficient organism
decreases with time according to the following fractional
differential equation of noninteger order:

D
1/2

X(t) � −θX(t),

X(0) � A.

⎧⎨

⎩ (19)

The exposure computed immediately after the i-th food
intake is such as

X(t) � A e
θ2t

−
4|θ|

�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ2t􏼐 􏼑

n

(2n + 2)!
⎛⎝ ⎞⎠, (20)

where X(t) is the amount of the contaminant in the body at
a given time t, θ> 0 is the removal rate of the contaminant
between the dates Ti et Ti+1, where θ � ln2/DV, DV is the
biological half-life of the contaminant, and X(0) is the initial
body burden of the contaminant at T0 � 0.

The human organism has a system of accumulation in
contaminants, and these last ones are eliminated in a pro-
gressive way and also depend on the frequency of the food
intake.

Proof. We propose a proof based on fractional Rie-
mann–Liouville integration and the Adomian decomposi-
tion method.

Consider the following equation:

D
1/2

X(t) + θX(t) � 0

X(0) � A
.

⎧⎨

⎩ (21)

*en, it follows that

LX � D
1/2
0+ X

RX � θX(t)

g � 0

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

where L
− 1

� I
1/2
0+ . (22)

By using (21), it comes that

LX + RX � g. (23)

By using L−1 to (23), one has

L
−1

(LX) � I
1/2
0+ D

1/2
0+ X(t)􏼐 􏼑 � X(t) − X(0). (24)

It comes that
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X(t) − X(0) + L
− 1

(RX) � L
− 1

g. (25)

*at allows us to consider the form:

X � 􏽘
+∞

n�0
Xn. (26)

From (25) and (26), it yields that

􏽘

+∞

n�0
Xn(t) � X(0) + L

− 1
g − 􏽘

+∞

n�0
L

− 1
RXn(t)( 􏼁, (27)

giving the following system:

X0(t) � X(0) + L
− 1

g,

Xn+1(t) � −L
− 1

R Xn(t)( 􏼁( 􏼁n≥ 0.

⎧⎨

⎩ (28)

Calculation of the terms of Xn(t).

At order 0, we have X0(t) such as

X0(t) � X(0) + L
− 1

g � A. (29)

In order 1, X1(t), using (29) one has

X1(t) �� −I
1/2
0+ θX0(t)( 􏼁 � −I

1/2
0+ (θA) � −

2θAt
1/2

��
π

√ . (30)

By using (30), one has

X2(t) � −L
− 1

RX1(t)( 􏼁 � −I
1/2
0+ θ

−2θAt
1/2

��
π

√􏼠 􏼡􏼠 􏼡

�
2θ2AI

1/2
0+ t

1/2

��
π

√ .

(31)

From (31) and (5), it comes that

I
1/2
0+ t

1/2
􏼐 􏼑 �

1
Γ(1/2)

􏽚
1

0
(t − st)

− 1/2
(st)

1/2
tds

&9; �
t

Γ(1/2)
􏽚
1

0
(1 − s)

1/2− 1
s
1/2

ds �
t

��
π

√

2
.

(32)

By introducing (32) into (31), it comes that

X2(t) �
2θ2A

��
π

√
t

��
π

√

2
� θ2At. (33)

For X3(t), one has

X3(t) � −L
− 1

RX2(t)( 􏼁. (34)

By replacing (33) in the above formula, it comes that

X3(t) � −I
1/2
0+ θ θ2At􏼐 􏼑􏼐 􏼑 � −θ3AI

1/2
0+ t

�
t
1/2

Γ(1/2)
􏽚
1

0
(1 − s)

− 1/2
sds �

−4θ3At
3/2

3
��
π

√ .

(35)

In an analogous way, one obtains successively the terms

X0(t) � A

X1(t) � −
2θAt

1/2

��
π

√

X2(t) � θ2At

X3(t) �
−4θ3At

3/2

3
��
π

√

X4(t) �
θ4At

2

2

X5(t) � −
8θ5At

5/2

15
��
π

√

X6(t) �
θ6At

3

6

X7(t) � −
16θ7At

7/2

105
��
π

√

⋮

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

However, in practice, all terms of the series cannot be
determined, so we use an approximation of the solution
from the truncated series as follows:

X(t) � 􏽘
+∞

n�0
Xn(t), (37)

which provides the following equivalences:

X(t)≃X0(t) + X1(t) + X2(t) + X3(t) + X4(t) + X5(t)

+ X6(t) + X7(t) · · ·

≃A −
2θAt

1/2

��
π

√ + θ2At −
4θ3At

3/2

3
��
π

√ +
θ4At

2

2
−
8θ5At

5/2

15
��
π

√

+
θ6At

3

6
−
16θ7At

7/2

105
��
π

√ + · · ·

≃A 1 + θ2t +
θ4t2

2!
+
θ6t3

3!
+ · · ·􏼠 􏼡+

+
A
��
π

√ −
θt

1/2

1/2
−

θ3t3/2

3/2 × 1/2
−

θ5t5/2

5/2 × 3/2 × 1/2
􏼠

−
θ7t7/2

7/2 × 5/2 × 3/2 × 1/2
+ · · ·􏼡.

(38)
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In the same way, it follows that

X(t)≃A 􏽘
+∞

n�0

θ2t􏼐 􏼑
n

n!
− A 􏽘

+∞

n�0

θ2t􏼐 􏼑
1/2+n

Γ(1/2 + n + 1)

≃Ae
θ2t

− A 􏽘
+∞

n�0

θ2t􏼐 􏼑
1/2+n

Γ(1/2 + n + 1)

≃Ae
θ2t

− A
4

���
θ2t

􏽰

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ2t􏼐 􏼑

n

(2n + 2)!

≃Ae
θ2t

− A
4|θ|

�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ2t􏼐 􏼑

n

(2n + 2)!
·

(39)

Finally, one obtains

X(t)≃A e
θ2t

−
4|θ|

�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ2t􏼐 􏼑

n

(2n + 2)!
⎛⎝ ⎞⎠. (40)

Note that X(t) represents the behavior of the quantity of
contaminated intake at each consumption in the human
body through time for subjects living with
comorbidities. □

Proposition 2. Under (C1), the trajectory of the accumu-
lated exposure is defined as follows:

Xi+1(t) � Xi e
θ2t

−
4|θ|

�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ2t􏼐 􏼑

n

(2n + 2)!
⎛⎝ ⎞⎠ + Ei+1.

(41)

Ei+1 is the calculated exposure at time ti+1.

Proof. According to proposition 1, the first term of (41) is
proved. We obtain the second term proposed in the work of
Bertail in [4, 5], i.e., the exposure over a given period is none

other than the sum of the consumption of the contaminated
products, weighted by the contamination rates associated
with each of the products of doubtful quality. By noting P as
the number of foodstuffs carrying the contamination CP, the
consumption of any individual of body weight w, and QP is
the contamination rate in μg/kg or pg/kg of each of these
foodstuffs. *is leads to the result of the random exposure of
an individual to the contaminant of interest as follows (3)
concluding the proof. □

3.2. Conditional Dependence of the Multivariate Stochastic
Process. Let us make some additional assumptions.

(C3): Let us define the health risk arising from the
accumulation and interaction between the different
contaminants in the body. For instance, this involves
assessing the risk due to the accumulation of three
substances in the body. It should be noted that studies
have shown that there is a dependency between the
trajectories of contaminants in the body.
(C4):*e body burden of each contaminant during the
month depends on the body burden of that contami-
nant in the previous month and the new exposure.

Based on the fact that contaminants are stored and
eliminated by the same organ, we make the following de-
pendency hypothesis. *e above assumptions lead to the
following proposition:

Proposition 3. Let Xi � (Xi1, Xi2, Xi3), i � 1, . . . , n be the
vector body burden of each contaminant during ith week or
month.�en, the evolution of the quantity of the contaminant
over time is obtained by the following relation:

Xi( 􏼁 � Xi−1( 􏼁ψ + Ei, (42)

with ψ � M3(R), the matrix of transition probabilities is given
by

e
θ21t

−
4 θ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ21t􏼐 􏼑

n

(2n + 2)!
a b

c e
θ22t

−
4 θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ22t􏼐 􏼑

n

(2n + 2)!
d

e f e
θ23t

−
4 θ3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ23t􏼐 􏼑

n

(2n + 2)!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

where θ1, θ2, θ3 denote the removal rates of the contaminant in
the body and Ei � (Ei1, Ei2, Ei3) the vectors of the trajectories of

the exposures to the contaminants during the ith week or month.
�e matrix ψ contains the contaminant removal coefficients.
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Proof. *e proof of the previous proposition based on as-
sumptions (C3) and (C4) yield the desired result.

It can be seen easily that

⇒

Xi1 � Xi−1,1 ∗ e
θ21t

−
4 θ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ21t􏼐 􏼑

n

(2n + 2)!
⎛⎝ ⎞⎠ + c∗Xi−1,2 + e∗Xi−1,3 + Ei1

Xi2 � a∗Xi−1,1 + Xi−1,2 ∗ e
θ22t

−
4 θ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ22t􏼐 􏼑

n

(2n + 2)!
⎛⎝ ⎞⎠ + f∗Xi−1,3 + Ei2

Xi3 � b∗Xi−1,1 + d∗Xi−1,2 + Xi−1,3 ∗ e
θ23t

−
4 θ3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
�
t

√

��
π

√ 􏽘

+∞

n�0

4n
(n + 1)! θ23t􏼐 􏼑

n

(2n + 2)!
⎛⎝ ⎞⎠ + Ei3

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Neglecting the impact of the removal of one contami-
nant on the other, we have trajectory (41) for each con-
taminant considered, i.e., the coefficients a, b, c, and d are
zero. However, when the contaminants are stored in the
same organ, then the elimination becomes slower because of
the dependency of the elimination. Assumptions will be
made to determine the reals a, b, c, d, e, and f of the matrix by
an Archimedean copula dependence investigation in [13, 14]
and estimate the probability that the amount of contaminant
1 in the body exceeds a threshold u1 knowing that con-
taminant 2 has exceeded the threshold u2. Unfortunately,
this will not be examined in this work. □

3.3. Generalized Fractional Differential Equation. Assume
once again that the manifestation of a pathology differs from
one person to another. Based on this assumption, we pro-
pose a generalized fractional differential equation of order α
which takes into account the delay in the evolution of a
phenomenon.

Proposition 4. �e following system provides a fractional
differential equation:

D
α
X(t) + θX(t) � 0

X(0) � κ
􏼨 , (45)

such that t> 0; 0< α≤ 1; modeling the evolution through time
of the dynamics of accumulation and elimination of the
contaminant in the human organism with a deficient immune
system during consecutive intakes of the contaminated food.
�en, the solution is given by

X(t) � 􏽘
+∞

n�0

(−1)
nθnκt

nα

Γ(nα + 1)
, (46)

It is a stochastic time dependent process that quantifies the
exposure to toxins of subjects living with comorbidities.

Proof. *e proof requires frequent uses of parts section 2.1
and section 2.2 of section 2. Indeed, it is easy to show that

X0(t) � X(0) � κ. (47)

In order 1, the quantity X1(t), gives

X1(t) � −L
− 1

RX0(t)( 􏼁 � −
θκt

α

Γ(α + 1)
􏼠 􏼡. (48)

By introducing (48) into the following relation, one has

X2(t) � −L
− 1

RX1(t)( 􏼁 �
θ2κI

α
0+ t

α
( 􏼁

Γ(α + 1)
. (49)

So, we get the following results:

I
α
0+ t

α
( 􏼁 �

1
Γ(α)

􏽚
1

0
(t − st)

α− 1
(st)

α
tds �

t
2α

Γ(α)
β(α, α + 1)

�
t
2αΓ(α + 1)

Γ(2α + 1)
.

(50)

Furthermore, substituting (50) into (49) one has

X2(t) �
θ2κ
Γ(α + 1)

×
t
2αΓ(α + 1)

Γ(2α + 1)
�

θ2κt
2α

Γ(2α + 1)
. (51)

For X3(t), we have

X3(t) � −L
− 1

RX2(t)( 􏼁 � −I
α
0+

θ3κt
2α

Γ(2α + 1)
􏼠 􏼡 �

−θ3κ
Γ(2α + 1)

I
α
0+ t

2α
􏼐 􏼑.

(52)

Applying the same operator, it comes that

I
α
0+ t

2α
􏼐 􏼑 �

1
Γ(α)

􏽚
1

0
t
3α

(1 − s)
α− 1

s
2α

ds �
t
3α

Γ(α)
β(α, 2α + 1).

(53)

And finally, it comes that
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X3(t) �
−θ3κ
Γ(2α + 1)

t
3αΓ(2α + 1)

Γ(3α + 1)
�

−θ3κt
3α

Γ(3α + 1)
. (54)

By conjecture, we have the solution to the problem (21)
as follows:

Xn(t) �
(−1)

nθnκt
nα

Γ(nα + 1)
. (55)

According to (10), we finally obtain the following result:

X(t) � 􏽘
+∞

n�0
Xn(t) � 􏽘

+∞

n�0

(−1)
nθnκt

nα

Γ(nα + 1)
. (56)

Our result is proved if we show by recurrence that

X(t) �
(−1)

nθnκt
nα

Γ(nα + 1)
. (57)

For the order 0, n � 0, X(t) � X0(t) � κ.
*e property is true at order n � 0; now let us suppose it

is true at any order n and show that the property is true at
order n + 1, i.e.,

Xn+1(t) �
(−1)

n+1θn+1κt
(n+1)α

Γ((n + 1)α + 1)
. (58)

Using the same approach, we obtain the results suc-
cessively as follows:

Xn+1(t) � −L
−1

RXn(t)( 􏼁 � −I
α
0+ θ

(−1)
nθnκt

nα

Γ(nα+1)
􏼠 􏼡􏼠 􏼡, (59)

which gives,

Xn+1(t) ��
(−1)

(n+1)θ(n+1)κI
α
0+ t

nα
( 􏼁

Γ(nα + 1)
. (60)

*us,

I
α
0+ t

nα
( 􏼁 �

1
Γ(α)

􏽚
1

0
(t − st)

α− 1
(st)

nα
tds

�
t
(n+1)

Γ(α)
􏽚
1

0
(1 − s)

α− 1
s

nα
ds.

(61)

*is is equivalent to

I
α
0+ t

nα
( 􏼁 �

1
Γ(α)

β(α, nα + 1) �
t
(n+1)αΓ(nα + 1)

Γ((n + 1)α + 1)
, (62)

and consequently,

Xn+1(t) �
(−1)

n+1θn+1κ
Γ(nα + 1)

t
(n+1)αΓ(nα + 1)

Γ((n + 1)α + 1)

�
(−1)

n+1θn+1κt
(n+1)α

Γ((n + 1)α + 1)
.

(63)

*us, the property is also true to order n + 1. So, it is true
to any order n, i.e.,

Xn(t) �
(−1)

nθnκt
nα

Γ(nα + 1)
. (64)

Finally, one has

X(t) � 􏽘

+∞

n�0
Xn(t) � 􏽘

+∞

n�0

(−1)
nθnκt

nα

Γ(nα + 1)
. (65)

□

Remark 2. By considering α � 1/2, we obtain the formula by
(28).

*e paper is closed with a comparison and simulation
regarding the new model FDE and the existing one KDEM
extensively commented on in the introduction.

3.4. Comparative Study and Simulation. *e main part of
this section is to extend previous theoretical investigation
results (15) graphically. *e comparison of the two models,
the existing one and the one we propose, is obtained by
application to dioxins. *e elimination rate is θ � 0.006418
and assume that the initial body burden at T0 � 0 is
X(0) � 15 pg/kg.

Table 1 shows that our proposed process results in a
slightly higher amount of the contaminant over time
compared to the existing model. *is proves that this model
is well adapted to failing immune systems. *us, it is well
suited to model the dynamics of contaminant evolution in
the body of people living with comorbidities, fragile chil-
dren, and pregnant women. Since the KDEM model is
adapted to the nonfailing immune system, we therefore
implemented it for a graphical view of the evolution of the
contaminant dynamics in the immunocompetent organism.

*e graph above Figure 1 shows the evolution of the
dynamics of dioxins once introduced into the human or-
ganism. *e value of the elimination rate (0.006418) is
obtained by the formula θ � ln(2)/DV (DV the biological
half-life of dioxin is 9 years or 108months). Given that the
tolerable threshold of dioxin by the human organism is
70pg/kg of body weight, we assume however the initial body

Table 1: Evolution of the quantity of the contaminant over time.

Time (months) Xi+1(t) � Xi.e
− θt Xi+1(t) � Xi(eθ

2t − 4|θ|
�
t

√
/

��
π

√
􏽐

+∞
n�04

n(n + 1)!(θ2t)n/(2n + 2)!)

0 15 15
1 14,99903733 14,99891376
2 14,99711218 14,99737774
3 14,99422491 14,99549674
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load at 10 pg/kg of body weight. We note that in this process
the time taken to exceed the tolerable threshold is long, in
contrast to the trajectory of contaminants in the body of
people living with a comorbidity, where this threshold is
exceeded more quickly after contamination Figure 2. We
recall that this exceeding can prove to be dangerous for the
organism.

*is graphical test shows that organisms living with
comorbidities, people with a weak immune system, namely
the child not breastfed or malnourished, pregnant women,
all these people, the system eliminates the contaminant
slowly, which exposes the danger of developing a pathology
more quickly than immunocompetent subjects.

4. Conclusion and Discussions

We have developed a model that takes into account a weak
immune system for modeling the risks associated with poor
nutrition.*is allows medical services to properly assess and
prevent the danger of exposure to food toxins and improve
the life expectancy of these people already weakened by

pathologies such as asthma, diabetes, cardiovascular dis-
eases, AIDS, especially malnourished children, people with
disabilities, people who are not well nourished, and people of
advanced age and pregnant women. We have shown that the
toxin values in the organism successively obtained by the
FDE model are slightly higher than the amount obtained by
the existing model. Naturally, it is clear that our model is
better than the KDEM model, but this confirms the hy-
pothesis (C1).

*is fractional differential equation model that we
propose in this paper to quantify dietary risk exposure
marks’ progress in the analysis and search for solutions for
the prevention of the above-mentioned diseases. In our next
research, we will take into account in this new FDE model,
the multiple contaminations to which the organism is ex-
posed daily, especially the application to contaminants
found in food consumption in sub-Saharan African
countries.
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“Application of the laplace-adomian method and the SBA
method to solving the partial differential and integro-differ-
ential equations,” Journal of Mathematical Sciences: Advances
and Applications.

[12] S. A. El-Wakil and M. A. Abdou, “New applications of
Adomian decomposition method, Chaos,” Solitons & Fractals,
vol. 33, pp. 513–522, 2007.

[13] D. Barro, M. Diallo, and R. G. Bagré, “Spatial tail dependence
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