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Background. Peritoneal membrane changes are induced by uraemia per se. We hypothesise that previous renal replacement therapy
(RRT) time and residual renal function (RRF) at start of peritoneal dialysis impact on ultrafiltration failure (UFF). Methods. The
time course of PET parameters from 123 incident patients, followed for median 26 (4–105) months, was evaluated by mixed
linear model. Glucose 3.86% solutions were not used in their standard therapy. Sex, age, diabetes, previous RRT time, RRF,
comorbidity score, PD modality and peritonitis episodes were investigated as possible determinants of UFF-free survival. Results.
PET parameters remained stable during follow up. CA125 decreased significantly. Inherent UFF was diagnosed in 8 patients,
5 spontaneously recovering. Acquired UFF group presented type I UFF profile with compromised sodium sieving. At baseline
they had lower RRF and longer previous time of RRT which remained significantly associated with UFF-free survival by Cox
multivariate analysis (HR 0.648 (0.428–0.980), P = 0.04) and (HR 1.016 (1.004–1.028), P = 0.009, resp.). UFF free survival was
97%, 87% and 83% at 1, 3 and 5 years, respectively. Conclusions. Inherent UFF is often unpredictable but transitory. On the other
hand baseline lower RRF and previous RRT time independently impact on ultrafiltration failure free survival. In spite of these
detrimental factors generally stable long-term peritoneal transport parameters is achievable with a 5-year cumulative UFF free
survival of 83%. This study adds a further argument for a PD-first policy.

1. Introduction

Peritoneal membrane ultrafiltration failure (UFF) is a rel-
evant long-term complication menacing peritoneal dialysis
(PD) [1]. It has been reported to lead to technique failure
in a rate of 1.7% [2] to 13.7% [3]. Peritoneal morpho-
logical changes seem to be related to dialysis solutions,
bioincompatibility, and to infections. Uremic milieu per se
may also contribute to peritoneal changes since both sub-
mesothelial fibrosis and vascular changes are already present
in uremic patients, before dialysis induction. The median
thickness of the submesothelial compact collagenous zone
was 50 micron for normal subjects, but was 140 micron for
uremic predialysis patients, 150 micron for patients under-
going hemodialysis, and 270 micron for patients undergoing
PD [4]. Honda et al. concluded that the average peritoneal

thickness was increased in uremic patients and progressively
thickened as the duration of peritoneal dialysis prolonged,
while the lumen/vessel diameter ratio was lower in uremia
than normal and progressively decreased as the duration
of peritoneal dialysis was prolonged [5]. Thus, the effect
of uremia on the baseline and time dependent profiles of
peritoneal membrane function deserves further studies. It
is a continuous bystander in dialysis patients only more
recently introduced in PD animal models [6], but often
excluded from UFF analysis [7].

Currently, the determinants of small solutes, proteins,
and water transport across the peritoneal membrane, as well
as their evolution during PD therapy, are still a matter of
debate. Recently, some mechanisms involved in acquired
UFF have been identified but less is known about the role
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of previous renal replacement therapy time in this issue.
Moreover, early UFF is still an unexplained phenomenon.

A fast transport status is the primary mechanism of UFF
and it is sometimes documented as an inherent condition
whose clinical impact has been debated [8–11] but early
UFF still remains often unexplained [7, 12]. Later during
PD, loss of glucose osmotic conductance might add to the
process of acquired UFF, with a disproportionally more
severe compromise of free water transport [13]. Additionally,
it is known that peritoneal fibrosis is induced by PD solutions
but uraemia per se is also a fibrogenic factor [14]. Residual
renal function and precious renal replacement therapy time
at PD start are clinical variables that reflect the cumulative
uremia stage.

We aim to identify relevant clinical determinants of early
and acquired UFF, focusing on the independent impact of
previous renal replacement therapy time and residual renal
function at start of PD. Its eventual independent impact
may strengthen PD prescription as a first renal replacement
therapy option.

2. Patients and Methods

We prospectively studied 123 consecutive peritoneal dialysis
incident patients enrolled at Hospital Santo António PD Unit
since 1st January 2001. All patients were free of hypertonic
3.86% glucose solutions. Standard prescription included
low-GDPs solutions; median glucose concentration exposure
was 1.65% (range 1.36%–2.27%) and 40% used icodextrin.
Age, diabetes, previous renal replacement therapy time
(RRT), baseline residual renal function (RRF) quantified as
glomerular filtration rate (GFR mL/min/1.73 m2)—based on
24 hrs urine collections with determinations of creatinine
and urea, Davies comorbidity score, automated PD, and
peritonitis events were investigated as possible determinants
of baseline or late UFF. All patients performed baseline
and yearly 3.86%-peritoneal equilibration tests (PETs), being
followed for median 26 (4–105) months: D/P creatinine,
D/D0 glucose, sodium sieving, and peritoneal ultrafiltration
(UF) were analyzed, and UF failure was defined as a net UF
lower than 400 mL after a 4-hour dwell with 3.86%. PET;
CA125 appearance rate was also calculated after 4 hours of
PET dwell.

The time course of PET parameters was explored by
repeated measurements mixed linear model analysis with
SPSS software.

Clinical and laboratory parameters considered to be
possible determinants of UFF were investigated and its
impact on UFF-free survival was studied by using Cox
multivariate analysis. Investigation was made both in the
whole cohort and in the subgroup after excluding patients
admitted after renal graft failure.

3. Results

The investigated patients had a mean age of 48 ± 15
(20–82) years and female predominance (62%). Twenty-
three patients (18.7%) were diabetic, thirty (24.4%) were
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Figure 1: PET 3.86% D/P creatinine means by time (years on PD)
estimated by repeated measurements mixed model analysis (P =
NS).

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

Figure 2: Effluent CA125 U/min means by time (years on PD)
estimated by repeated measurements mixed model analysis (P =
0.009).

anuric and the majority of them (59%) were on APD.
Fifty-four patients (43.9%) had been on previous renal
replacement therapy (RRT) for a median time of 63 months
(2–410): 30.9% after hemodialysis (HD) and 13.0% after
renal transplant failure (RT).

3.1. Time Course of Peritoneal Membrane Function. By
repeated measurements mixed model analysis, it was shown
that small solute, UF, and sodium-sieving parameters
remained essentially stable during the followup. A U-shaped
curve of D/P creatinine was documented, but this variation
with time did not attain significance (Figure 1). CA125
decreased progressively (P = 0.009) (Figure 2), mainly in
late UFF patients. The same profile was documented in the
subgroup of patients after excluding those admitted after
renal graft failure (D/P creatinine U-shaped curve though
P = ns; for Ca125 parameter P = 0.015).

3.2. Inherent and Acquired Ultrafiltration Failure. UFF was
documented in 15 patients: eight patients (6.5%) showed
baseline ultrafiltration failure (UFF) while seven patients
(5.7%) developed acquired UFF. Notably, five patients com-
pletely recovered from baseline UFF.

Sex, age, diabetes, comorbidity score, baseline RRF, and
previous RRT did not differ significantly between baseline
UFF group and the other patients (Table 1). D/P creatinine
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Table 1: Comparison between inherent (baseline) UFF group and baseline-stable patients (categorical data as number (percentage)
compared by Fisher’s exact test; continuous data presented as median (25%–75% interquartile range), compared by Mann Whitney U-test).

Baseline UFF Baseline stable group
P

N = 8 N = 115

Sex (male) (N ; %) 3 (37.5%) 44 (38.3%) 1

Diabetes (N ; %) 1 (12.5%) 22 (19.1%) 1

Age 44 (38–66) 47 (35–60) 0.64

Comorbidity score (≥2) 1 (12.5%) 30 (26%) 0.76

Baseline GFR mL/min 4.2 (2.2–6.2) 4.8 (0–7.4) 0.90

RRT time (months) 0 (0–1.9) 1.7 (0–41) 0.32

PET parameters

D/P creatinine 0.76 (0.65–0.81) 0.77 (0.66–0.86) 0.74

D/D0 glucose 0.25 (0.21–0.28) 0.29 (0.25–0.3) 0.12

PET drainage 2200 (2100–2287) 2800 (2600–2900) <0.0001

D/P Na 60 0.90 (0.86–0.93) 0.87 (0.85–0.89) 0.057

Dip Na 0.028 (0.001–0.076) 0.050 (0.022–0.073) 0.21

Ca125 U/min 143 (67–350) 136 (85–241) 0.89

of inherent UFF group and other patients was similar (0.74±
0.11 versus 0.75 ± 0.13, P = 0.74). Also sodium sieving
did not differ significantly between the groups (D/P Na60
0.90±0.038 versus 0.87±0.034, P = 0.057), although a trend
was noticed.

On the other hand, the acquired UFF group presented
type I UFF profile with clearly compromised sodium sieving
(D/P creatinine was 0.83± 0.10 versus 0.72± 0.12, P = 0.035
and D/PNa60 0.92 ± 0.028 versus 0.87 ± 0.034, P = 0.010)
(Table 2). They had significantly lower baseline RRF (P =
0.009) and longer previous RRT time (P = 0.003) (Figure 3).

3.3. Ultrafiltration Failure Free Survival

3.3.1. UFF-Free Survival Was 97%, 87%, 83% at 1, 3, 5 Years
(Figure 4). Baseline lower RRF and longer previous RRT
were independently associated with lower UFF-free survival
by Cox multivariate analysis (Table 3). Sex, age, diabetes,
APD modality, and peritonitis did not significantly impact
on UFF-free survival. After excluding patients admitted after
graft failure (n = 13), RRT time remained independently
associated with UFF (B 0.023 Exp(B) 1.023 (1.007–1.040)
P = 0.006) as also baseline GFR (mL/min) (B-0.447 Exp(B)
0.64 (0.412–0.993) P = 0.047).

4. Discussion

Our study highlights that residual renal function and
previous cumulative renal replacement therapy time, in
a contemporary PD population-free of hypertonic 3.86%
glucose solutions exposition, independently impact on
ultrafiltration-failure-free survival. This study therefore adds
a new argument for a PD-first policy as a strategy to improve
technique survival.

Additionally it documented that important membrane
functional changes occur already from start of PD. Measur-
ing peritoneal transport characteristics is an approach which

gives objective and reproducible information on peritoneal
performance and possible etiological factors of UFF [15]. A
fast transport status however, either alone or in combination
with other alterations in membrane function, remains the
most common underlying mechanism of UFF. We indeed
showed that acquired UFF group presented type I UFF
profile with compromised sodium sieving. UFF in long-
term PD is most often due to a combination of a rapid
disappearance of the osmotic gradient, together with an
impairment of transcellular water transport (TCWT) [13].
But the activity of water channels is dependent and limited by
the crystalloid osmotic pressure [16] which our methodology
did not allow to be calculated, being a limitation for
characterization of the late stage UFF. In spite of that we
were able to document free water transport compromise
by the indirect sign of decreased sodium sieving. For this
reason, we are now measuring the actual UF and effluent
sodium after 60 min dwell followed by effluent reinfusion
and completion of standardized 4-hour 3.86% PET which
allows evaluation of both free water and standardized small
solute transport [17]. Finally, back filtration of fluid through
the capillaries and fluid reabsorption from the peritoneal
cavity into tissues and lymphatics is a recognized mechanism
of UF failure and accounts for approximately 25% of the
cases of UF dysfunction, but only investigational methods
with tracer macromolecules hard to apply in a clinical ward
are able to evaluate this.

More relevant to our study was to highlight that baseline
UFF is prevalent but often transitory and not predicted by
baseline clinical variables according to previous investiga-
tions [7–12]. Many aspects of early stage transport changes
and mechanisms indeed remain to be understood. While
lymphatic absorption cannot be excluded as a cause of
early UFF, the evolution of patients recovering ultrafiltration
capacity does not support such etiology. We can speculate
that although no significant changes were documented in
small solute transport at baseline between the groups with
and without UFF, membrane structural changes induced
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Table 2: Comparison between acquired UFF group and stable patients (categorical data as number (percentage) compared by Fisher’s exact
test; continuous data presented as median (25%–75% interquartile range), compared by Mann Whitney U-test); Δ Ca125 is the variation
between last evaluation in the followup and baseline effluent CA125 U/min levels.

Acquired UFF Stable group
P

N = 7 N = 108

Sex (male) (N ; %) 5 (71.4%) 39 (36.1%) 0.104

Diabetes (N ; %) 0 (0%) 22 (20.4%) 0.343

Age 39 (34–45) 48 (35–60) 0.179

Comorbidity score (≥2) 2 (28.5%) 28 (25.9%) 0.203

RRT time (months) 77 (13–147) 0 (0–33) 0.003

Baseline GFR mL/mn 0 (0–3.6) 5.1 (1.37–7.4) 0.009

APD (Yes) 5 (71.4%) 61 (56.5%) 0.697

Peritonitis (Yes) 7 (100%) 61 (56.5%) 0.040

Peritonitis (n) 3 (1–4) 1 (0–2) 0.008

PET parameters

D/P creatinine 0.78 (0.75–0.94) 0.71 (0.64–0.81) 0.037

D/D0 glucose 0.24 (0.18–0.30) 0.30 (0.30–0.34) 0.021

PET drainage 2300 (2250–2400) 2800 (2600–2900) <0.0001

D/P Na 60 0.92 (0.88–0.95) 0,88 (0.85–0.89) 0.007

Dip Na 0.028 (−0.007–0.054] 0.048 (0.021–0.071) 0.16

Ca125 U/min 23 (10–28) 163 (86–227) <0.0001

Δ Ca125 −52 (−79–−13) 0 (−29–53) 0.004
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Figure 3: Comparison between acquired UFF patients and preserved UF group: acquired UFF group had significantly lower baseline residual
renal function (P = 0.009) and longer previous renal replacement therapy (P = 0.003).

by uremia per se namely interstitium fibrosis might justify
the marginal compromise of sodium sieving. This indeed
gives lumped information and is not only dependent on
an increase of diffusive mass transport coefficients for small
solutes, but also on a decrease of the glucose osmotic
conductance (number and function of aquaporins, number
and diameter of small pores) and on reduction of ultrafil-
tration coefficient of the peritoneal membrane (role for the
interstitium changes).

Interestingly, we found a U-shaped curve of D/P crea-
tinine in the followup, already previously reported by our

group and others [8, 13, 18] though not attaining statistical
significance in this contemporary cohort. The early phase
of D/P creatinine normalisation may express an adaptive
process whose mechanisms are unclear but may include
early recruitment or vasodilation of vessels mediated by
vasoactive mediators, many of them secreted by mesothelial
cells. Therefore, in some of our patients a transitory fast
transport status may explain the inherent UFF. In other
patients, the causes of such baseline UFF are not clear,
pointing to the complexity of peritoneal membrane time-
dependent functional changes. The risk phase with clinical
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Figure 4: UFF-free survival rate was 97%, 87%, 83% at 1, 3, 5 years.

Table 3: Multivariate Cox proportional hazard analysis of variables
significantly associated with UFF-free survival. Sex, age, diabetes,
APD, and peritonitis did not significantly impact on UFF-free
survival.

B Exp(B) (95% CI) P

Baseline GFR (mL/min) −0.434 0.648 (0.428–0.980) 0.040

RRT time (month) 0.016 1.016 (1.004–1.028) 0.009

Cox regression; status acquired UFF.

impact may be documented by the late increasing side
of the U-shaped curve, with decreasing mesothelial cell
mass as a marker of structural changes that go along with
UFF and sodium sieving compromise. Again we highlight
the importance of routine membrane monitorization also
including an accessible and affordable structural marker—
CA125 effluent appearance rate [19].

However, our global population presented stability in
the transport rates for small molecules and sodium sieving
over time. This is in accordance with previous publications
where small-solute transport parameters were found to be
increased only in long-term patients [20], but happily, in
disagreement with the gloomier reports of sustained and
inexorable increase of D/P creatinine over time, already from
the start [21]. On the other hand, uremia and baseline
GFR as its surrogate, is indeed an important bystander not
usually taken into account in peritoneal membrane changes
investigation. We identified it here as a clinical variable
that independently impacts on UFF-free survival. This clue
deserves further investigation but suggests that uremia may
be crucial to explain acquired peritoneal membrane changes,
and although it has not been associated with baseline
transport characteristics may modulate membrane time-
dependent profile [4–6].

As a limitation of our study, we did not control for a
panel of pharmacological agents shown experimentally to

modulate membrane structure, namely, renin angiotensine
system inhibitors and erythropoiesis stimulating agents [22,
23]. However, since the use of these agents is massive in our
PD patients, it is not presumed to change our results.

In spite of some controversy [18], our study also showed
that the influence of peritonitis on the development of UFF
seems to be limited. It has been found that patients with
a history of peritonitis were not different from patients
without a previous peritonitis episode in terms of D/P
ratio and mass transfer area coefficient of low molecular
weight solutes, lymphatic absorption rate, transcapillary
ultrafiltration, and net ultrafiltration [24]. Only clusters of
peritonitis or peritonitis episodes that occur later in PD have
been described as causing a decrease in UF [25].

Considering the link between comorbidity and peri-
toneal transport, data is controversial. Some papers docu-
ment that systemic inflammation associated with comorbid
diseases and elevated interleukin- (IL-) 6 level may induce
vasodilation and neoangiogenesis in peritoneal membrane
[26]. We did not find any association between morbidity
and higher transport rates, like others [27], nor comorbidity
score was predictive of UFF.

As a structural marker, effluent cancer antigen 125 can
be used reflecting mesothelial cell mass and cell turnover
in stable, noninfectious PD patients. Its decrease with the
duration of PD, described previously [28], is consistent with
the reported cell loss observed in peritoneal biopsies. Such
profile of effluent CA125 appearance rate is therefore more
likely a sign of damage to the peritoneum than a causative
factor of UF by itself. It can be interpreted as an additional
prognostic sign, adding to the changes of D/P creatinine and
effluent IL-6 [29].

In conclusion, this paper documents early-stage peri-
toneal membrane changes with transitory cases of inher-
ent ultrafiltration capacity failure dissociated from small-
solute transport, whose mechanisms remain unclear. On
the other hand, lower baseline RRF and previous longer
RRT were associated with acquired UFF in our population.
In spite of these detrimental factors, we found generally
stable long-term peritoneal transport parameters with 5
years 83% cumulative UFF-free survival. By highlighting the
importance of previous cumulative RRT time and baseline
RRF concerning peritoneal membrane function status these
results support a PD-first strategy in the integrated renal
replacement treatment plan.
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