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The fabrication of silicon oxynitride (SiON)/ZnO nanotube (NT) arrays and their application in improving the energy conversion
efficiency (𝜂) of crystalline Si-based solar cells (SCs) are reported. The SiON/ZnO NT arrays have a graded-refractive-index that
varies from 3.5 (Si) to 1.9 ∼ 2.0 (Si

3
N
4
and ZnO) to 1.72 ∼ 1.75 (SiON) to 1 (air). Experimental results show that the use of 0.4𝜇m

long ZnONT arrays coated with a 150 nm thick SiON film increases Δ𝜂/𝜂 by 39.2% under AM 1.5G (100mW/cm2) illumination as
compared to that of regular SCs with a Si

3
N
4
/micropyramid surface. This enhancement can be attributed to SiON/ZnO NT arrays

effectively releasing surface reflection and minimizing Fresnel loss.

1. Introduction

Surface roughening through the chemical wet etching process
[1, 2], nanoimprint lithography [3], and nanostructures [4, 5]
has been applied to roughen the top surface of optoelectronic
devices. Surface roughening has attracted considerable inter-
est for applications such as solar cells (SCs), light-emitting
diodes (LEDs), ultraviolet photodetectors (UV-PDs), and gas
sensors [6–9]. A suitably roughened surface can significantly
improve the surface reflectivity of SCs, alleviate the total
internal reflection of LEDs, and increase the responses of UV-
PDs and gas sensors [6–9]. However, most surface rough-
ening methods involve expensive lithographic patterning or
cumbersome fabrication processes and can even deteriorate
electrical properties, making them unsuitable for mass pro-
duction.

Zinc oxide (ZnO) is a promising material for surface
roughening. It has a wide direct band gap (3.37 eV at room
temperature), large exciton binding energy (about 60meV)
[10, 11], and transmittance of about 85% in the visible region
[12, 13]. One-dimensional ZnO nanowire (NW) arrays have

received great attention due to their ease of fabrication,
low-temperature processing, and unique properties, such
as large length-to-diameter ratio, high surface-to-volume
ratio, and carrier confinement, which could improve device
performance [6, 14–16]. Nevertheless, the transmittance of
ZnO NW arrays needs to be improved for light transmission
in the visible-light spectrum.

To further improve the light trapping efficiency (LTE)
and light transmission of SCs in the visible region, a simple
and cost-effective surface roughening scheme that employs
SiON/ZnO nanotube (NT) arrays is proposed in this work.
The scheme is expected to reduce the Fresnel loss effect
from a graded-refractive-index structure. The optoelectronic
characteristics of regular SCs and those with the proposed
SiON/ZnO NT arrays, ZnO NT arrays, and conventional
ZnO NW arrays, respectively, are compared and discussed.

2. Experiments

Figure 1 schematically shows the four types of SC, namely,
SC-A, SC-B, SC-C, and regular SC, prepared in this study.
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Figure 1: Schematic device structures of SC-A (with SiON/ZnO NT arrays), SC-B (with ZnO NT arrays), SC-C (with ZnO NW arrays), and
regular SC (with KOH-etched surface).
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Figure 2:Measured transmittance and refractive index of SiONfilm
(150 nm in thickness).

The regular SCs, prepared using the standard fabrication pro-
cess, had a KOH-etched micropyramid surface and a Si

3
N
4

antireflection (AR) coating. For some of the regular SCs, ZnO
NW arrays, ZnO NT arrays, or SiON/ZnO NT arrays were
synthesized on top of the Si

3
N
4
AR layer. To synthesize ZnO

NW arrays on the surface of regular SCs, a 10 nm thick ZnO
seed layer was sputter-deposited onto the Si

3
N
4
surface, and

ZnO NW arrays were synthesized on the surface of this via
the hydrothermal growth (HTG) method [17, 18]. A mixed
solution of 0.07MZnO (NO

3
)
2
⋅6H
2
O and 0.07MC

6
H
12
N
4

at 80∘C was employed for 120min in the HTG process. The
typical diameters and lengths of the obtained ZnO NW
arrays were in the ranges of 100–200 nm and 400–500 nm,

respectively. These ZnO-NW-based devices are referred to as
SC-C.

A two-step HTG method was used to synthesize ZnO
NT arrays on the surface of regular SCs. To synthesize
ZnO NT arrays with dimensions equal to those of the NW
arrays, the HTG parameters mentioned above were used in
the first HTG process. The second step was conducted at
80∘C for 120min and then at room temperature for 24 h for
tube formation, which could be caused by the occurrence
of a dissolving process at lower temperature [19, 20]. In
addition to increased surface roughness, the ZnO NT arrays
are expected to alleviate the light absorption that occurs in
conventional ZnO nanowires and overcome the issue of light
reflection by offering a suitable effective refractive index. SCs
based on ZnO NT arrays are referred to as SC-B.

Finally, a 150 nm thick SiON layer with a typical refractive
index of 1.72∼1.75 was coated onto the ZnO NT arrays
using a plasma-enhanced chemical vapor deposition system.
A mixed gas of N

2
O (350 sccm), NH

3
(10 sccm), 5%SiH

4

(120 sccm), and N
2
(400 sccm) was employed for the deposi-

tion process.The applied plasma power was 120W, the cham-
ber pressure was 700mTorr, and the substrate temperature
was kept at 300∘C. These devices are referred to as SC-A. All
four types of SC had a die size of 2.1 cm × 3.4 cm.

The light reflectance and refractive indexes of the pre-
pared SiON films and ZnO nanostructures were character-
ized using a spectrophotometer and an ellipsometer, respec-
tively.The current density-voltage (J-V) and EQE characteris-
tics of the prepared SCs were measured using a Science Tech
150W under standard AM 1.5G test conditions (100mW/cm2
at 25∘C).
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Figure 3: SEM images of surface morphology of prepared SCs. (a) Tilted- and (b) top-view images of regular SC, (c) tilted- and (d) top-view
images of SC-C, (e) tilted- and (f) top-view images of SC-B, and (g) tilted- and (h) top-view images of SC-A.

3. Results and Discussion

Themeasured light transmittance and refractive index (n) of
the prepared 150 nm thick SiON film are shown in Figure 2.
The film has a good transmittance of approximately 95% in
the visible-light spectrum and a refractive index of 1.72–1.75.

The results reveal that a 150 nm thick SiON film deposited
atop ZnO NT arrays does not significantly absorb sunlight.
The film creates a graded-refractive-index scheme with the
refractive index varying from 2.0∼2.1 (ZnO/Si

3
N
4
) [21] to

1.72∼1.75 (SiON) to 1 (air) for SC-A. Figure 3 shows top- and
tilted-view scanning electron microscopy (SEM) images of
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Figure 4: Measured reflectance of SiON/ZnO NT, ZnO NT, and
NW arrays on ZnO (seed layer)/glass substrate. Thickness of ZnO
seed layer is 10 nm.
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Figure 5:MeasuredEQEas a function ofwavelength𝜆 for four types
of SC with different surface roughness.

the surface morphology of the four types of SC. Distinctive
nanostructures can be clearly observed on top of the Si

3
N
4
/n-

Si surface. The micropyramid structures shown in Figures
3(a) and 3(b) were obtained via anisotropic etching of the
Si surface using an alkaline solution. They have an average
height and diameter of 3 and 5 𝜇m, respectively. Figures 3(c)
and 3(d) show the morphology of the HTG-prepared ZnO
NW arrays atop the Si

3
N
4
/KOH-etched n-Si surface. Figures

3(e) and 3(f) show the ZnO NT arrays obtained from the
second step of the HTG process. Figures 3(g) and 3(h) show
SiON/ZnO NT arrays with a sphere-like surface obtained via
the deposition of SiON film onto the ZnO NT arrays.

The light reflectance of the ZnO NW arrays, ZnO NT
arrays, and SiON/ZnO NT arrays atop the ZnO seed layer
(10 nm)/glass substrate is shown in Figure 4. It can be seen
that the SiON/ZnO NT arrays have the best antireflective

Sample (V)
FF 

(%) (%) (%)
Regular SC 23.22 0.6 69.84 9.56

SC-C 26.71 0.6 70.96 11.4 +19.2
SC-B 28.61 0.6 71.56 12.2 +27.6
SC-A 30.69 0.6 72.18 13.6 +39.2

—

∗𝜂: energy conversion efficiency
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Figure 6: Measured J-V characteristics of regular SC, SC-C, SC-B,
and SC-A. Inset shows measured cell parameters.

properties (around 10%) in the visible-light spectrum, while
the ZnO NWs arrays have reflectance of about 14%. Figure 5
shows the measured external quantum efficiency (EQE) as a
function of wavelength 𝜆 for four types of SC with different
surface roughness. It is found that the SC-A generally has
the highest EQEs in the visible-light spectrum, and this is
consistent with the reflectance data presented above.Thehigh
antireflection and EQE of the SiON/ZnO NT arrays can be
attributed to the sphere-like morphology and the formation
of a graded-refractive-index layer structure.

The J-V characteristics of the fabricated SCs are shown in
Figure 6 to examine the effectiveness of the SiON/ZnO NT
arrays with regard to enhancing energy conversion efficiency.
With the regular SC as a reference, details of the mea-
sured SC parameters, namely, short-circuit current density
(𝐽SC), open-circuit voltage (𝑉OC), fill factor (FF), energy
conversion efficiency (𝜂), and enhanced energy conversion
efficiency enhancement (Δ𝜂/𝜂) are listed in the inset. The
surface roughening schemes provide different degrees of
improvement in short-circuit current density and FF, which
is attributed to a direct consequence of the broadband light
trapping and the reduction in series resistance, as compared
with that of the regular SCs. Note that the decreased series
resistance is caused by the increase in electron and hole
concentrations due to maximizing the light irradiation from
air to the active region of cell. Similar experimental results
with regard to improved FF have been reported for SCs with
different surface structures [21–23]. In contrast, the open-
circuit voltage shows no noticeable change, and this suggests
that the parallel resistances of the three types of SC are not
affected by surface roughening. As shown in Figure 6, SC-
A, SC-B, and SC-C show Δ𝜂/𝜂 increases of 39.2%, 27.6%,
and 19.2%, respectively, as compared to a regular SC under
AM 1.5G (100mW/cm2) illumination. SC-A (150 nm thick
SiON film and 0.4 𝜇m long ZnO NT arrays) shows the
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Figure 7: Simulation and calculation results of regular SC, SC-C, SC-B, and SC-A.

best improvement in cell performance. This is likely due to
the effectiveness of this type of surface roughening, which
promotes angular randomization of incident sunlight and
enhances LTE. In addition, the SiON/ZnO NT arrays create
a graded-refractive-index surface structure scheme, with the
refractive index ranging from 2.0-2.1 (ZnO/Si

3
N
4
) [24] to

1.72–1.75 (SiON) to 1 (air). The use of SiON could maximize
light irradiation from air to Si

3
N
4
, and thus to the active

region of the cell, without causing light reflection, because it
offers a refractive index (1.72–1.75) that satisfies the optimized
refractive index equation [25] 𝑛opt = √𝑛1 × 𝑛2, where 𝑛1 is the
refractive index of ZnO/Si

3
N
4
(𝑛 = 2.0-2.1) [24] and 𝑛

2
is the

refractive index of EVA (𝑛 = 1.51) [26].
The simulation results shown in Figure 7 demonstrate an

LTE improvement trend that is similar to those obtained in
the experimental findings. To further clarify the effectiveness
of the surface roughening schemes, the light absorption
efficiency of SCs with micropyramids, ZnO NW arrays atop
the micropyramids, ZnO NT arrays atop the micropyramids,
and SiON/ZnO NT arrays atop the micropyramids was
simulated using Tracepro [7]. The results are shown in
Figure 7. The amount of total flux through the SCs with
SiON/ZnONT arrays atop themicropyramids is much larger
than that of the SCs with micropyramids, which is in good
agreement with the experimental findings. The Fresnel loss
at the air/SiON/ZnO/Si

3
N
4
/Si surface is minimized through

the combined effect of surface roughening and the refractive-
index-matched (RIM) scheme provided by the SiON/ZnO
NT arrays. The theoretical results agree well with the exper-
imental ones. Although the structural parameters of the
SiON/ZnO NT arrays need to be further optimized, the
results provide a guideline for increasing the LTE of SCs.

4. Conclusion

The effectiveness of a surface roughening scheme was
demonstrated with regard to improving the efficiency of

SCs with SiON/ZnO NT arrays. The RIM SiON (150 nm
in thickness)/ZnO NT (0.4 𝜇m in length) structure signif-
icantly improved the efficiency of SC-A (by 39.2%) under
AM 1.5G (100mW/cm2) illumination compared with that
of a regular SC. This enhancement can be attributed to the
RIM SiON/ZnO NT array structure promoting the angular
randomization of incident sunlight at the surface of the
Si
3
N
4
/n-Si layer, effectively releasing surface reflection, and

minimizing Fresnel loss. It is expected that the proposed RIM
scheme with SiON/ZnO NT arrays can be applied to prepare
high-energy-conversion-efficiency SCs.
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