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The generalization of the Anderson-Darling (AD) test under neutrosophic statistics is presented in this paper. We present the
designing and operating procedure of neutrosophic Anderson-Darling when the quality of interest follows the neutrosophic
normal distribution. The application of the proposed test is given using data from the renewable energy field. From the analysis
of the data, it is concluded that the proposed test is effective and information to be applied when the data is recorded from the
complex system in the renewable energy field.

1. Introduction

The use of an appropriate statistical technique depends on
the nature of the data. The nonparametric statistical tests
are applied for the analysis of the data if statistical tests indi-
cate nonnormality in the data. The statistical techniques
based on normality are applied when the data follows the
normal distribution. Therefore, the diagnostic of the normal-
ity of the data is a basic and important step for the deep anal-
ysis of the data. Several statistical tests have been applied to
test the normality of the data. Among the tests, Anderson-
Darling (AD) has been widely applied to test the normality
of the data. The AD test is applied to test the null hypothesis
that the data follows the normal distribution versus the alter-
native hypothesis that the normal distribution is not a good
choice for the data. Reference [1] applied the AD test for gen-
eralized Pareto distribution. Reference [2] worked on evalu-
ating the performance of the AD test. [3] worked on the
performance of the various statistical tests. Reference [4]
worked on the computation aspects of the AD test. Reference
[5] applied the AD test in risk internal models. Reference [6]
worked on the ranking of statistical tests. More applications
of the AD test can be seen in [7–10].

The accurate prediction and estimation of renewable
energy depend on the correct statistical analysis of the data.

The statistical test guides renewable energy experts to give an
accurate estimation of the production and consumption of
energy. Therefore, effective planning about the use and saving
of energy depends on statistical tests. [11] worked on the pre-
diction of solar energy. References [12, 13] modelled the wind
data using the Weibull distribution. References [14, 15] pro-
vided the statistical analysis for the energy data. Some more
applications of statistical methods can be seen in [16–21].

When the data has uncertain or fuzzy observations such
as measuring the water level in a river and a lifetime of a
product and predicting the solar energy and melting point
of a component, the existing AD test cannot be applied for
the analysis of the data. In this situation, the statistical test
designed using the fuzzy logic is applied for testing the nor-
mality of the data. References [22, 23] worked on the tests
using the fuzzy logic. [24] worked on the Kolmogorov-
Smirnov test based on fuzzy logic. Reference [25] discussed
the application of fuzzy logic in decision making. For more
details, the reader may see [26–31].

The neutrosophic logic introduced by [32] reduces to
fuzzy logic if the measure of indeterminacy is not found.
Neutrosophic logic, which is more flexible and informative
than fuzzy logic, has many applications in the real world. Ref-
erence [33] showed the efficiency of neutrosophic logic over
the fuzzy and interval-based approaches. More discussion
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about the neutrosophic logic can be read in [34–45]. The
neutrosophic statistics which is worked on the neutrosophic
logic is introduced by [46]. This is the branch of statistics
which deals with the analysis of the data having the neutro-
sophic numbers. References [47, 48] introduced the analysis
based on neutrosophic numbers. Classical statistics is a spe-
cial case of neutrosophic statistics when no uncertainty is
found in the data. The neutrosophic statistics gives informa-
tion about the measure of indeterminacy that classical statis-
tics do not provide. Reference [49] introduced quality control
under neutrosophic statistics. References [50, 51] introduced
statistical tests of normality under neutrosophic statistics.
For more applications, the reader may read [52, 53].

A rich literature of the AD test under classical statistics
and fuzzy approach is available in the literature. The existing
AD tests are unable to provide the measure of indeterminacy
under an uncertain environment. Reference [54] developed
the goodness of fit test under neutrosophic statistics for non-
normal data. By exploring the literature and best of our
knowledge, no AD test is found for testing the normality of
normal data under neutrosophic statistics. In this paper, we
will introduce the neutrosophic Anderson-Darling (NAD)
test. We will introduce the test statistics of the proposed test
under neutrosophic statistics. The necessary steps are given
to apply the proposed test under an uncertain environment.
We will discuss the efficiency of the proposed NAD test using

data from renewable energy. From the comparison, it is
expected that the proposed NAD test will perform better
than the existing AD test under classical statistics in terms
of the measure of indeterminacy. Further, it is expected that
the proposed test will be more informative, effective, and ade-
quate than the existing test under classical statistics.

2. Preliminaries

The neutrosophic logic consists of three measures known as
the measure of truth, say T ; the measure of false, say F; and
the measure of indeterminacy, say IN . The neutrosophic logic
is a generalization of fuzzy logic. Let aiN and biNIN ; INϵ½IL,
IU � be the determined part and indeterminate part of the
neutrosophic variable XiN = aiN + biNIN ; INϵ½IL, IU �, where
INϵ½IL, IU � denotes the indeterminate interval. Suppose that
nNϵ½nL, nU � be a neutrosophic sample size and �aN = 1/nN
∑nN

i=1ai and �bN = 1/nN∑
nN
i=1bi are means of determinate and

indeterminate parts, respectively. The neutrosophic standard
deviation (NSD) by following [47, 48] is given as

sN =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nN

〠
nN

i=1
X iN − �XN

� �2
s

, ð1Þ

where

where �XN = �aN + �bNIN , INϵ½IL, IU �.

3. Proposed Test

The Anderson-Darling (AD) test under classical statistics is
applied to test the normality of the data having determined
values. We propose neutrosophic Anderson-Darling (NAD)
for testing the normality of the imprecise and indeterminate
data. The null hypothesis H0N is that the given neutrosophic
data follows the neutrosophic normal distribution versus the
alternative hypothesisH1N that the neutrosophic normal dis-
tribution is not suitable. The normality test will lead the
energy expert either to use statistical analysis based on the

normal distribution or not. The operational process of the
proposed NAD is stated as follows.

Step 1. Select a random sample nNϵ½nL, nU �. Compute the
neutrosophic averages of determined and indeterminate
parts of the data as �aN = 1/nN∑

nN
i=1ai and �bN = 1/nN∑

nN
i=1bi.

Step 2. Compute the neutrosophic average of a neutrosophic
random variable as �XN = �aN + �bNIN ; INϵ½IL, IU �.

Step 3. Compute the neutrosophic standard deviation is

as follows: sN =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nN∑

nN
i=1ðX iN − �XNÞ2

q
, where ∑nN

i=1

ðX iN − �XNÞ2 is given as
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Step 4. Compute the cumulative probabilities using the fol-
lowing transformation:

F0 ZNð Þ =ΦN
XN − �XN

sN

� �
, INϵ IL, IU½ �, ð4Þ

where ΦNðxNÞ denotes the neutrosophic cumulative distri-
bution function.

Step 5. Compute NAD using the following functional form:

NAD = 〠
nN

i=1

1 − 2i
nN

ln F0 ZN ið Þ
h i� �

+ ln 1 − F0 ZN nN+1−ið Þ
h i� �n o

− nN , nNϵ nL, nU½ �:
ð5Þ

Step 6. Compute the critical value (CV) as follows:

CV = 0:752
1 + 0:75/nN + 2:25/n2N
� � , nNϵ nL, nU½ �: ð6Þ

Step 7. The null hypothesis H0N will be accepted if NAD <
CV.

4. Application of NAD Test

The application of the proposed NAD test is given with the
help of solar data recorded from Riyadh satiation, Saudi Ara-
bia. The data is taken from [11]. According to [11], “in order
to predict solar radiation, the system will use historical
observed data: the data of ten variables including tempera-

ture (T), average wind direction at 3m (degree from the
north), average wind speed at 3m (m/s), Diffuse Horizontal
Irradiance (DHI) (Wh/m2), Direct Normal Irradiance
(DNI) (Wh/m2), Global Horizontal Irradiance (GHI) of the
current day (Wh/m2), peak wind speed at 3m (m/s), relative
humidity (percent), station pressure (mB (hPa equivalent)),
and next-day GHI (Wh/m2) (model output).” The data is
reported in Table 1. From Table 1, it can be seen that the solar
data has neutrosophy. Therefore, the analysis of the data
using the AD test under classical statistics may mislead the
experimenters. In this situation, the use of the proposed
NAD test will be quite effective and informative. The pro-
posed NAD test on this data for variable T is implemented
as follows.

Step 1. Select a random sample nNϵ½12, 12�. Compute the
neutrosophic averages of determined and indeterminate
parts of the data as �aN = 1/nN∑

nN
i=1ai = ð14:2+⋯+19:5Þ/12 =

27:2 and �bN = 1/nN∑
nN
i=1bi = ð15:9+⋯+21:9Þ/12 = 29:008.

Step 2. Compute the neutrosophic average of a neutrosophic
random variable as �XN = 27:2 + 29:008IN , INϵ½0, 1�.

Step 3. Compute the neutrosophic standard deviation as
follows:

sN =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nN

〠
nN

i=1
XiN − �XN

� �2
s

= sNϵ 5:7606,11:0750½ �, ð7Þ

where ∑nN
i=1ðXiN − �XNÞ2 is given as

Table 1: The solar data.

M T WD WS DHI DNI GHI PWS RH P ND-GHI

1 [14.2, 15.9] [9, 111] [2.5, 3.5] [2030, 2311] [1127, 3648] [2863, 3972] [6.9, 9.9] [41.5, 62.1] [941, 945.1] [2863, 4251]

2 [17, 18.3] [96, 144] [2.3, 3.4] [1423, 2274] [3676, 6170] [4519, 5051] [6.9, 10.4] [48.7, 54.6] [934, 940.1] [4746, 5051]

3 [21.1, 24.1] [53, 124] [2.1, 3.6] [1447, 3350] [1680, 7773] [4573, 6365] [7.2, 9.6] [25.8, 35.5] [938.6, 940.4] [3873, 5802]

4 [20.1, 24.8] [118, 354] [3.7, 4.1] [3643, 3697] [1330, 4028] [4741, 6859] [9.9, 15.7] [22.2, 45.7] [931.2, 935.3] [4741, 7099]

5 [30.9, 33.3] [28, 198] [2.6, 4.2] [4079, 4302] [2334, 3380] [6122, 6791] [9.1, 16] [20.2, 29.7] [932.8, 935] [4653, 6703]

6 [34.5, 34.9] [337, 341] [4.5, 5.6] [3552, 4842] [2894, 5389] [7098, 8121] [14.7, 16] [7.9, 9.5] [933.6, 934.4] [7098, 7864]

7 [36.7, 38] [314, 339] [2.8, 4.1] [1955, 2845] [6228, 8217] [7894, 8151] [11.7, 17.3] [8.1, 10.3] [927.7, 928.8] [6921, 7894]

8 [35.6, 36.4] [315, 316] [2.6, 3.9] [2137, 3046] [5581, 7726] [7523, 7961] [10.1, 13.1] [9.1, 9.3] [928.2, 928.8] [7104, 7798]

9 [38.6, 39.2] [86, 285] [2.1, 2.5] [2416, 3337] [3657, 5107] [6175, 6362] [7.7, 9.9] [9.4, 14.9] [931.5, 933.2] [6175, 7010]

10 [31.5, 32.5] [62, 107] [2, 3.1] [1409, 1793] [6540, 7888] [6105, 6586] [7.2, 9.3] [13.1, 18] [934.5, 937.2] [6105, 6416]

11 [26.7, 28.8] [123, 187] [2.6, 3.6] [1176, 1705] [5548, 7005] [5019, 5286] [8.3, 10.4] [25.6, 28.3] [937.5, 939.3] [3596, 5114]

12 [19.5, 21.9] [240, 332] [2, 2.3] [776, 941] [7040, 7768] [4641, 4747] [6.4, 8.8] [35, 49.9] [941.1, 945.7] [4641, 4747]

〠
nN

i=1
XiN − �XN

� �2 = 〠
nN

i=1

min ai − �aNð Þ2, ai − �að Þ ai − �aNð Þ + 1 × bi − �bN
� �� �

, ai − �aNð Þ + 1 × bi − �bN
� �2� �� �

max ai − �aNð Þ2, ai − �aNð Þ ai − �aNð Þ + 1 × bi − �bN
� �� �

, ai − �aNð Þ + 1 × bi − �bN
� �2� �� �
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Step 4. Compute the cumulative probabilities using the fol-
lowing transformation:

F0 ZNð Þ =ΦN
XN − �XN

sN

� �

=ΦN
14:2,15:9½ � − 27:2,56:20½ �

5:7606,11:0750½ �
� �

,⋯,

ΦN
19:5,21:9½ � − 27:2,56:20½ �

5:7606,11:0750½ �
� �

, INϵ 0, 1½ �:

ð9Þ

Step 5. Compute NAD using the following functional form:

NAD = 〠
nN

i=1

1 − 2i
nN

ln F0 ZN ið Þ
h i� �

+ ln 1 − F0 ZN nN+1−ið Þ
h i� �n o

− nN = NADϵ 1:79, 49:26½ �:
ð10Þ

Step 6. Compute the critical value (CV) as follows:

CV = 0:752
1 + 0:75/nN + 2:25/n2N
� � = 0:6975: ð11Þ

Step 7. The null hypothesisH0N will be rejected asNAD > CV
. From the proposed NAD test, it is concluded that the vari-
able temperature does not follow the normal distribution.

5. Comparative Study

As mentioned earlier, the proposed NAD test under neutro-
sophic statistics is the generalization of the AD test under
classical statistics. The proposed NAD test reduces to an
AD test under classical statistics if uncertainty does not exist.
The indeterminate value of the NAD statistic is NADϵ½1:79
, 49:26�. The neutrosophic form of NAD can be written as
NAD =AD + 49:26IN , INϵ½0,0:9636�, where AD = 1:79
shows the values of the AD test under classical statistics.
The part 49:26IN shows the indeterminate part of the neutro-
sophic test. The proposed NAD test becomes the same as the
AD test when IL = 0. From the study, it can be noted that the
proposed test has the values in indeterminacy interval. It
means, under uncertainty, that the NAD test can take the
values between 1.79 and 49.26. On the other hand, the exist-
ing AD test under classical statistics provides the determined
value of the statistics. Therefore, the proposed test is more
flexible than the existing test under uncertainty. In a neutro-
sophic analysis, the total probability can be more than one
due to uncertainty which is called paraconsistent probability
(see [46]). In addition, the proposed test provides the proba-
bility of indeterminacy that is 0.9636. The proposed NAD
test can be interpreted as follows: under an indeterminate
environment, the null hypothesis that the solar data follows
the normal distribution will be accepted with the probability
0.95 and rejected with the probability 0.05, and the probabil-
ity of indeterminacy is 0.9636. By comparing both tests, it can
be seen that for the proposed, the sum of the probabilities is

larger than 1 while in the existing test, the sum of probabili-
ties is always equal to one. In addition, the proposed test pro-
vides information about the measure of indeterminacy while
the existing test does not provide such information. The pro-
posed test results in indeterminate intervals; therefore, the
theory of the proposed test is the same as in [48]. From this
comparison, it is concluded that the proposed test is quite
informative, effective, and flexible to be applied for the
renewable energy data as compared to the existing test under
classical statistics.

6. Concluding Remarks

The existing AD test cannot be applied for testing the nor-
mality of the data in intervals, having neutrosophy and
uncertainty. The generalization of the Anderson-Darling
(AD) test under neutrosophic statistics that can be used to
test the normality of such data was presented in this paper.
We presented the designing and operational procedure of
neutrosophic Anderson-Darling when the quality of interest
followed the neutrosophic normal distribution. The applica-
tion of the proposed test was given using data from the
renewable energy field. From the analysis of the data, it was
concluded that the proposed test is effective and information
to be applied when the data is recorded from the complex
system in the renewable energy field. The proposed test pro-
vides the results in indeterminate intervals that are required
in dealing with the problem under uncertainty. We recom-
mend that the renewable energy experts should apply the
proposed test under an indeterminate environment. The pro-
posed test for nonnormal distribution can be considered
future research. Developing software to run the proposed test
is also a fruitful area of future research. The application of the
proposed test for big data can be considered future research.
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