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Presently, climate change and global warming are the most uncontrolled global challenges due to the extensive fossil fuel usage for
power generation and transportation. Nowadays, most of the developed countries are concentrating on developing alternative
resources; consequently, they did huge investments in research and development. In general, alternative energy resources
including hydropower, solar power, and wind energy are not harmful to nature. Today, solar power and wind power are very
popular alternative energy sources due to their enormous availability in nature. In this paper, the photovoltaic cell and wind
energy systems are investigated under various weather conditions. Based on the findings, we developed an advanced intelligent
controller system that tracks the maximum power point. The MPPT controller is a must for the renewable energy sources due
to unpredictable weather conditions. The main objective of this paper is to propose a new algorithm that is based on deep
neural network (DNN) and maximum power point tracking (MPPT), which was simulated in a MATLAB environment for
photovoltaic (PV) and wind-based power generation systems. The development of an advanced DNN controller that improves
the power quality and reduces THD value for the microgrid integration of hybrid PV/wind energy system was performed. The
MATLAB simulation tool has been used to develop the proposed system and tested its performance in different operating

situations. Finally, we analyzed the simulation results applying the IEEE 1547 standard.

1. Introduction

During the last decade, global warming emerged as a major
problem, and its consequences are very intimidating for life
on earth. Unpredictable fuel prices and environmental conse-
quences of extensive fuel consumption resulted in attracting
the attention of experts to renewable energy (RE) or alterna-
tive energy resources. Electric power generation by photovol-
taic (PV) and wind power (WP) has played a vital role due
to their easy availability and harmless nature [1, 2]. The RE
sources can be integrated with the main electric power grid,
which resulted in the emergence of microgrid (MG) and smart
grid. Concepts such as hi-tech active transmission and distrib-
utive power network, flexible loads, advanced controller, and

self-healing technologies are parts of MGs [3-5]. The use of
fast-growing RES is enabled with the aid of the use of
increased WT and PV reproductive technologies with the
main goal of reducing the price of the program. In addition,
it might also be argued that wind turbine and solar photovol-
taic technology structures are the most extensively adopted
and hooked up technologies. As mentioned in [1], electrical
energy from RES such as WT and PV will quickly be decreased
at lower costs than electricity. Depending on the size, proper-
ties and characteristics of WT and PV technological know-
how producers can have a considerable have an effect on
strength effectivity in phrases of monetary symptoms such as
electrical energy fees in thermal power plants, electricity first
rate indicators and electricity loss.
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Hybrid renewable energy technologies are becoming
standard technologies for generating electricity because they
use several alternative energy sources at the same time.
Presently, both wind and solar sources are considered as
promising RE sources; specifically, solar energy is considered
as more significant because it offers considerable cost reduc-
tion [6-8]. The aforementioned hybrid system may have a
few drawbacks like integration issues, and besides, its stability
may become a challenge, as renewable sources are mostly
irregular, unmanageable, stochastic, and highly variable.
Some potentially challenging situations can be load discrep-
ancy, voltage variability, poor load following, poor power
quality, frequency deviation, and reliability issues [9-11].
High power flow (OPF) ability is the steady monetary overall
performance of the power system, which is carried out with
the suitable flexibility of the control system. In mathematical
formulation, this is a large, nonlinear, nonlinear, static
problem, with a complicated linear transformation problem.
Multiple WT integration and the tuning of the PV system to
the power system will increase the complexity of the OPF
trouble due to its transient energy characteristics. A typical
framework for defining and resolving the OPF that appears
at WT and PV technology has to consist of the following:
(i) the importance and context of the issue; (ii) estimating
the WT and PV power output due to the dependable traits
of wind speed and solar radiation; (iii) choosing goal
functions; (iv) outlining technical issues, adaptive control,
and dependable diversity; and (v) how to resolve the OPF
problem. Recently, a number of researchers have addressed
the OPF trouble that focuses on some of the above functions
[12-14]. The latest and innovative ideas and technologies are
needed to increase the RE sources’ penetration in the power
grid that helps alleviate these problems.

Another major research challenge is optimization of the
hybrid power system in the smart grid framework, in
conjunction with the model predictive control (MPC) design.
It creates a strategy that can maximise the use of renewable
energy, e.g., photovoltaic, the wind turbine with battery
storage and minimize the utilization of the utility grid for elec-
tricity usage in the industry. The different contexts of using
renewable energy resources (RERs) and grid-connected appli-
cations are given in [15-18]. It develops the concept of PV
energy storage integration in commercial building applications.
The microgrid grid environment in conjunction with their
technologies into the applications of a microgrid with energy
coordination is aimed at creating power flow stability between
the generation and consumption of the electricity. The litera-
ture surveys on the global energy scenario and renewable
energy integration, which mainly involves solar photovoltaic
(PV) and battery energy storage systems (BESS). The model
predictive regulator plays the major role for controlling the
power flow in tie lines and frequency deviations in the micro-
grid, which will lead to power balance between the total active
power generated and active power demand of the system.

This paper presents a novel deep neural network
algorithm for solving such problems in power systems with
integrated PV and wind generators, which is represented in
Figure 1. In this context, the main contributions include the
following:
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(1) Designing and modeling an MPPT controller for a
PV-wind energy system applying DNN and analyz-
ing its performance under various weather
conditions

(2) Designing and developing a wind energy system and
PV for modeling a smart inverter for integrating a
microgrid with the hybrid system

(3) Designing a DNN-based voltage source controller for
synchrony between microgrid and the mentioned
PV-wind hybrid energy system

(4) The DNN-based smart inverter will help reduce
harmonics and improve the power stability and
quality

The rest of this paper has been organized in the following
format. Section 2 describes the DNN-based MPPT algorithm
that is used for PV systems, and this section also analyzes the
performance of the algorithm under various weather condi-
tions. Section 3 describes a DNN-based MPPT algorithm
(wind energy system) and its performance analysis under
various wind speeds and explains the obtained results. The
proposed DNN-based microgrid and its integration with
PV-wind hybrid power system has been illustrated in Section
4. In Section 5, the DNN-based smart inverter controller has
been modeled, which is followed by its performance evalua-
tion. We have presented the simulation results in Section 6
while the conclusions have been listed after Section 6.

2. Deep Neural Network-Based MPPT for PV

The MPPT algorithm is significant for maximizing the power
generation from renewable energy sources under various
weather conditions. Over the last decade, many researchers
focused on developing a new MPPT algorithm using various
controllers such as P&O, incremental conductance, feedback
voltage and current, Fuzzy, ANN, PSO ANFIS, and other
controllers [9, 19-22]. In this paper, the deep neural
network (DNN) controller has been used to develop an
MPPT algorithm for a photovoltaic system. In this DNN
learning algorithm, 66000 data items are used to develop
the mentioned MPPT algorithm (Figure 2). The simulation
model of the proposed MPPT-based PV system was
simulated in a MATLAB environment (Figure 3). The pro-
posed simulation model 20kW PV array has been used,
and a boost converter was used for stepping up the voltage
based on the MPPT algorithm. Figure 4(a) presents the flow
chart of the DNN controller, and the DNN layer is shown in
Figure 4(b). In this layer, there are a couple of input neurons,
1000 hidden-layer neurons, and an output neuron. This
DNN layer has been used for training the MPPT network
using data that includes input (PV voltage, PV current) and
output in the form of a duty cycle of converter.

The DNN controller has been trained using the above
system, and its best validation performance has been
presented in Figure 5. The proposed DNN controller error
(target—output) histogram data is presented in Figure 6.
The optimum number of hidden layers and hidden units
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FIGURE 4: (a) Flow chart of the DNN model for the PV-MPPT system. (b) DNN model for the PV-MPPT system.
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F1GURe 8: DNN-PV MPPT controller showing the best regression.

TaBLE 1: DNN data of MPPT controller.

DNN-wind MPPT Values
Best validation 4.8377e—13
Mu le-11
Gradient 9.841e—11
Training 1
Validation 1

Test 1
Opverall regression 1

depends on the following: (a) the complexity of network
architecture, (b) the number of input and output units, (c)
the number of training samples, (d) the degree of the noise
in the sample dataset, and (e) the training algorithm.

If the number of samples in the dataset is too small or the
data is not extremely noisy, a hidden layer is generally not

needed. A linear or generalized linear model may be
sufficient to obtain the training and prediction accurately
[3]. The hidden neuron can impact the error on the nodes
to which their output is connected. The stability of neural
network is assessed by error. The minimal error imitates
better stability, and higher error imitates the worst stability.
The unnecessary hidden neurons will cause overfitting; that
is, the neural networks have overestimated the complexity of
the target problem. The proposed DNN trained network
gradient and validation check is presented in Figure 7. Finally,
the proposed DNN-based MPPT algorithm has been devel-
oped, and its best regression is presented for training data, test
data, validation data, and the overall performance data in
Figure 8. The overall DNN data are presented in Table 1.

The proposed and developed MPPT algorithm, which is
DNN-based, has been applied to a 20 kW PV system, which
is simulated in a MATLAB environment, and analyzed under
various weather influences. Figure 9 shows the PV output
power with various temperature and irradiance values. The
boost converter’s current waveform and output voltage are
shown in Figure 10.
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3. Deep Neural Network-Based MPPT for Wind
Power Systems

We used a DNN controller to develop the mentioned MPPT
algorithm for a wind conversion energy system, as shown in
Figure 11. In this DNN learning algorithm, 66000 data are
used for providing training to develop the MPPT algorithm
[12]. The simulation model of the proposed MPPT-based sys-
tem was simulated using MATLAB, as shown in Figure 12. In
the simulation of the proposed model, a 30 kW wind energy
system has been used and a boost converter is also used for
stepping up voltage [23]. In Figure 13(a), the flow chart of
the DNN controller is presented, and the DNN layer is pre-
sented in Figure 13(b). This layer has two input neurons while
there are 1000 hidden-layer neurons and just one output neu-
ron. This DNN layer has been used for training MPPT net-
work with the help of input data (wind voltage, wind
current), and the output was obtained as the duty cycle of
the converter.

The DNN controller has been trained using the above
system, and its best validation performance is presented in
Figure 14. The proposed DNN controller error (target—out-
put) and its histogram data are presented in Figure 15. The
proposed DNN trained network gradient and validation
check are presented in Figure 16. Finally, the proposed
DNN-based MPPT algorithm has been developed and
presented with its best regression for training data, test data,
validation data, and overall performance data in Figure 17.
Regression predicts an output variable (duty cycle), which

is a function of a couple of inputs (current and wind voltage).
The overall DNN data are presented in Table 2.

The proposed and developed DNN-based MPPT algo-
rithm has been applied on a 30 kW wind energy system and
simulated. The proposed MPPT system was analyzed with
respect to various wind speeds. Figure 18 presents the wind
energy system output power at various wind speeds. The
boost converter’s output voltage and the current waveform
are presented in Figure 19. The output of the wind energy
system with and without DNN-based MPPT controller has
been displayed in Figure 20.

4. Microgrid Integration with a Hybrid
PV/Wind Power System

In this section, we have explained the microgrid integration
with a hybrid PV/wind-based power system, which has been
developed and controlled by the DNN-based MPPT algorithm
[24, 25]. The detailed simulation model is presented in
Figure 21. This simulation model uses a hybrid 50kW PV.
The wind energy system is integrated into power microgrid
with the support of a smart inverter, which is controlled by a
DNN-based voltage source controller [26, 27]. In this control-
ler, there are three designed major subcontrollers, which
include a phase-lock loop, a current regulator, and a voltage
regulator (Figure 22). Finally, the PWM signals are generated
through a current regulator for a smart inverter that synchro-
nizes a 50 kW hybrid PV/wind and microgrid system.
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TaBLE 2: DNN data of an MPPT controller for a wind system.

DNN-wind MPPT Values
Best validation 3.597¢—-11
Mu le-9
Gradient 1.4502e -7
Training 1
Validation 1

Test 1
Opverall regression 1

5. Deep Neural Network (DNN) Controller-
Based Grid-Integrated Smart Inverter

The deep neural network (DNN) controller has been used to
develop a current regulator controller for a hybrid grid-
connected PV and wind energy system using smart inverter.
As mentioned earlier, this DNN learning algorithm used

60000 data items for developing a current regulator algo-
rithm. The simulation model of the proposed current
regulator-based grid-connected smart inverter has been sim-
ulated using MATLAB (Figure 23).

Figures 24(a) and 24(b) show the flow chart and DNN
layer with 2 input neurons, 2000 hidden-layer neurons, and
an output neuron. This DNN layer has been used for training
a current regulator network, using the following data: input
(direct axis and quadrant axis for current) and output is in
the form of PWM signals for a grid-integrated smart inverter.

The DNN controller has been trained with the above
system and its best validation performance has been
presented in Figure 25. The proposed DNN controller error
(target—output) histogram data is presented in Figure 26. The
proposed DNN-trained network gradient and validation check
is presented in Figure 27. Finally, the proposed DNN-based
current regulator algorithm has been developed and presented
with its best regression for training data, test data, validation
data, and the overall performance data shown in Figure 28.
Regression ANNSs predict an output variable (PWM) as a func-
tion of the inputs (observed direct and quadrant axis current).
The overall DNN data are presented in Table 3.
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6. Results and Discussion

First, we proposed and developed a system and then simu-
lated it using MATLAB for different operating conditions.
The mentioned simulation provided the data and results,
which were noted. Figure 29 shows that the real power
consumed by the consumer’s load from the microgrid
network was 170 kW. The reactive power consumed by the
consumer’s load from the microgrid was around 220kVR,
as shown in Figure 30. Figure 31 shows the total power gen-
erated by a hybrid PV/wind energy system. We conducted
the analysis mainly to maintain microgrid grid voltage and

current without any oscillation. Figure 32 shows the micro-
grid voltage and current waveform under grid-integrated
nonlinear power-generating source in connection with the
hybrid PV/wind energy system. The major task is power
management at the power-generating stations depending
on consumer demand, but in this proposed model, the hybrid
PV/wind generated almost 40kW power. The power
supplied by just the microgrid to the consumer load is
presented in Figure 33. In this research work, another major
task was to improve the power quality and reduce the THD
value at the point of common coupling. This simulation work
deeply analyzes the THD values of all the generating sources
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TaBLE 3: DNN data of the grid system controller.
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F1GURE 28: Test, training, and validation of a DNN-current regulator.

and the microgrid. The PV system’s THD values for voltage
and current have been presented in Figures 34 and 35, respec-

DNN grid

tively. Figures 36 and 37, respectively, present the wind energy

Values system’s current and voltage THD values. Finally, the micro-

Best validation
Mu

Gradient
Training
Validation
Test

Opverall regression

3.2678¢ -9 grid load voltage and current THD values were analyzed. They
1.0e-9 are, respectively, presented in Figures 38 and 39. Table 4 shows
2.4434¢ — 8 the THD values of the resources mentioned above.

0.99629

0.99621 7. Conclusion

0.99601 ,

0.99623 This paper has successfully modeled and demonstrated an

algorithm for a DNN-based MPPT controller for wind
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FIGURE 29: Real power consumed by the load.
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FIGURE 30: Reactive power consumed by the load.
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FIGURE 31: Total power generated by the hybrid PV/wind energy system.
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FIGURE 32: Current waveform and microgrid voltage.
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FIGURE 33: Grid power supplied to the load.
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FIGURE 34: THD values of PV system voltage.
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FIGURE 35: THD values of PV system current.
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FIGURE 36: THD values of wind voltage.
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FiGgure 37: THD values of wind current.
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FIGURE 38: THD values of microgrid load current.
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FIGURE 39: THD values of microgrid load voltage.

TaBLE 4: Comparative analyses of THD values, grid, wind, and PV.

Voltage- Current- Voltage- Current—
Profile THD THD THD THD
DNN controller PI controller
Grid 0.12% 0.10% 0.17% 3.62%
Wind 0.12% 2.28% 0.17% 29.9%
PV 0.12% 0.02% 0.17% 0.35%

energy system and hybrid PV/wind. The simulation results
are analyzed, and evaluations were performed under different
weather conditions to test the proposed controller’s effective-
ness. The proposed wind energy system and the hybrid
PV/wind were developed and simulated in MATLAB and
integrated with a microgrid. The proposed research task has
been to develop a simulation model for a smart inverter-
based microgrid, which was integrated with a wind energy
system and the hybrid PV/wind testing a DNN algorithm
in MATLAB environment. We simulated the proposed
system in different operating situations and presented the
simulation results in this paper. The primary aim of this
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research is to show the THD values of PV, wind, and distrib-
uted grid voltage and current profiles, all of which show
improvements in power quality when the microgrid is
integrated to renewable energy sources. The observed THD
values of the proposed system are less than 5% as per
standard (IEEE 1547). The results show the effectiveness of
the proposed system; hence, it is recommended for hybrid
PV/wind and grid-connected renewable energy systems.

Data Availability

The data are all time available.
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