
Research Article
Power Management Controller for Microgrid Integration of
Hybrid PV/Fuel Cell System Based on Artificial Deep
Neural Network

Abdulbaset Abdulhamed Mohamed Nureddin , Javad Rahebi , and Adel Ab-BelKhair

Department of Electrical and Computer Engineering, Altinbas University, Turkey

Correspondence should be addressed to Javad Rahebi; cevat.rahebi@altinbas.edu.tr

Received 16 April 2020; Revised 27 August 2020; Accepted 24 November 2020; Published 8 December 2020

Academic Editor: Huiqing Wen

Copyright © 2020 Abdulbaset Abdulhamed Mohamed Nureddin et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Nowadays, the power demand is increasing day by day due to the growth of the population and industries. The conventional power
plant alone is incompetent to meet the consumer demand due to environmental concerns. In this present situation, the essential
thing is to be find an alternate way to meet the consumer demand. In present days most of the developed countries concentrate
to develop alternative resources and invest huge money for its research and development activities. Most renewable energy
sources are naturally friendly sources such as wind, solar, fuel cell, and hydro/water sources. The results of power generation
using renewable energy sources only depend on the availability of the resources. The availability of renewable energy sources
throughout the day is variable due to fluctuations in the natural resources. This research work discusses two major renewable
energy power generating sources: photovoltaic (PV) cell and fuel cell. Both of them provide foundations for power generation,
so they are very popular because of their impressive performance mechanisms. The mentioned renewable energy-based power
generating systems are static devices, so the power losses are generally ignorable as compared to line losses in the main grid. The
PV and fuel cell (FC) power systems need a controller for maximum power generation during fluctuations in the input
resources. Based on the investigation report, an algorithm is proposed for an advanced maximum power point tracking (MPPT)
controller. This paper proposes a deep neural network- (DNN-) based MPPT algorithm, which has been simulated using
MATLAB both for PV and for FC. The main purpose behind this paper has been to develop the latest DNN controller for
improving the output power quality that is generated using a hybrid PV and fuel cell system. After developing and simulating
the proposed system, we performed the analysis in different possible operating conditions. Finally, we evaluated the simulation
outcomes based on IEEE 1547 and 519 standards to prove the system’s effectiveness.

1. Introduction

Right now, power generation and transmission require sub-
stantially large quantities of fossil fuels. The fossil fuel-based
power generation systems cannot meet the consumer
demand in future due to limited availability of fuel. Further,
environmental considerations will limit their usage as they
emit more greenhouse gases. This leads to warning levels
and climate change, and the availability of fossil fuels is
now limited. Nowadays, many counties are concentrating
on alternate sources, replacing fossil fuels with greener and
ecofriendly fuels. Presently, the combination of solar and fuel

cells is a promising renewable energy (RE) source [1–5]. The
power, which is extracted out of a PVmodule, is substantially
vulnerable to environmental factors, natural fluctuations,
and differences in operating conditions [6–8]. It is a fact that
when the requirement for power is critical, solar energy fails
to generate sustainable power. To fulfill the power demand,
many processes and devices have been introduced. For
instance, for understanding the energy demand in the peak
periods, such as at night, a hybrid system consisting of a fuel
cell and a PV was developed without power storage. It has a
few drawbacks such as the issue of integrating a microgrid,
and besides, such a system is difficult to operate under
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unstable conditions or has irregular, unmanageable, stochas-
tic, and highly variable sources. To be precise, researchers
focused on the following area such as high penetration level
to the microgrid or when there are issues such as poor load
following, load discrepancy, frequency deviation, voltage var-
iability, reliability problems, and poor power quality.

Based on the literature reports, various algorithms such
as the Whale Optimization Algorithm (WOA), Water Cycle
Algorithm (WCA), Moth-Flame Optimizer (MFO), and
Hybrid Particle Swarm-Gravitational Search Algorithm
(PSOGSA) have been both developed and applied for design-
ing the optimized microgrid and analyzing power quality
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Figure 1: Block diagram of the proposed microgrid system and its controller.
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Figure 2: Proposed DNN-based MPPT algorithm.
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Figure 4: DNN model for PV MPPT system.

Train
Validation

Test
Best

Best validation performance is 4.7867e-11 at epoch 61

M
ea

n 
sq

ua
re

d 
er

ro
r (

m
se

)

61 Epochs

102

100

10–2

10–4

10–6

10–3

10–10

0 10 20 30 40 50 60

Figure 5: DNN-PV MPPT controller showing best validation performance.

3International Journal of Photoenergy



Error histogram with 20 bins

3000

2500

2000

1500

1000

500

0

In
st

an
ce

s

–1
.7

e-
05

–1
.5

e-
05

–1
.3

e-
05

–1
.1

e-
05

–8
.7

e-
06

–6
.6

e-
06

–4
.6

e-
06

–2
.6

e-
06

–5
.5

e-
07

1.
49

e-
06

3.
52

e-
06

5.
56

e-
06

7.
59

e-
06

9.
63

e-
06

1.
17

e-
05

1.
37

e-
05

1.
57

e-
05

1.
78

e-
05

1.
98

e-
05

2.
18

e-
05

Errors = Targets - Outputs

Training
Validation

Test
Zero error

Figure 6: DNN-PV MPPT controller error histogram.
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Figure 7: DNN-PV MPPT controller with training data.
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issues [9]. Another important factor of the hybrid renewable
energy system is optimization of net present cost (NPC), fuel
cost, operation cost, and cost of energy (COE) of the hybrid.
The optimization of the key performance indicators of the
hybrid power system is done by using the hybrid optimiza-
tion model for electric renewables (HOMER) [10]. The
energy flow is from the energy source to the electrical system
for a residential application in conjunction with an intelligent
demand management control strategy [11]. The real and
reactive power controller is challenging role in hybrid renew-
able energy systems. An adaptive Lyapunov-based rapid ter-
minal sliding mode control is superior over the traditional PI
control because of its faster error tracking capability and
robustness. A Q-V-based inverter control is employed to
interface the single phase grid and the hybrid system [12].
The optimal power flow (OPF) formulation includes the
forecasted active power generation of WT and PV as depen-
dent variables, whereas the voltage magnitude at WT and PV
buses is considered as control (decision) variables [13].

The hybrids of Renewable Energy Sources (RESs) deal
with optimal performance in cost consideration, emission,
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Figure 8: DNN-PV MPPT controller showing best regression.

Table 1

(a) DNN data of MPPT controller for PV systems

DNN-FC MPPT Values

Best validation 4.7867e-11

Mu 1e-09

Gradient 9.8252e-08

Training 1

Validation 1

Test 1

Overall regression 1

(b) Comparative analyses of MPPT controller for PV systems

Controller Fuzzy DNN

PV 17820W 18080W
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Figure 9: (a) Simulation results of DNN-PV MPPT power with respect to irradiance and temperature. (b) Comparison of fuzzy- and DNN-
based MPPT controller.
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PV boost converter voltage and current
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space management and adequate reliability in power genera-
tion, and power quality and optimum power utilization [14].

Hence, novel and innovative technologies based on
feasible ideas are needed to deal with the mentioned issues
so as to increase the RE sources’ penetration in the power
grid.

This paper has proposed a novel and deep neural net-
work algorithm to solve the power system issues with inte-
grated PV and FC generators. This system is represented in
Figure 1. The main contributions of this work include the
following:

(1) Design and model the MPPT controller for PV and
fuel cells using DNN and analyze its performance
under various weather conditions

(2) Design and develop a hybrid PV-fuel cell energy sys-
tem and model a smart inverter for microgrid inte-
gration of a hybrid system

(3) Design a DNN-based voltage source controller that is
synchronous with the microgrid and hybrid PV and
fuel cell energy system

(4) The proposed DNN-based smart inverter helps to
reduce harmonics and improves the power quality
and its stability

The organization of this paper is as follows: the DNN-
based MPPT algorithm for a PV system is given in Section
2. This section also analyzes the proposed algorithm’s per-
formance under various weather conditions. The DNN-
based MPPT algorithm for fuel cell energy system and per-
formance analysis under various fuel pressures and its
results are explained in Section 3. The proposed DNN-
based microgrid-integrated hybrid PV and fuel cell power
system are explained in Section 4. In Section 5, the DNN-
based smart inverter controller is modelled, and its perfor-
mance is explained. The results for simulation are given in
Section 6 while Section 7 includes the final conclusions.

2. Deep Neural Network-Based MPPT for PV

In the present situation, renewable energy sources are
required to make the maximum power point tracking algo-
rithm generate maximum power under various weather con-
ditions [15]. The researchers have been focused to create
different MPPT algorithms, including the incremental con-
ductance, P&O, feedback voltage and current, fuzzy, ANN,
PSO ANFIS, and other controllers [16–18]. This paper
throws light on a new advanced MPPT algorithm called a
Deep Neural Network (DNN) controller for photovoltaic
systems. The proposed DNN-based MPPT algorithms were
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Figure 16: Training data of the DNN-based fuel flow controller.
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developed using 75,000 data entries, such as PV voltage, cur-
rent, and its corresponding duty cycle, as Figure 2 shows. The
MPPT algorithm of a PV system simulation model has been
developed and modelled with MATLAB, illustrated in
Figure 3. The proposed simulation was performed using a
50 kWmodel PV array, which is connected with a boost con-
verter, and it is controlled by the proposed MPPT algorithm.
The developed DNN algorithm has 2 inputs, including a PV
current and voltage, and besides, 1500 hidden layer neurons
are used between the input and output layers, as Figure 4
indicates. The proposed MPPT algorithm’s output generates
a duty cycle for a PV-connected boost converter. This DNN
layer has been used for training the MPPT network using
the data, such as input (PV voltage, PV current) and output
in the form of a duty cycle of a converter.

The best validation performance of the proposed DNN
controller is presented in Figure 5. The following details are
observed while training the DNN for the MPPT controller
such as the error (targeted output) histogram data of the pro-
posed DNN controller being very small, which is obvious in
Figure 6. The gradient and validation checks of the proposed
DNN trained network are presented in Figure 7. Finally, the
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Figure 17: Training and validation of the DNN-based fuel flow controller.

Table 2

(a) DNN data of the MPPT controller for the FC system

DNN-fuel cell MPPT Values

Best validation 1.4367e-8

Mu 1.00e-8

Gradient 2.9948e-8

Training 1

Validation 1

Test 1

Overall regression 1

(b) Fuel cell efficiency comparison: fuzzy and DNN

Controller Fuzzy DNN

Efficiency 57.01% 57.09%
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proposed DNN-based MPPT algorithm has been developed
and is presented with its best regression for training data, test
data, validation data, and overall performance data in
Figure 8. The overall DNN data are presented in Table 1.

The proposed 50 kW PV system has been simulated in
MATLAB, and the proposed DNN-based MPPT algorithm
was applied. The proposed simulation model has been simu-
lated under various weather conditions, and its performance

was analyzed in various operating conditions. The 50 kW PV
system’s simulation results are illustrated in Figure 9(a),
which also shows various solar irradiance values with respect
to the corresponding PV output power and MPPT
controller-based PV output power. The comparative analyses
of the PV MPPT with fuzzy and DNN is presented in
Figure 9(b) and Table 1(b); the boost converter’s current
waveform and output voltage are illustrated in Figure 10.
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Figure 21: The proposed simulation model of a DNN-based controller with a microgrid integrated with a hybrid PV and a FC energy system.
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3. Deep Neural Network-BasedMPPT for Power
System Using a Fuel Cell

The DNN controller develops rules and limits to assure
optimum fuel flow for a fuel cell system, as shown in
Figure 11. For the DNN learning rule, 44,000 entries of data
were used to develop the optimum fuel flow rule. The sim-
ulation model of the projected algorithm-based fuel cell
system has been simulated using MATLAB, as Figure 12
illustrates. A 6 kW fuel cell power system was simulated,
and a boost convertor was employed for stepping up
voltage-supported optimized fuel flows [19]. The control
of fuel flow will lead to the fuel cell’s current limitation as

well reduce hemic losses in the fuel cell, which helps to
increase fuel cell operating efficiency. In Figure 13, the
DNN layer has been illustrated. This layer has a single
input, which is the fuel cell current, and there are a thou-
sand hidden layers between the input and the output. It
only has a single output, which is the fuel flow pressure.

The best validation performance of the proposed DNN
controller is presented in Figure 14. The following infor-
mation is observed and noted such as the error
(target − output) histogram data of the proposed DNN
controller being very small, as shown in Figure 15. The
gradient and validation checks of the proposed DNN-
trained network are presented in Figure 16. Finally, the
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proposed DNN-based fuel flow control algorithm has been
developed that showed best regression for training data,
test data, validation data, and the overall performance
data, as seen in Figure 17. The overall design and DNN
data are presented in Table 2.

We applied the proposed DNN-based MPPT algorithm
to a 6 kW fuel cell power system and simulated it in
MATLAB environment. The proposed fuel flow controller
system has been analyzed under various fuel pressures.
Figure 18 illustrates a power system that uses a fuel cell to
generate power at various fuel flow pressures. The current
waveform and output voltage of a boost converter are shown
in Figure 19, and for the fuel cell, they are presented in
Figure 20. Table 2(b) shows the comparative analyses of fuel
cell efficiency with fuzzy and DNN controller.

4. Integration of Microgrid with Hybrid PV and
Fuel Cell Power Systems

In this section, we will discuss how a microgrid is integrated
with a hybrid power system, its components like fuel cells or
PVs, and how it is controlled by a DNN-based MPPT algo-
rithm. The detailed simulation model is presented in
Figure 21. In this simulation model, a 74 kW hybrid PV
(50 kW) and a fuel cell (6 × 4 = 24 kW) energy system are
integrated into a power microgrid with the support of a smart
inverter, which is controlled by a DNN-based voltage source
controller [15, 20, 21] as shown in Figure 22. In this control-

ler, there are three major subcontrollers, which are designed
including a voltage regulator, a phase lock loop, and a current
regulator. Finally, the PWM signals will be generated through
the current regulator for the smart inverter through a syn-
chronous connection between the hybrid 74 kW PV/fuel cell
and the microgrid system.

5. Deep Neural Network Controller-Based Grid-
Integrated Smart Inverter

A Deep Neural Network (DNN) controller can regulate the
current in a grid-connected hybrid PV and FC energy sys-
tem with the help of an exploitation sensing inverter. During
this DNN learning, the algorithmic rule is used with 75,000
data items for providing training to develop roles to run a
current regulator algorithm. The simulation model of the
projected current regulator-based grid-connected smart
inverter has been simulated using MATLAB, as Figure 23
indicates.

The projected simulation model, the 74 kW hybrid PV
(50 kW), and the fuel cell (6 × 4 = 24 kW) energy system have
been used for microgrid integration. The DNN layer that
consists of a pair of input neurons, 2500 hidden-layer neu-
rons, and two output neurons is shown in Figure 24. This
DNN layer has been used for guiding the current regulator
network used in the subsequent data like input (direct axis
and quadrant axis current) while the output is a PWM signal
for a grid-integrated smart inverter.

Gradient = 7.8828e–05, at epoch 11
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Figure 27: Training data of a DNN-based current regulator.
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The DNN controller has been trained using the above
system, and its best validation performance has been pre-
sented in Figure 25. The proposed DNN controller error
(target − output) histogram data is presented in Figure 26.
The proposed DNN-trained network gradient and validation
check is presented in Figure 27. Finally, the proposed DNN-
based current regulator algorithm has been developed and is
presented with its best regression for training data, test data,
validation data, and overall performance data in Figure 28.
The regression predicts an output variable (PWM) as a func-
tion of the inputs (observed direct and quadrant axis cur-
rent). The overall DNN data are given in Table 3.

6. Results and Discussion

The proposed system has been developed and simulated
under varying operational conditions using the MATLAB
atmosphere. The simulation model, the simulation results,
and the subsequent information were determined. Figure 29
shows the load of real power consumed by the consumers
from the microgrid network, which was 110 kW. The reac-

tive power is consumed by the consumer’s load from the
microgrid, which is approximately 170 kVR, as shown in
Figure 30. Figure 31 depicts that the full power (74 kilo-
watts) was generated by combining a PV and a fuel cell
in a hybrid power generation system. The most important
objective of this analysis is to maintain the microgrid grid
voltage and current with no or negligible oscillations.
Figure 32 shows the microgrid voltage and current
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Figure 28: DNN-based current regulator—training, test, and validation.

Table 3: DNN data of a controller for the grid system.

DNN grid Values

Best validation 7.7813e-10

Mu 1e-11

Gradient 7.8828e-5

Training 1

Validation 1

Test 1

Overall regression 1
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Figure 34: THD values for PV system voltage.
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Figure 35: THD values for PV system current.
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Figure 36: THD values for FC voltage.
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Figure 37: THD values for FC current.
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waveform in the grid-integrated nonlinear supply of power
through a hybrid power generation system that is equipped
with a PV and a fuel cell. Power management is one of the
main tasks of a power generating station because it must
meet the clients’ demand. In the projected model, the
hybrid PV/FC generated around 74 kilowatts of power.
The microgrid alone provided the power to the buyer’s
load, which is given in Figure 33. During this analysis, the
other major task is to boost the power quality and to cut
back on the THD value at the point of common coupling.
This simulation deeply analyzes the THD value of all the
generating sources and the microgrid. The PV system’s
THD values for the voltage and the current are given in
Figures 34 and 35, respectively. The next two Figures 36
and 37 present the FC energy system’s THD values for cur-
rent and voltage, respectively. Finally, the microgrid load,
voltage, and current THD values are analyzed and given
in Figures 38 and 39, respectively. The THD values are pre-
sented in tabulated form in Table 4.

7. Conclusion

This paper has been written after detailed investigation and
development of an advanced DNN controller-based MPPT
controller algorithm for PV, which has been analyzed in var-
ious atmospheric conditions. The PEM cell system has been
developed to manage the fuel flow pressure by DNN, which
is primarily based on the algorithm to enhance the fuel cell
efficiency. Furthermore, the simulation results were evalu-
ated and analyzed in different weather changes and fuel flow
fluctuations to make sure that the proposed controller
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Figure 38: THD values for microgrid current load.
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Table 4: THD comparative values for grid, fuel cell, and PV.

Profile Voltage-THD Current-THD

Grid 3.55% 0.4%

FC 3.55% 4.46%

PV 3.55% 0.9%
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algorithm is effective. The proposed MPPT results are com-
pared with a fuzzy logic controller and prove the proposed
controller effectiveness. The projected grid integration of
the hybrid PV and fuel cell energy system has been developed
and simulated in the MATLAB atmosphere. The target of
this analysis is implementing a simulation model of a smart
inverter-based microgrid, which was integrated with a hybrid
PV and the fuel cell energy system using the DNN algorithm
in MATLAB atmosphere. The projected system has been
simulated in various operational conditions, and the results
are reported in this paper. The improvements in the power
quality are the second most significant purpose of this
research. This objective was achieved through finding the
THD values of the PV, fuel cell, distributed grid voltage,
and current profile. The proposed system THD values
are less than 5% according to the IEEE 1547 and 519 stan-
dards. The projected system and DNN controller effec-
tively improved the power quality and the environmental
surroundings.
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