
Research Article
SIFO: Secure Computational Infrastructure Using FPGAOverlays

Xin Fang ,1 Stratis Ioannidis ,2 and Miriam Leeser 2

1Qualcomm Inc., Boxborough, MA, USA
2ECE Department, Northeastern University, Boston, MA, USA

Correspondence should be addressed to Miriam Leeser; mel@coe.neu.edu

Received 10 June 2019; Accepted 18 November 2019; Published 6 December 2019

Academic Editor: John Kalomiros

Copyright © 2019 Xin Fang et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Secure Function Evaluation (SFE) has received recent attention due to the massive collection and mining of personal data, but
remains impractical due to its large computational cost. Garbled Circuits (GC) is a protocol for implementing SFE which can
evaluate any function that can be expressed as a Boolean circuit and obtain the result while keeping each party’s input private.
Recent advances have led to a surge of garbled circuit implementations in software for a variety of different tasks. However, these
implementations are inefficient, and therefore GC is not widely used, especially for large problems. )is research investigates,
implements, and evaluates secure computation generation using a heterogeneous computing platform featuring FPGAs. We have
designed and implemented SIFO: secure computational infrastructure using FPGA overlays. Unlike traditional FPGA design, a
coarse-grained overlay architecture is adopted which supports mapping SFE problems that are too large to map to a single FPGA.
Host tools provided include SFE problem generator, parser, and automatic host code generation. Our design allows repurposing
an FPGA to evaluate different SFE tasks without the need for reprogramming and fully explores the parallelism for any GC
problem. Our system demonstrates an order of magnitude speedup compared with an existing software platform.

1. Introduction

)e statistical analysis of data collected from human
subjects has a long history in empirical sciences such as
medicine, sociology, and economics. It has recently also
become a ubiquitous practice among Internet companies,
occurring presently at a massive and an unprecedented
scale. Companies such as Google, Netflix, and Amazon
routinely monitor and mine a broad array of behavioral
signals collected from their users and monetize it through
targeted advertising or personalized product recommen-
dations. Behavioral data collection is therefore of consid-
erable business value to online companies [1]; moreover,
there are often benefits to society at large, as in aiding the
detection of epidemics [2] or terrorist threats [3], in
assessing news or product penetration [4], and in political
online polling [5]. On the contrary, these practices have
also given rise to privacy concerns and threats, documented
extensively by researchers [6–12] as well as the popular
press [1, 13].

1.1. SecureFunctionEvaluation. )is state of affairs gives rise
to the following challenge: given the benefits of mining
behavioral data to both online companies and to society at
large, is it possible to enable data mining practices without
jeopardizing user privacy? A series of recent research efforts
[14–19] have attempted to address this issue through
cryptographic means and, in particular, through secure
function evaluation (SFE). SFE allows an interested party to
evaluate any desirable polynomial-time function over pri-
vate data, while revealing only the answer and nothing else
about the data. )is offers a strong privacy guarantee: an
entity executing a secure data mining algorithm over user
data learns only the final outcome of the computation, while
the data are never revealed to the entity. SFE can thus enable,
e.g., a data analyst, a medical professional, or a statistician, to
conduct a study of sensitive data without jeopardizing the
privacy of the participants (online users and patients).

Any algorithm to be executed over amounts of data at the
scale encountered in the above settings needs to be highly
efficient and scalable. SFE over private data therefore poses a
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significant challenge, as it comes at a considerable additional
computational cost compared with execution in the clear.
Prior work has made positive steps in this direction, showing
that a variety of important data mining algorithms [14–16]
can be computed using Yao’s Garbled Circuits (GCs) [20, 21]
in a parallel fashion. )e function to be evaluated is con-
verted to a binary circuit which is “garbled” in such a way
that an evaluator of the circuit learns only the values of its
output gates. Execution of this circuit is subsequently par-
allelized, e.g., over threads [15] or across a cluster of ma-
chines [16]. Nevertheless, this approach to parallelization
leaves much to be desired: for example, in [16], even under
parallelization over 128 cores, executing a typical data
mining algorithm like Matrix Factorization (MF) through
SFE is of the order of 105 slower compared with (parallel)
execution in the clear. In practice, this means that applying
MF to a dataset of 1M entries requires roughly 11 days under
SFE, a time largely prohibitive for practical purposes.

1.2. FPGA Overlays. )ere has been a surge of interest in
FPGAs in the datacenter, as evidenced by a large number of
systems that have recently become available. Amazon is
offering FPGA instances through Amazon Web services
[22], Microsoft has the Catapult system [23], and IBM offers
cloud FPGA [24]. In this paper, we advocate leveraging
hardware acceleration to tackle the scalability and efficiency
challenges inherent in SFE. FPGAs are an excellent hardware
platform for the implementation of SFE primitives and, in
particular, garbled circuits. )is is precisely because FPGAs
are tailored to executing many low-level operations in
parallel. )e types of operations encountered in garbled
circuits (namely, garbling and ungarbling gates) fit this
pattern precisely: they involve, e.g., a series of symmetric key
encryptions, XORs, and other well-defined primitive op-
erations (see Section 2). )us, an FPGA implementation of
SFE benefits from both high-speed evaluation and hardware-
level parallelization.

)e amount of computation required to evaluate a
garbled circuit for an application at the usual data mining
scale cannot fit in a single FPGA.)us, evaluating a function
securely entails partitioning computations into subtasks to
be programmed and evaluated over a single FPGA. A
practical implementation therefore needs to allow repur-
posing an FPGA to quickly compute different SFEs or
different subtasks of a larger SFE. For this reason, tailored
approaches that are tied to the execution of a specific SFE
structure and require full reprogramming of an FPGA with
each new execution cannot be applied efficiently to the types
of SFE problems we wish to address. To address these
challenges, we propose a generic, reconfigurable imple-
mentation of SFE as a coarse-grained FPGA overlay archi-
tecture. As FPGAs have become more dense and capable of
holding a large number of gate equivalents, there has been an
increased interest in FPGA overlay architectures [25–31]. An
FPGA overlay consists of two parts: (1) a circuit design
implemented on the FPGA fabric using the usual design flow
and (2) a user circuit mapped onto that overlay circuit.
Garbled circuits are excellent candidates for an FPGA

overlay design. Precisely because components of a garbled
circuit follow a generic structure, an overlay approach that
does not reprogram FPGAs from scratch but simply reroutes
connections between elementary components (in our case,
garbled AND and XOR gates) leads to important efficiency
improvements.

1.3. Contributions. )is paper introduces SIFO: secure
computational infrastructure using FPGA overlays. We
make the following contributions:

(i) We provide a complete workflow to map any
garbled circuit problem to garbled circuit overlay
cells on an FPGA, including software (SFE problem
generator, parser, and scheduler) and FPGA overlay
circuit to accelerate the GC problem.

(ii) Our workflow and tools enable accelerating any
garbled circuit operation without requiring
knowledge of the underlying implementation. We
integrate our implementation with FlexSC [32]
which uses ObliVM [33] as the backend for any
garbled circuit operation. In conjunction with our
tools, each problem is analyzed, and layers of op-
erations that can be executed in parallel are
extracted. )e resulting circuit is then mapped to
our FPGA overlay architecture for processing.

(iii) Our FPGA overlay architecture handles different
parts of the same GC problem (if a problem is too
large to fit in a single FPGA) as well as different GC
problems without reprogramming. )e FPGA is
programmed once for all garbled circuit problems.
Wiring and instantiation are determined at the
execution time by the controller and the host. )is
overlay architecture is scalable and enables users
to avoid the long design and compile time on
FPGAs for new problems. )e overhead for a new
problem is very low, simply requiring the transfer
of initial data and circuit information from host to
device.

(iv) We demonstrate the benefits of our approach by
mapping a large number of circuit examples onto a
heterogeneous computing platform featuring a
Stratix V FPGA. We tackle different aspects of
performance bottlenecks and alleviate them. )is
includes (a) investigating different numbers of
FPGA overlay cells, (b) optimizing the host to FPGA
communication via PCIe, and (c) managing onchip
block memory to minimize accesses to the offchip
DDR memory. We compare the performance of
these improvements for various problems and show
significant speedup against the naive design and
against software implementation, ranging from 6.21
to 45.78 times faster than the latter. Many of the
optimizations presented can be applied to other
FPGA projects as well.

)is journal paper represents an extension to our pre-
viously published research [34], which presented an
implementation where the entire GC problem fits on a single
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FPGA, with all intermediate results fitting into onchip
memory (block RAM). In the research presented here, we
relax that constraint to significantly increase the size of
problems supported. )is introduces new challenges since
with GC, data are not accessed in order. Our new imple-
mentation treats block RAM as a user-managed cache and
investigates how best to access data so that data fetching does
not become a bottleneck.

)e remainder of this paper is structured as follows.
Section 2 covers background information on garbled circuits
as well as related work.)e design methodology is presented
in Section 3, which demonstrates the methodology of how
we tackle the garbled circuit problem in a heterogeneous
reconfigurable system and how we alleviate bottlenecks in
the system to improve overall performance. Experiments
and corresponding results are presented in Section 4. Finally,
we present our conclusions and future work. Materials in
this article are excerpted from the first author’s PhD dis-
sertation [35].

2. Background

In this section, we introduce the relevant background on
garbled circuits, including terminology and techniques. Related
work on garbled circuit implementations is also discussed.

2.1. Garbled Circuits. Our research accelerates Secure
Function Evaluation (SFE), specifically Garbled Circuits
(GC), using FPGAs. In this model, there are two or more
users with data which they wish to keep private and a
function to be evaluated over those data. All parties know the
function being evaluated and learn the outcome of the
evaluation, but users do not reveal their data. A canonical
problem exemplifying SFE is the “Millionaires’ Problem:”
two millionaires wish to know who is worth more without
revealing their personal worth to each other.

Garbled circuits were initially introduced by Yao [21] for
two users and have been extended to multiple users. )ey
rely on cryptographic primitives. In the variant we study
here (adapted from [15, 36]), Yao’s protocol runs between
(a) a set of private input owners, (b) an Evaluator, who
wishes to evaluate a function over the private inputs, and (c)
a third party called the Garbler, that facilities and enables the
secure computation.

Garbled circuits work for any problem that can be
expressed as a Boolean circuit. In our and many other
implementations, this function is represented as a circuit
made up of AND and XOR gates (recall that AND and XOR
gates form a complete basis for Boolean circuits). )e
Evaluator wishes to evaluate a function f, represented as a
Boolean circuit of AND and XOR gates, over private user
inputs x1, x2, . . . , xn. We break the problem into three
phases, as shown in Figure 1. In Phase I, the Garbler
“garbles” each gate of the circuit, outputting (a) a “garbled
circuit,” namely, the garbled representation of every gate in
the circuit representing f and (b) a set of keys, each

corresponding to a possible value in the string representing
the inputs x1, . . . , xn. )ese values are shared with the
Evaluator. In Phase II, through proxy oblivious transfer [37],
the Evaluator learns the keys corresponding to the true user
inputs. In the final phase, the Evaluator uses the keys as input
to the garbled circuit to evaluate the circuit, ungarbling the
gates. At the conclusion of Phase III, the Evaluator learns
f(x1, . . . , xn). To ensure privacy of users’ data and to protect
against side-channel attacks, both garbling and evaluation
are run whenever user data change. Hence, garbling is
performed as often as evaluation.

2.1.1. Garbling Phase. A function to be evaluated is repre-
sented as a Boolean circuit consisting of AND and XOR
gates. In the garbling phase, each of these gates is garbled as
described in this section. Each gate is associated with three
wires: two input wires and one output wire. At the beginning
of the garbling phase, the Garbler associates two random
strings, k0

wi
and k1

wi
, with each wire wi in the circuit. In-

tuitively, each kb
wi

is an encoding of the bit value b ∈ 0, 1{ }

that wire wi can take.
Here, we describe how to garble an AND gate. )e same

principles can be applied to garble an XOR gate, using its
respective truth table. We note, however, that, in practice,
XOR gates are handled via the free-XOR optimization [38],
discussed in Section 2.1.3. A garbled AND gate is shown in
Figure 2. For each AND gate g, where g is the gate number,
with input wires (wi, wj) and output wire wk, the garbler
computes the following four ciphertexts, one for each pair
of values bi, bj ∈ 0, 1{ }:

Enc
k

bi
wi

,k
bj
wj

,g􏼐 􏼑
k

g bi,bj( 􏼁
wk

􏼠 􏼡 � SHA k
bi

wi
k

bj

wj

������

������g􏼒 􏼓⊕ k
g bi,bj( 􏼁
wk

.

(1)

Here, SHA represents the hash function, ‖ indicates
concatenation, g is an identifier for the gate, and ⊕ is the
XOR operation. Note that each value k on a wire is
implemented with 80 bits in our implementation. )e
“garbled” gate is then represented by a random permutation
of these four ciphertexts. Observe that given the pair of keys
(k0

wi
, k1

wj
), it is possible to successfully recover the key k1

wk
by

decrypting c � Enc(k0wi
,k1wj

,g)(k1
wk

) using the following equa-
tion (note that the above encryption scheme is symmetric, as
Enc and Dec are the same function.):

Dec
k0wi

,k1wj
,g􏼐 􏼑

(c) � SHA k
bi

wi
k

bj

wj

������

������g􏼒 􏼓⊕ c. (2)

On the contrary, the other output wire key, namely, k0
wk

cannot be recovered.More generally, it is worth noting that the
knowledge of (a) the ciphertexts, and (b) keys (kbi

wi
, k

bj

wj
) for

some inputs bi and bj yield only the value of key k
g(bi,bj)
wk

; no
other input or output keys of gate g can be recovered. Any
Boolean function can be garbled in this manner, by first
representing it in ANDandXORs, and garbling each such gate.
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2.1.2. Evaluation Phase. )e output of the garbling process is
(a) the garbled gates, each comprising a random permutation
of the four ciphertexts representing each gate and (b) the keys
(k0

wi
, k1

wi
) for every wire wi in the circuit. At the conclusion of

the first phase, the Garbler sends this information for all
garbled gates to the Evaluator. It also provides the corre-
spondence between the garbled value and the real bit value for
the circuit-output wires (the outcome of the computation): if
wk is a circuit-output wire, the pairs (k0

wk
, 0) and (k1

wk
, 1) are

given to the Evaluator. To transfer the garbled values of the
input wires, the Garbler engages in a proxy oblivious transfer
with the Evaluator and the users, so that the Evaluator
obliviously obtains the garbled circuit input value keys kb

wi

corresponding to the actual bit b of input wire wi.
Having the garbled inputs, the Evaluator can “evaluate”

each gate, by decrypting each ciphertext of a gate in the first
layer of the circuit by applying equation (2): only one of
these decryptions will succeed (this can be detected, e.g., by
appending a prefix of zeros to each key kb

wk
and checking if

this prefix is present upon decryption), revealing the key

corresponding to the output of this gate. Each output key
revealed can subsequently be used to evaluate any gate that
uses it as an input. Using the table mapping these keys to
bits, the Evaluator can learn the final output.

2.1.3. Optimization. Several improvements over the original
Yao’s protocol have been proposed, that lead to both
computational and communication cost reductions. )ese
include point-and-permute [39], row-reduction [40], and
free-XOR optimizations [38], all of which we implement in
our design. Free-XOR optimization, in particular, signifi-
cantly reduces the computational cost of garbled XOR gates;
XOR gates do not need to be encrypted and decrypted, as the
XOR output wire key is computed through an XOR of the
corresponding input keys. In addition, free-XOR optimi-
zation fully eliminates communication between the Garbler
and the Evaluator for XOR gates; no ciphertexts need to be
communicated for these gates. Our implementation takes
advantage of all of these optimizations; as a result, the circuit
for computing garbled AND gates differs slightly from the
garbling algorithm outlined above.

2.2. Related Work. Acceleration of garbled circuits is a hot
research area in the SFE field. Researchers use different
parallel models and hardware platforms to speed up exe-
cution. )ese platforms include FPGAs, CPUs, and GPUs.

2.2.1. FPGA and ASIC Designs. TinyGarble [41] uses tech-
niques from hardware design to implement GCs as
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Figure 2: A garbled AND gate.
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Figure 1: Yao’s protocol phases of operation.
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sequential circuits and then optimizes these designs. )e
circuits can be optimized to reduce the non-XOR operations
using traditional high-level synthesis tools and simulation.

)e offline circuit synthesis will provide a ready-to-use
circuit description for any garbled circuit problem. )e
resulting designs are customized for each problem; thus, for
each new problem, a new circuit must be generated. In
addition, their results describe simulations, but no actual
hardware implementation. In [42, 43], the authors describe
the first FPGA implementations of GC. In both these
implementations, there is limited parallelism to allow gar-
bling to happen in a small footprint. In [42], two FPGA-
based prototypes are described: a system-on-chip with access
to a single hardware cryptographic accelerator core and a
stand-alone hardware implementation targeting ASICs. In
[43], the authors use a nonstandard garbling technique in
order to reduce communication. Our approach uses stan-
dard GC techniques as implemented in popular software
implementations. In addition, our architecture aims to re-
duce the computational cost of garbling by using muchmore
parallelism than these early FPGA implementations. For
starters, we implement four SHA cores in hardware for each
garbled AND gate. In addition, we implement as many
garbled AND gates as we can keep busy at the same time and
implement garbled circuits directly on top of an efficient
overlay, which eliminates the need to recompile the hard-
ware for every new user problem. With MAXelerator [44],
the authors implement a very efficient garbling of matrix
multiplication in FPGAs.While their design is more efficient
for matrix multiplication, ours is more general purpose and
supports any problem that a user may wish to garble.

2.2.2. CPU. One approach to accelerating GC on CPUs is to
provide instructions that support encryption to speed up the
base operations. JustGarble [45] shows that using AES-NI
(Advanced Encryption Standard New Instruction), circuits
can be garbled and evaluated faster than using traditional
instructions. Intel AES-NI is a new encryption instruction
set that improves AES operations in the Intel Xeon processor
family. Others have proposed a 32 bit MIPS architecture
specifically implemented with instructions to support SFE.
GarbledCPU [46] is a MIPS-based general-purpose se-
quential processor which enables the high-level description
of garbled circuits in hardware. Problems to be evaluated
securely are compiled to an MIPS assembler and then run
securely on their garbled MIPS processor. )e goal of this
project is to fabricate the MIPS core; FPGAs are used for
prototyping the design. Using MIPS assembly code to
represent the problem being evaluated alleviates the problem
of lengthy FPGA place and route cycles. However, the
availability of this specialized hardware is likely to be limited.
Our approach introduces more parallelism than either of
these CPU approaches, as we implementmany hashing cores
in parallel. In addition, through an overlay, we can rapidly
switch between problems.

2.2.3. GPUs. Researchers have used GPUs for hardware
implementations of garbled circuits. Fastplay [47] uses a

GPU architecture to accelerate garbling arithmetic opera-
tions and achieves a 35 to 40x improvement over serial
implementation. Kasper Fredericksen et al. [48] implement a
protocol based on cut-and-choose of garbled circuits for
malicious situation using GPUs. Husted et al. [49] imple-
ment free-XOR, pipeline, and OTextension on GPUs which
exploit some of the parallel nature of these tasks.)ey report
on the difference between implementations on Single In-
struction, Multiple Data (SIMD) architecture of GPUs and
on Multiple Instruction, Multiple Data (MIMD) architec-
tures for multicore CPUs. )ey also comment on the dif-
ficulty of comparing different implementations. Husted
assumes a malicious adversary and thus implements k dif-
ferent versions of a Garbled circuit which gives them in-
creased parallelism. We assume an “honest but curious”
adversary, which results in less parallelism.

2.2.4. Summary. Our approach, SIFO, differs from prior art
with respect to (a) the level of parallelism implemented, (b)
the ability to support any user problem, and (c) the ease to
change between problems without requiring regeneration of
the FPGA circuit.

3. System Design Methodology

Our approach implements a coarse-grained overlay archi-
tecture to accelerate GC problems. Garbled AND and XOR
gates are implemented on an FPGA along with memory and
control for support. Software tools support the mapping of
different garbled circuit problems onto this overlay archi-
tecture and leverage the interaction between hardware and
software while maintaining small communication and
memory access overhead. We describe the hardware ar-
chitecture (Section 3.1) and software structure (Section 3.3)
and discuss why an overlay architecture is needed. We
conclude the section with a discussion of optimizations
implemented for performance improvement.

To demonstrate the utility of FPGAs in the datacenter for
accelerating GC, we start with circuits generated from
FlexSC based on ObliVM [33]. FlexSC is a software
framework that allows developers without any cryptography
expertise to convert algorithms expressed in a high-level
language to GC. FlexSC generates a gate netlist of the
problem to be garbled, where gates are restricted to AND
and XOR gates. )is research takes this netlist and processes
it on an FPGA and compares it the same processing done by
FlexSC on a CPU. In this paper, we focus on garbling. Our
recent results [50] show that garbling takes up about two-
thirds of the total run time and is thus the bottleneck in our
overall design. In this paper, we focus on garbling; accel-
erating evaluation will be addressed in future work.

)e overall process starts from user data and a problem
to be garbled. )e steps required are generating the netlist
for the garbled circuit, mapping that netlist onto imple-
mentations of AND and XOR gates, generating the garble
tables for the Evaluator, and then transmitting the table for
each AND gate to the Evaluator. )e Evaluator receives data
inputs from the users via oblivious transfer. In the process of
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garbling, we use FLEXSC to generate the netlist and use the
wire numbers from that netlist as the memory locations for
each wire. Software that runs on the host processor does
layer abstraction to process a circuit in the breadth-first
order and assigns AND operations in the garbled circuit to
specific AND gates on the FPGA. Hence, what is commu-
nicated to the FPGA is wire IDs and gate numbers for
garbling. )e garble tables are transferred back to the host
processor for transferring to the evaluator. )is flow is
shown in Figure 3 and described more completely in this
section.

3.1. Hardware Architecture

3.1.1. gAND and gXOROverlay Cells. )e garbled AND cells
required for garbled circuit generation are much more
complicated than single bit operations. To emphasize this
fact, we refer to them as gAND in the reminder of this paper.
Each wire of the gAND is represented with 80 bits. A basic
garbling AND operation implements the functionality de-
scribed in Section 2.1. )e design we use, shown in Figure 4,
implements the row-reduction [40] and “free-”XOR [38]
optimizations. Each line of the truth table is implemented
according to equation (1).)is implementation requires four
Secure Hash Algorithm (SHA) 1 cores, although only three
output values need to be transmitted to the evaluator.K0

0 and
K0

1 are two garbled values representing the value 0 on the
wire for a gAND operation. R is a global variable based on
which the cipher can get the garbled value represented by all
zeros. For any wire i, K0

i ⊕K1
i � R. )e implementation still

uses four SHA-1 primitives which run in parallel; however,
only three values in the garbling table need to be stored,
reducing the size of the garble table by 25%. Since all values
in the garble table need to be transmitted to the host, and
later to the evaluator, this optimization also results in a 25%
saving in the amount of data that needs to be transmitted for
each gAND gate. )e implementation includes two arbi-
trators for the four outputs of the SHA-1 operations. )e
first arbitrator decides the sequence of the result and picks
one of them to XOR with the other three. )e second ar-
bitrator rearranges the sequence of those three values and
stores them in the garble table. Note that these arbitrators do
not introduce any latency to the system. )e latency of a
gAND gate is 82 cycles, which is determined by the latency of
the SHA-1 core. )e implementation, based on an open
source core [51], uses 512 bit values derived from the garbled
inputs and additional information. gAND requires 82 clock
cycles on the FPGA and uses 3070 ALMs and 3750 one bit
registers on our target hardware, a Stratix V FPGA.

)ere are several things to note about this imple-
mentation. First, SHA-1 is known to be vulnerable; however,
since new keys are generated for every new problem and new
set of inputs, this is not a concern in the context of GC. A
user who wants a stronger privacy guarantee can replace the
SHA-1 cores with AES or another cryptographic primitive.
)is may reduce the performance in our implementation as
the number of cores that can be implemented in parallel
could be reduced. Second, other optimizations have been

introduced, most importantly the half-AND gate [52], which
reduces the amount of data that needs to be transmitted
between the garbler and Evaluator. )is optimization will
not accelerate garbling, the focus of this paper, but will
reduce communication costs. )ese and other optimizations
can easily be introduced into the design of gAND and will be
considered in the future. Note that SHA was chosen in order
for us to compare our performance directly with a widely
used software implementation, FlexSC [32].

)e Garbled Circuit XOR overlay cell (referred to as
gXOR) benefits from the “free-” XOR protocol [38]. A free
gXOR gate consists of 80 bit plaintext XOR operations. For
any garbled circuit operation, it is guaranteed that using the
free-XOR approach will have the same privacy guarantees as
using standard cryptographic primitives. )is optimization
means that gXOR is bothmuch smaller andmuch faster than
gAND. Note that the gXOR gate is combinational and thus
has no latency. Note that the time to garble an XOR op-
eration is less than the time to transfer the input and output
wire information from the host processor. However, it is still
advantageous to do this in FPGA hardware since the input
and output garbled values stay local to the FPGA and would
otherwise have to be communicated back to the host.

3.1.2. FPGA Overlay Architecture. Figure 5 shows the
overlay architecture we use for garbled circuit acceleration.
)is architecture includes the gAND and gXOR circuits
described above, a workload dispatcher and data controller
(described below), block RAM that is used as an onchip
cache, and a DDR memory interface for accessing the main
memory for the problem being garbled. An architectural
decision in our overlay design is how many gAND and
gXOR gates to instantiate. We experimented with different
numbers of AND and XOR overlay cell combinations, and
the results are presented in Section 4.

3.1.3. Workload Dispatcher and Data Controller. )e
workload dispatcher and data controller are responsible for
fetching garbled values from memory based on input and
output addresses, delivering input data to the correct gAND
or gXOR overlay cell, and writing back the results tomemory
after each operation. )e timing of the entire system is
determined by the states in this module. Figure 6 shows the
timing information of the workload dispatcher and data
controller, which implements the following steps: (1) de-
termining the type of the next batch of operations sent from
the host, (2) reading input values from memory and for-
warding them to the correct overlay cell, and (3) writing the
output result back to the corresponding location in memory.
Our design uses both onchip block RAM (BRAM) and
offchip DDR memory. States in the FSM are added
depending on the type of memory accessed. An entry using
block RAM for storage will wait for only one clock cycle for a
read or write; however, for the DDR memory, the memory
access operation has variable latency and is not finished until
the “complete” flag is raised. One of the challenges of GC is
that memory locations are accessed in random order, and
hence timing and organization of memory is complicated.
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We currently use onchip BRAM as a cache for values that
would otherwise be stored in offchip memory. A detailed
discussion of different memory optimizations is presented in
Section 4. )e onchip BRAM is organized with a single read
port and single write port with 108 bit data, of which 80 bits
are used. 6.75Mbits of BRAM is used in this design to store
values. Multiple BRAMs on the chip can be accessed in
parallel. However, the random access nature of memory
accesses makes it challenging to take full advantage of this
feature. )e onboard memory is accessed using 512 bit reads
and writes, and four garbled values are accessed in one data
word. Two data ports are available in parallel. )e port
widths are dictated by the architecture of the Gidel ProceV
board.

3.2.WhyUse anOverlay Architecture? )e examples used in
Section 4 are shown in Table 1. )ese problems are addition,
Hamming Distance (HD), multiplication, sorting, and
matrix multiplication. We also analyze scalability of our
design by testing several different sizes of these problems.
Note that FlexSC tries to maximize the number of XOR gates
used as XOR gates are much less computationally expensive
to implement with the free-XOR optimization [38]. )us,
the percentage of gates that are AND gates never exceeds
26% in our examples.

)e last column of Table 1 shows the number of times the
FPGA would need to be reprogrammed assuming layers are
processed one at a time, and 10 garbled AND gates are
implemented on the FPGA. We assume as many XORs as
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needed which can be accommodated, as XORs take much
less time and space to process, as discussed above. )ese
examples motivate the need for an overlay architecture.

)e FPGA architecture is implemented as a coarse-
grained overlay circuit with a sea of gates approach, where
the implemented gates are gAND and gXOR. Using this
architecture, any user problem can be mapped to the
garbling hardware with no need to reprogram the FPGA,
and the results are available rapidly. )is is in contrast to
the traditional FPGA design workflow which would require
synthesis, place, and route as well as downloading a new
bitstream for each new problem. In our approach, all that is
needed is to program the FPGA ahead of time and generate
the software host code for each problem. )e overlay ar-
chitecture can be reused without recompilation, while the
traditional FPGA workflow has to go through the entire
tool flow.)e traditional approach is infeasible for garbling
large problems as many recompilations would be required
for a single problem. Each compilation can take minutes to
hours. Using the overlay architecture, we compile the
hardware once and generate the software in minutes. Let us
assume that we used a very efficient program, such as
TinyGarble [41], to generate each instance of a problem. Let
us further assume that TinyGarble can fit a design with 100
garbled AND cores on an FPGA, i.e., it is ten times more
efficient in hardware usage compared with our approach.
To handle multiple problems, such as those in a datacenter
setting, each new problem would need to be generated,
placed, and routed, and this takes on the order of tens of
minutes. Hence, our approach is more efficient even for
those problems that fit entirely on one FPGA. For large
problems, such as the larger matrix multiply problems in
Figure 1, the FPGA would have to be reprogrammed more
than a hundred times, that would require hours. )e
overlay approach provides an architecture that maps dif-
ferent designs to the FPGA without requiring reprog-
ramming. )us the end-to-end run time of an application
with FPGAs is faster than the end-to-end run time using
FlexSC, as presented in Section 4. We summarize this
discussion in Table 2.

3.3. Software Workflow. )is section discusses the software
workflow including problem generation, problem parsing,
layer extraction, and code generation.

3.3.1. Problem Generation and Validation. Our design
makes use of our GC overlay architecture, SIFO, in a way
that is seamless for a user of FlexSC. FlexSC, based on
ObliVM [33], is a software framework that allows developers
without any cryptography expertise to convert algorithms
expressed in a high-level language to GC.We modify FlexSC
to output the netlist for a garbled circuit problem. )is
research extends FlexSC by taking the netlist, consisting of
gAND and gXOR gates, and processing it on an FPGA. We
use the same optimizations as FlexSC, namely, free XOR [38]
and row reduction [40]. In its normal operation, FlexSC
outputs the results of garbling each gate; we use these values
for verification. Note that input values are random and
generated for each new computation.)ese are generated on
the host and used for both the FlexSC and FPGA versions to
ensure consistent results. )e speed and validity of results
can thus be easily compared.

)e netlist generated by FlexSC is garbled in the breadth-
first order. To support this, we generate layer information
and separate each layer into a “batch” of operations, where
each batch represents the number of gates that can be
garbled in parallel on the FPGA and is implementation-
specific. As the netlist can be quite large, it may require many
batches to garble a single layer. A typical Boolean gate
generated from FlexSC has the form: wire ID1 AND/XOR
wire ID2�wire ID3. We use wire IDs as memory addresses;

Table 1: Gate information for problems.

Problem Layers Input wires Output wires ANDs XORs Gates # Reprogram
6 bit adder 17 12 6 6 24 30 1
10 bit HD 22 20 10 20 90 110 1
30 bit HD 27 60 30 60 270 330 6
50 bit HD 32 100 50 100 450 550 10
8 bit mult 57 16 16 120 352 472 12
16 bit mult 121 32 32 496 1472 1968 50
32 bit mult 249 64 64 2016 6016 8032 201
64 bit mult 505 128 128 8128 24320 32448 813
10 4 bit sorting 278 40 40 848 4638 5486 85
5 × 5 4 bit m_mult 25 100 200 3900 11600 15500 390
10 × 10 4 bit m_mult 27 400 800 7526 22489 30015 753
5 × 5 8 bit m_mult 57 200 400 15800 47200 63000 1580
10 × 10 8 bit m_mult 57 800 1600 127200 380800 508000 12720
20 × 20 4 bit m_mult 37 1600 3200 254400 761600 1016000 25440

Table 2: Problem switching time.

Our workflow Traditional
workflow

Hardware architecture Software generation Hardware design
One-time compile Minutes Every problem
Less than one hour Minutes to hours
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intermediate data from garbling need to be stored. We use
both onchip and onboard memory for this purpose.

Our hardware consists of an FPGA board connected to a
PC via PCIe. Figure 3 highlights the workflow for garbling a
circuit that involves both software running on a CPU (on the
right of the figure) and FPGA design (on the left).

)e host transfers the information to the FPGA for
processing.We automatically generate the host code for each
problem through our tools. )e host code for a user problem
is responsible for initial data transmission, assigning gates in
the problem to specific gAND or gXOR instances on the
FPGA, and allocating the output of each garbling operation
to memory.

Figure 7 shows the timeline for one batch of Boolean
operations for the workload dispatcher and data controller,
assuming that all information is transferred from the host
before the batch begins operation. )is is improved on by
overlapping communication and computation as described
in the optimization section.

3.3.2. Problem Parser and Layer Extractor. )e problem
parser analyzes the generated gate netlist from FlexSC for
gate, wire, and layer information. )e output consists of the
total number of wires representing the total number of
memory locations required, and, for each AND gate and
XOR gate, the addresses that correspond to the input and
output wires. Other output includes information for sepa-
rating wires into different groups (onchip or onboard) which
is used in implementing the hardware memory hierarchy.
We consider several different approaches for using onchip
memory effectively. Analysis of results for sample problems
is presented in Section 4.1.

We process gates in the breadth-first order. )e netlist
generated from FlexSC is fed to a layer extractor which
extracts each layer of the circuit that can be garbled in
parallel. We also identify the primary input values whose
wire ID is not the output of any gate. Layer extraction
identifies the AND and XOR gates that can be processed at
the same time. For most problems, an entire layer will not fit
onto the implemented FPGA overlay architecture. )us, a
single layer may take several rounds. We refer to the number
of gates that map directly onto the FPGA as a batch. Each
operation in a batch is assigned a gate ID that corresponds to
the gate it uses in HW. Wire numbers for input and output
wires are used as the addresses in memory where input and
output values are stored. )e processor assigns wire IDs and
gate IDs and transmits this information to the FPGA. At the
end of a batch, the processor transmits the next batch of
information and continues until the circuit is fully garbled.
Within a batch, all gates belong to the same layer of the
circuit. Note that the amount of information transferred
from the host to the FPGA minimal. )e data remain on the
FPGA; only memory addresses and gate IDs are transmitted.

3.3.3. Host Code Generation. We developed the tools to
automatically generate the host code based on any garbled
circuit operation.)e input is the layer information from the
layer extractor. )is tool generates the batches and assigns

wire IDs and gate IDs for different problems. Initial input
data are generated and sent to the FPGA. For very large
problems, the host code separates the main function into
groups of smaller problems to avoid exceeding the heap size
allocated for a problem. )e tools support debug mode, as
well as different allocation policies for memory, which are
discussed in more detail as follows. More details can be
found in [35].

3.4. Optimizations. )ere are two major sources of bottle-
necks in our design. )e first is transferring data over PCIe.
)e second is the delay in accessing onboardmemory. In this
section, we address optimizations to the design that mitigate
both of these bottlenecks.

3.4.1. PCIe Communication and FPGA Memory. )e first
few optimizations target improving communications over
the PCIe bus. In our implementation, for each gate, the
location of the input and output wire values and the gate
type, AND or XOR, needs to be communicated. Since the
circuits representing problems to be garbled are large, this
information is transferred as a batch of operations at a time.

Our first optimization involves overlapping communi-
cation and computation of gate and wire information, as
shown in Figure 8. Overlay cells can start working as soon as
the information for a new Boolean operation has been
transmitted. For different batches, the same gates imple-
mented as part of the overlay architecture are reused for
different garbled gates in the user design. )is optimization
is applied in all subsequent designs and in all reported re-
sults. Another optimization we apply is to remove un-
necessary handshaking signals between the host and the
FPGA.

)e communication channel between the host and
FPGA supports direct communication to data registers on
the FPGA or, using DMA, to the onboard DDRmemory.We
use DMA to transmit the initial data (values on input wires)
to the DDR memory. We directly transfer gate information
to onchip registers. )e time for the host to write to one
register on the FPGA is 50 ns. As there are three addresses
for a Boolean gate, the data transmission time is 150 ns per
gate in a batch.

An optimization we apply is to pack more than one
address into a register to reduce the number of transfers
required. We use two registers to represent the three ad-
dresses needed for each gate.)e total width of 2 addresses is
2 registers∗ 32 bits/register � 64 bits, and the actually bit-
width for each address location in our design is 64/3 � 21
bits. Besides the flag bit representing the memory type, there
will be 20 bits for a real address, which is enough to represent
about one million wires. Figure 9 shows this optimization.
We are investigating generating memory addresses locally to
the FPGA, which will remove this limitation.

3.4.2. Hybrid Memory Hierarchy. )e second source of
bottleneck in our design is the transfer between the FPGA
and the on-board DDR memory. Accesses to the DDR
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memory require many clock cycles with a latency of about
180 ns, and, as wires are not accessed in sequential order, we
cannot take advantage of the burst mode. Block RAM
available on the FPGA has much faster access times of one
clock cycle (5 ns for a 200MHz CLK), but is not large enough
to support the size of problems we are processing. To address
this issue, we make use of a hybrid memory hierarchy where
some values are stored in the onchip memory while most
values are stored offchip. In essence, we are using the onchip
memory as a cache. However, unlike a traditional cache, the
policy for using the cache is completely under user control.

Figure 4 shows the hardware architecture using both the
block RAM (BRAM) inside the FPGA and the DDRmemory
on board. Our previous work only used onchip BRAM and
thus was limited in the size of problems garbled [34]. In this
research, we investigated two different allocation policies,
for block RAM. We refer to these as directly used and most
frequently used. Results for both policies are reported in
Section 4. Software on the host determines whether a wire is

stored in block RAM or in DDR. A single bit in the address
indicates which it is. Wire IDs are generated on the host, so
the code that generates wire IDs also implements the
memory policy. Using a bit to indicate the location not only
reduces the number of addressable memory locations but
also removes the need to implement hardware to track lo-
cations of specific locations.

Addresses for wires are used to store values that rep-
resent the output of the garbled gate.)ese values are used in
generating the garbled values for the next gate; however, they
are not transmitted to the Evaluator. Only the garble tables
need to be transmitted. Hence, values are stored in memory
for the duration of the garbling computation across all
layers, but are not needed after that.

Some wires are generated as outputs from one gate and
feed directly into the another gate. In other words, their
fanout is 1. In the directly used policy we store the values
generated on wires that are directly used in block RAM to
save the time to store and fetch these values. )e criteria for
such a value to be stored in block RAM are: (1) the wire is
used only once after it is generated and (2) the Boolean gate
which uses this wire ID is in the adjacent layer. )e directly
used policy saves significant memory bandwidth.)e second
criterion of only using values in an adjacent layer allows
block RAM space to be reused once the garbled value is no
longer needed. For the directly used policy we use a ping-
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pong buffering approach, where half the block RAM in any
layer is used for reading and the other half for writing, and
these roles are swapped with each layer. A total of 13
megabits of onchip BRAM is used.

For the most frequently used policy, the host code an-
alyzes the complete netlist that is generated and identifies the
wires that are most frequently used. )ese values are stored
in block RAM for the duration of their lifetime.)is policy is
similar to a most frequently used cache allocation policy;
however, in our design, the values are never stored in DDR
RAM.)e goal behind this policy is to reduce the number of
reads and writes to offchip memory.)e host code sorts wire
IDs based on their number of accesses and assigns those
wires with a large number of accesses to block RAM. Once a
block RAM cannot fit more wires, the rest of the wire IDs are
assigned to addresses in the DDR memory. We do not
currently reuse memory locations; this is planned for future
work.

Table 3 shows wire information. Each wire corresponds
to one memory location. )e more the wires, the more the
memory needed to store the values that correspond to the
output of each garbled gate. )e problems have a wide range
of number of wires from several dozen to over one million
wires. )ere are two types of wires, 1-to-1 wires and 1-to-N
wires. 1-to-1 wires include two types: wires where the output
is immediately used in the next layer and wires where the
output is not immediately used. We use the first type in the
directly used policy. )ere are also 1-to-1 wires not in ad-
jacent layers and 1-to-n wires where one output is used
multiple times. )e maximum number of 1-to-1 wires in a
layer is the number of memory locations needed in block
RAM for directly used policy if all 1-to-1 wires are kept on a
chip.

Table 4 shows the percentage of each type of wire.
Percent A is the number of 1-to-1 wires among all the wires.
Most of the 1-to-1 wires are used in the next layer, repre-
sented in percent B. Percent C shows the percent of the 1-to-
1 wire to be used in the next layer among all the wires. )ese
data show that the directly used policy is a good fit for many
garbled circuit problems, and may require less onchip
memory compared with the most frequently used policy.

For the hardware architecture, the workload dispatcher
and data controller are designed to accommodate this hybrid
memory hardware architecture. )e controller monitors the
flag of the address provided by the host and determines
whether the value should be stored in block RAM or DDR.
We embed the flag as the last bit of the address, and if zero,
the location is DDR; otherwise, it is block RAM. Timing
results for both of the implemented policies are presented in
the next section.

4. Experiments and Results

We compare our results to FlexSC [32] both for correctness
and for performance. For software timing, we run FlexSC on
an Intel Core i7 processor running at 3.6GHz, using any
optimizations implemented in FlexSC. Our target hardware
platform consists of a host PC and FPGA card, specifically
the ProceV board from Gidel. )e ProceV board hosts a

Stratix V FPGA with two DDR3 external memories each of
which can support 8GB, or a total of 16GB. It provides
communication between host and FPGA via a PCIe Gen 3
bus with 8 lanes, each of which supports 8 gigatransfers per
second. Our results show the end-to-end effect of replacing
FlexSC garbling in software with an FPGA solution.

In our results, we examine the effect of the basic overlay
architecture that we implemented, as well as each of the
optimizations discussed in Section 3. Note that all of the
results presented use overlapped communications and
computation as described in Section 3.4.1. In the reported
results, the FPGA clock is 200MHz. )e interface clock
responsible for data transmission between host and FPGA is
running at 300MHz. Timing results compare the FPGA
design with an Intel processor running the same algorithm at
3.6GHz.

4.1. Problem Analysis. )e problems we analyze are addi-
tion, Hamming distance (HD), multiplication, sorting, and
matrix multiplication. We also analyze scalability of our
design by testing several different sizes of these problems.
Results for some of these problems were reported in our
previous publication [34].)e biggest difference between the
work presented here and our previous work is that the
previous work did not make use of offchip memory, which
significantly limited the size of problems we can garble. )e
maximum number of gates in a previously presented ex-
ample was 32,000 gates. Here, we analyze much larger
problems, with up to a million gates. Problem information is
summarized in Table 1. )is table shows total numbers of
layers, wires, and gates in the garbled circuit problems we
analyze. )e examples presented are a 6 bit adder, several
different bit sizes for HD, several different bit sizes for
multiplication, and an example of sorting four bit numbers.
All of these were reported previously [34].)e new examples
include different sizes of matrix multiplication that show
how the problem size scales as well as larger problems that
could not fit with the previous approach. )e largest
problem reaches one million garbled circuit operations and
several thousand independent gates within each layer. Note
that the largest number of layers is not from the largest
problem. Also, note that, to best take advantage of the free-
XOR optimization, FlexSC generates examples that pre-
dominantly make use of gXORs; gANDs never exceed more
than 26% of total gates. In addition to these examples, we
analyze different sizes of page rank (PR) and present results
as follows.

4.2. Heterogeneous Computing System Results. We have
implemented all of the design variants described in this
paper on a Gidel ProceV board. In this section, we present
step-by-step performance improvements using the different
optimizations described in Section 3. We compare sub-
sequent designs to one another and also present the speedup
compared with software using FlexSC.

We experiment with different numbers of overlay cells
implemented in hardware, as shown in Table 5. Results show
speedup compared with FlexSC for 5 and 10 garbled AND
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gates; in both cases, a single XOR overlay cell is used. We do
not observe much improvement when we increase the
number of AND gates, which indicates that this is not the
bottleneck in our base design. )e bottleneck here is PCIe
communications between host and FPGA board.

In the base design, the transmission time for information
for each XOR operation is larger than the garbling XOR time
itself. Using this information, we can remove any

synchronization used by the host when sending XOR gates.
Note that it is still worthwhile to garble the XOR gates on the
FPGA because the output keys generated are used in sub-
sequent gates in the design. Knowing that transmission time
of each XOR operation is larger than the XOR operation
time, we can remove the synchronization steps and let the
host keep sending XOR gates. Table 6 shows the results of
applying this optimization to the ten garbled AND gate

Table 3: Wire information for problems.

Problem Wire A wire B gate C gate Max D Wire/layer
6 bit adder 42 12 12 0 1 2.5
10 bit HD 140 55 50 5 7 6.4
30 bit HD 420 163 147 11 22 15.6
50 bit HD 700 293 269 24 37 21.9
8 bit mult 495 296 247 49 64 8.7
16 bit mult 2015 1232 1007 225 256 16.7
32 bit mult 8127 5024 4063 961 1024 32.6
64 bit mult 32639 20288 16319 3969 4096 64.6
10 4 bit sorting 5717 2968 2136 832 40 20.6
5 × 5 4 bit m_mult 16175 9700 8350 1350 2000 647.0
10 × 10 10 10 4 bit m_mult 31472 18768 16051 2717 3809 1165.6
5 × 5 8 bit m_mult 64375 39400 32850 6550 8000 1129.4
10 × 10 8 bit m_mult 517500 317600 263400 54200 64000 9078.9
20 × 20 4 bit m_mult 1050800 635200 541600 93600 128000 28400.0
A: 1-to-1 wire; B: gate with a one 1-to-1 wire from the adjacent layer; C: gate with a one 1-to-1 wire not from the adjacent layer; D: maximum number of 1-to-1
wires in a layer.

Table 4: Wire percent for problems.

Problem Percent A (%) Percent B (%) Percent C (%)
6 bit adder 28.57 100.0 28.6
10 bit HD 39.29 90.9 35.7
30 bit HD 35.00 90.2 38.8
50 bit HD 41.86 91.8 38.4
8 bit mult 59.80 83.4 49.9
16 bit mult 61.14 81.7 50.0
32 bit mult 61.82 80.9 50.0
64 bit mult 62.16 80.4 50.0
10 4 bit sorting 51.92 72.0 37.4
5 × 5 4 bit m_mult 59.97 86.1 51.6
10 × 10 4 bit m_mult 59.63 85.5 51.0
5 × 5 8 bit m_mult 61.20 83.4 51.0
10 × 10 8 bit m_mult 61.37 82.9 50.9
20 × 20 4 bit m_mult 60.45 85.3 51.5
Percent A: percent of 1-to-1 wire in all wires; percent B: 1-to-1 wires to be used in the next layer of all 1-to-1 wires; percent C: 1-to-1 wires to be used in the next
layer of all wires.

Table 5: Increase number of AND overlay cells.

Problem 5 AND overlay (µs) Speedup 10 AND overlay (µs) Total speedup
6 bit adder 78 26.41 76 27.11
10 bit HD 260 9.73 257 9.84
30 bit HD 765 5.33 741 5.51
50 bit HD 1282 5.04 1210 5.34
8 bit mult 1098 8.40 1058 8.71
16 bit mult 4280 3.40 4218 3.45
32 bit mult 17406 1.94 17056 1.98
64 bit mult 71068 2.15 69858 2.19
10 4 bit sorting 12605 1.68 12375 1.71
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design. Additional speedup is the speedup compared with
the version with XOR check, and the total speedup compares
this new design with FlexSC. In this design, the host sends all
the XOR operations within one layer without synchroni-
zation before sending batches of AND operations. )is
optimization contributes significant speedup, and the effect
of this optimization grows as the size of the user problem
increases.

Next, we show the speedup from using both onchip
block RAM and offchip DDR memory. Table 7 shows total
time in μs and the speedup compared with the software
version in FlexSC. In this table, we apply the directly used
policy, described in Section 3.4. )e results show that the
smallest speedup compared with software is 8 times. )us,
using a hybrid memory architecture results in significant
savings.

We also implemented the most frequently used policy
using the hybridmemory system.We tried three of the larger
problems to compare the two policies, as shown in Table 8.
)e policy comparison column compares the most fre-
quently used policy with the directly used policy. If it is
larger than 1, then the most frequently used policy is faster.
Note that the results show that there is not much difference
in performance between the two policies for large problems.
)is is likely due to the fact that the directly used policy
reuses block RAM memory locations, while in our current
implementation, the most frequently used policy does not.
In addition, the preprocessing cost for the most frequently
used policy is more expensive as the fanout of every wire
needs to be computed. In addition, to reuse memory lo-
cations, lifetimes of these wires will need to be computed.
While we plan to investigate this in the future, for now, we
conclude that the directly used policy is the most
advantageous.

For the FPGA operation, we use 200MHz as the local
clock. )e PCIe protocol allows us to set a different “main”
clock speed for transmitting data; for this, we use 300Mz.
Because the main clock is faster, the time to transmit the
operands for a garbled XOR is no longer larger than the XOR
operation time. )us, we cannot apply XOR without syn-
chronization between the host and FPGA. However, we can
also use multiple XORs to improve the total performance.
Table 9 shows the results of using 5 AND and 5 XOR overlay
cells; 10 AND and 10 XOR; 15 AND and 15 XOR. Speedup
improvement shows that the increase from changing from 5
to 10 is 1.25 times and changing from 10 to 15 is 1.22 times.

We will continue to investigate adding more gates to see
when this improvement saturates.

)e speedup results from packing 3 addresses into 2
registers are shown in Table 10. We use the page-ranking
examples, and the results show 1.06 to 1.13 speedup im-
provement compared with the method of using 1 register for
1 address. Note that this optimization limits the size of valid
address bits that can be used to 20, which in turn limits the
size of problems that can be garbled.

We combine all of the optimizations that led to speedup
and present the results in Table 11.)ese results have applied
the following optimizations: (1) 15 AND overlay cells and 15
XOR overlay cells; (2) hybrid memory system with the di-
rectly used policy; (3) 300MHz main clock frequency for
PCIe interface and 200MHz local clock frequency; and (4)
pipelined operation between the host and FPGA.)e results
are shown for working designs on the Gidel ProceV board
and compared end-to-end system running time with the
same problems running in software using FlexSC. We ob-
serve one or two orders of magnitude speedup across a range
of problems. Note that software is running at 3.6GHz, while
the FPGA implementations are running at 200MHz. FlexSC

Table 6: Results for removing host XOR operation check.

Problem 10 AND w/o XOR check (µs) Additional speedup Total speedup
6 bit adder 60 1.30 34.33
10 bit HD 99 2.63 25.56
30 bit HD 216 3.43 18.89
50 bit HD 365 3.32 17.70
8 bit mult 428 2.47 21.54
16 bit mult 1420 2.97 10.24
32 bit mult 4924 3.46 6.86
64 bit mult 18673 3.74 8.20
10 4 bit sorting 2770 4.47 7.62

Table 7: Directly used policy using block RAM and DDR Hybrid
Memory.

Problem 10 AND+hybrid memory (µs) Speedup
6 bit adder 54 57.2
10 bit HD 88 28.8
30 bit HD 193 21.1
50 bit HD 302 21.4
8 bit mult 380 24.3
16 bit mult 1284 11.3
32 bit mult 4208 8
64 bit mult 15945 9.6
10 4 bit sorting 2292 9.2
Hybrid memory consisting of block RAM on FPGA and DDR on board.

Table 8: Most frequently used policy.

Problem 10 AND+hybrid memory 2 (µs) Policy
comparison

32 bit mult 4384 1.04
64 bit mult 15648 0.98
10 4 bit sorting 2425 1.06
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runs with one thread; however, parallelizing the particular
implementation of GC with the optimizations used and the
“honest but curious” model is not trivial. Note that the
number of AND gates garbled per second continues to
increase as the size of the problem grows. While we see
significant speedup across all problems, the amount of
speedup diminishes as the problem size grows. )is is due to
the fact that onchip BRAM cannot keep as large as a percent
of memory locations of offchip memory as the size of each
layer grows and highlight the importance of our hybrid
memory optimization. We intend to continue to optimize
our design to be able to garble larger and larger problems in
less elapsed time.

4.3. Bandwidth Bottleneck. Under the two optimizations we
employ (“free-” XOR gates [38] and garbled row reduction
[40]), the garbler needs to send 3 × 80 bit ciphertexts
(240 bits) to the evaluator per AND gate, and 0 ciphertexts
(0 bits) per XOR gate in the circuit. )e latter is due precisely
to the use of the “free-” XOR optimization: garbled XOR
gates require neither encryption during garbling nor any
transmission using this technique.

Under these optimizations, garbling is computation-
bound in our setting. Taking two cases in Table 11 (10 × 10
4 bit m_mult, 20 × 20 4 bit m_mult) as examples, our

processing time indicates we can process 0.67M and 0.75M
AND gates per second, respectively. )ese cases correspond
to the case with the largest speedup and the largest example
run. At the cost of 240 bits per gate, this garbling correspond
to a required communication bandwith between the garbler
and evaluator of 160.8Mbps and 180Mbps, respectively.
)is is well within the range of the bandwidth available at,
e.g., Amazon Web Services (AWS) EC2 instances (5GBps);
this implies that a garbler and evaluator deployed by distinct
entities on AWS would be computation, not communica-
tion-bound. We note that this observation, as well as our
estimates, agrees with experimental observations of garbler-
evaluator execution pairs on AWS [16].

5. Conclusions and Future Work

)is article demonstrates a heterogeneous reconfigurable
computing system using FPGA overlay architecture for
general garbled circuit operations. )is system lets the user
implement and accelerate their application without any
knowledge of either hardware development or secure
function evaluation protocol by providing a complete
workflow to transfer any garbled circuit problem onto it. We
demonstrate the benefit of using this system by showing
significant speedup compared with existing software plat-
forms. )is research makes possible the wider adoption of
using garbled circuit schemes in the future.

For the hardware architecture on FPGA, our design uses a
coarse-grained overlay architecture and enables the evalua-
tion of different SFE tasks without the need for reprogram-
ming. )e host-side workflow includes garbled circuit
generator, problem parser, and host code generation tools
which can be configurable for different hardware architec-
tures. )ese tools explore the parallelism for any GC problem
and generate the host program based on the structure of the
problem. We also provide analytical tools to show the dif-
ferent characteristics of a problem. We explore the bottle-
necks while working on this heterogeneous reconfigurable
computing system and tackle them using different methods.
)is exploration also provides other researchers’ directions
for improving their own heterogeneous system designs.

)ere are several directions for future research. First is
the further improvement of the heterogeneous system. )is

Table 9: Influence of number of gates.

Gate numbers Time Speedup compared with SW Speedup improvement
5 XOR 5 AND 18677 8.20 —
10 XOR 10 AND 14888 10.29 1.25
15 XOR 15 AND 12252 12.50 1.22
64-bit multiplication problem; 300MHz main clock and 200MHz local clock.

Table 10: Using 2 address registers for 3 addresses.

Problem 1 reg as 1 address 2 regs as 3 addresses Improvement Total speedup
2 PR 41044 37358 1.1 12.47
3 PR 66409 58587 1.13 10.27
4 PR 90087 7.83 1.06 7.83
10 AND and 10 XOR overlay cells; 300MHz main clock and 200MHz local clock; PR represents Page Rank.

Table 11: Speedup results.

Problem Sw (ms) Time (µs) Speedup
6 bit adder 2.06 45 45.78
10 bit HD 2.53 80 31.63
30 bit HD 4.08 171 23.86
50 bit HD 6.46 259 24.94
8 bit mult 9.22 293 31.47
16 bit mult 14.54 949 15.32
32 bit mult 33.76 3308 10.21
64 bit mult 153.13 12252 12.50
10 4 bit sort 21.12 2339 9.03
5 × 5 4 bit m_mult 60.66 5830 10.40
10 × 10 4 bit m_mult 220.81 11286 19.56
5 × 5 8 bit m_mult 203.86 24128 8.45
10 × 10 8 bit m_mult 1060.63 170895 6.21
20 × 20 4 bit m_mult 2170.88 340698 6.37
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research may benefit from a closely connected FPGA such as
the Intel HARP to alleviate the bottleneck of the PCIe in-
terface. Another direction is to expand the overlay cell li-
brary to abstract more complicated computational patterns
using Boolean AND and XOR operations. )e current work
uses garbled circuit AND and XOR overlay cells as two
components of the hardware architecture library, and this
fine-grained pattern suffers from DDR access delay in every
operation. Based on Tables 3 and 4, we know that there are
many 1-to-1 wires to be used in the next layer. One solution
is to build other overlay cells which consist of cross-layer
Boolean operations. Second is to separate a large problem
into several small problems which can be computed in-
dependently through several host nodes each with its own
FPGA board. )is enables the expansion of the size of the
problems into even larger data mining problems, such as
page ranking with more nodes using GraphSC and even-
tually provides a large, scalable, efficient platform for pri-
vacy-preserving computation. We have already begun to test
these ideas using Amazon Web Services F1 instances.
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