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-e high resolution of multidimensional space-time measurements and enormity of data readout counts in applications such as
particle tracking in high-energy physics (HEP) is becoming nowadays a major challenge. In this work, we propose combining
dimension reduction techniques with quantum information processing for application in domains that generate large volumes of
data such as HEP. More specifically, we propose using quantum wavelet transform (QWT) to reduce the dimensionality of high
spatial resolution data. -e quantum wavelet transform takes advantage of the principles of quantum mechanics to achieve
reductions in computation time while processing exponentially larger amount of information. We develop simpler and optimized
emulation architectures than what has been previously reported, to perform quantum wavelet transform on high-resolution data.
We also implement the inverse quantum wavelet transform (IQWT) to accurately reconstruct the data without any losses. -e
algorithms are prototyped on an FPGA-based quantum emulator that supports double-precision floating-point computations.
Experimental work has been performed using high-resolution image data on a state-of-the-art multinode high-performance
reconfigurable computer. -e experimental results show that the proposed concepts represent a feasible approach to reducing
dimensionality of high spatial resolution data generated by applications such as particle tracking in high-energy physics.

1. Introduction

High-energy physics deal with advanced instruments such as
particle accelerators and detectors. -ese machines use
electromagnetic fields to accelerate charged particles to high
speeds and create collisions. By studying particle collisions
and tracking collision trajectories, physicists can test the
predictions of many theories of particle physics such as
properties of the Higgs boson [1], discovering new particle
families [2] as well as many high-energy physics problems
[3]. -ere are a number of high-energy physics (HEP) re-
search centers [4]. -e largest particle accelerator is the
Large Hadron Collider (LHC) in Geneva, Switzerland.
Large-scale general-purpose particle detectors have been
developed at the LHC. -e ATLAS [5] and Compact Muon
Solenoid (CMS) [6] are two examples which are used for
studying the properties of the Higgs boson and investigating
new physics. -e ATLAS has an inner detector that has been
used to observe the decay products of collisions. -e pixel

detector [7] is one of the main components of the inner de-
tector, having over 80 million readout channels [8] (pixels),
which contribute to half the total readout channels of the entire
experiment. Reconstruction of high-energy particles from the
pixel detector is considered a critical design and engineering
challenge [9], due to its large readout count, high spatial res-
olution, and 3D space-time measurements. -ere have been
efforts to improve the tracking performance of the ATLAS
Inner Detector [9, 10], which involved insertion of additional
pixel detector layer (Insertable B-Layer). Another approach that
has been considered in the ATLAS FTK (Fast Track Trigger)
upgrade [11] is using variable resolution patterns, where the
data from the detector is compared to generated pattern banks
of particle tracks and non-intersecting data is filtered. In high-
dimensional datasets, e.g., the pixel detector readout data, not all
the measured data variables are relevant in understanding the
underlying regions of interest (RoI). Generally, statistical pre-
dictive models are applied to multidimensional datasets for
detection and pattern matching, which is a computationally
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expensive process. -us, an effective method is needed to re-
duce the dimensionality [12] of the data in such high-di-
mensional spatial sets, for faster detection and matching.

As a feasible solution to this problem, we here propose
combining wavelet-based dimension reduction techniques
[13–15] with quantum information processing (QIP) [16] for
applications in domains that generate high-dimensional data
volumes such as high-energy physics (HEP). More specifi-
cally, we propose using quantumwavelet transform (QWT) to
reduce the dimensionality and high spatial resolution of data
in HEP particle tracking. Wavelet-based dimension reduction
has been shown to be an effective technique in image pre-
processing, reducing computation time, reducing inter-
processor overhead, and improving classification accuracy
[13–15]. Even so, the large volume of data from domains such
as high-energy particle physics, present a challenge for a
classical wavelet-based method. -e QWT has been dem-
onstrated in previous works to be very useful in quantum
image processing and quantum data compression [16–19].
Quantum information processing uses qubits as the basic
units of information storage, compared to classical binary
forms, and can exploit quantum mechanical properties such
as entanglement and superposition [20]. -erefore, applying
QIP techniques such as QWT for dimension reduction of
HEP data will bring substantial improvements in storage and
computation compared to classical signal processing tech-
niques. To the best of our knowledge, this work is the first to
investigate QWT-based dimension reduction for HEP ap-
plications. We develop simple and effective algorithms for
QWT and inverse-QWT (IQWT) that are best suited for
dimension reduction and present corresponding emulation
hardware architectures for QWT and IQWT.

-e objectives and focus of our work are to demonstrate
the feasibility of QWT for dimension reduction, through
emulation, and to evaluate the performance of the emulation
architectures. Our proposed algorithms are prototyped on an
FPGA-based quantum emulator that has been developed
based on our previous works [21, 22] and has been shown to
emulate full quantum algorithms such as quantum Fourier
transform (QFT) [23] and Grover’s search algorithm [24]. An
FPGAplatformwas chosen because of its reconfigurability and
flexibility in emulating multiple quantum algorithms. -e
emulator is based on the hardware system of DirectStream
[25], which is a state-of-the-art reconfigurable computing
platform.-is emulation platform can be conveniently used to
verify and benchmark future implementations of the proposed
system in HEP applications. In the next section, we discuss
fundamental concepts of quantum computing, QWT, and the
related work done on QWT. In Section 3, we elaborate our
proposed methods and emulation architectures. In Section 4,
the experimental results and analysis are presented. Section 5 is
our conclusion and future directions of this work.

2. Background and Related Work

In this section, we discuss background concepts of quantum
computing and the quantum wavelet transform. We also
discuss current and related work on QWT and high-energy
particle detection.

2.1.Qubits, Superposition, andEntanglement. -equbit is the
smallest unit of quantum information that describes a two-
level quantum mechanical system. Physical implementations
of the qubit can be electron/atomic/nuclear spin, where spin
directions of the particle represent the two qubit levels. Other
physical representations of the qubit can be photon polari-
zation, superconducting Josephson junction, etc. [26]. -e
qubit is represented theoretically using the Bloch sphere [20],
as shown in Figure 1. -e basis states of the qubit, |0〉 and |1〉

are denoted by poles of the sphere. -e property that dis-
tinguishes the qubit from the classical bit is superposition.-e
qubit can exist in a mixed or superposition state that is any
other point on the surface of the sphere other than the poles.
-e overall state of the qubit can be defined using a linear
superposition equation |ψ〉 � α|0〉 + β|1〉, where α and β are
complex numbers determined from φ and θ as shown in
Figure 1 and satisfying |α|2 + |β|2 � 1. Another distinguishing
property of qubits is entanglement [20]. Two or more qubits
can be entangled together, which means each entangled qubit
becomes strongly correlated to the other along all possible
combinations of the qubits. Outcome of measurement of one
qubit is dependent on the othermeasurement, but individually
they exhibit completely random behavior. In quantum
computing, most algorithms assume that the qubits are fully
entangled [21]. A system of n entangled qubits can be rep-
resented in vector space as N � 2n complex basis state
coefficients.

2.2. Quantum Wavelet Transform. -e wavelet transform,
similar to other transforms like Fourier transform, de-
composes input signals into their components. -e prin-
cipal difference is that Fourier transform decomposes input
signals into their sinusoidal orthogonal temporal-only
bases, while wavelet transform uses a set of non-sinusoidal
functions, usually called mother wavelets, that are both
spatially and temporally localized [15].-is results in a very
important feature unique to wavelet transform which is the
preservation of spatial locality of data. In other words,
wavelet transform gives information about both time and
frequency of input data. Wavelet transform also has better
computation speeds compared to other transforms [14].
-erefore, they are effective and widely used in many image
processing applications [16]. -e wavelet transform can be
effectively implemented in the quantum information
processing (QIP) domain as quantum wavelet transform
(QWT) [16, 18, 19]. However, the related work on QWT is
rare or preliminary. -is is because quantum computing
and QIP are fields that are gradually developing and have
not yet reached full potential. Although many large-scale
quantum hardware is being developed [27], their useful
applications are still yet to be decided. We discuss the
classical wavelet transform first and then apply it in QIP
domain, to establish a model for the QWT. -e general
wavelet transform can be expressed by

F(a, b) �
1
��
a

√ 􏽚
∞

− ∞
f(t)Ψ∗a,b

t − b

a
􏼠 􏼡dt, (1)
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where Ψ is called the mother wavelet function in complex
conjugate form, and a, b are the time dilation and dis-
placement factors, respectively. Wavelet transforms can be
classi�ed as discrete or continuous depending on the use of
orthogonal or non-orthogonal wavelets, respectively. For the
purposes of this paper, we will discuss the discrete wavelet
transform (DWT). �e DWT is a decomposition of input
signals into a set of wavelet functions that are orthogonal to
its translations and scale. �e �rst and simplest DWT was
introduced by mathematician Alfred Haar [15] and is thus
named the Haar wavelet transform. �e Haar mother
wavelet function can be constructed using a unit step
function, u(t), as shown in (2).�e discretized version of the
Haar wavelet function is de�ned as (3), where t � q · Δt,
b � j · Δt, and a � K · Δt, Δt is the sampling period, and K is
the Haar window size in samples. Applying (3) in (1), the
expression for the discrete Haar wavelet transform can be
derived to be (4):

Ψ
t − b
a

( ) � u
t − b
a

( ) − 2u
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−
1
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FD(j, K) � ∑
N− 1

q�0
fD(q · Δt)ΨD

q − j
K

( ), (4)

where N is the number of data samples. When doing
computation in the quantum domain, there are e�cient
methods of classical-to-quantum encoding [28–30]. Clas-
sical signal samples can be encoded as the coe�cients of a
quantum state, which is in superposition of its constituent
basis states [28, 31]. �e signal samples are transformed to a
normalized sequence of amplitudes as shown in (5), where n
is the number of qubits,N � 2n is the number of basis states
of the quantum system, and |ψ〉 is the input quantum state.
By applying the wavelet transform on the input quantum
state, we can formulate the equivalent expression for the
quantum Haar wavelet transform (QHT) as (6), where
|ψ〉QHT is the output quantum state:

|ψ〉 � ∑
N− 1

q�0
f(q · Δt)|q〉, where ∑

N− 1

q�0
|f(q · Δt)|2 � 1, (5)

|ψ〉QHT �
1��
N

√ ∑
N− 1

j�0
∑
N− 1

q�0
f(q · Δt)ΨD

q − j
K

( )|j〉. (6)

�ere are many notable works on wavelets and appli-
cations of wavelet transforms [32–34]. We focused our
survey on works of wavelet transform applied in the �eld of
quantum information processing, i.e., quantum wavelet
transforms (QWT). Early work on the QWTwas reported in
[16], where the authors present gate-level circuits for the
quantum Haar wavelet and Daubechies D(4) wavelet. �ey
propose techniques for e�cient quantum implementation of
permutation matrices, which are required for factorization
of the unitary operations of the wavelet transforms. In [35],
the authors present quantum algorithms for Haar wavelet
transforms and demonstrate applications in analyzing the
multiscale structure of a dynamical system by logistic
mapping. �ey show the derivation of the quantum wavelet
transform by factoring the classical operators into direct
sums, direct products, and dot products, which is the same
approach in [16]. �e work in [36] also demonstrates similar
quantum circuits for QWT based on the well-known pyr-
amid and packet algorithms which are used in classical
DWT.�ework in [37] presents an analytical study of e�ects
of imperfections in quantum computation of a QWT-based
dynamical model. �ey propose a QWT-based algorithm for
the Daubechies wavelets. �e works in [38, 39] demonstrate
applications of QWTin image watermarking. Amore recent,
novel watermarking method is proposed in [18], where they
demonstrate improvement in invisibility and robustness of
the watermarked image. �e most recent work on QWT is
presented in [19], where the authors provide quantum
circuit derivations for the Haar and Daubechies wavelet
transforms. �e authors propose QHT circuits which con-
tain k levels of permutations, where k is the kernel size.

�e previous work on the QWT has mostly presented
circuits and software simulations, and no hardware imple-
mentations were reported. In comparison, our focus is on
e�cient hardware implementation of the QWT, and we
propose an optimized, low resource-intensive approach for
emulation on classical hardware. To the best of our knowledge,
our work is the �rst to (1) propose usingQHTfor reducing data
dimensionality and (2) provide hardware emulation archi-
tectures for QHT. Our approach is simpler and optimized for
emulation because it uses a single Haar kernel model and a pair
of permutation models, where the permutation models are
implemented as classical circuits. We propose classical circuits
for permutation because (1) quantum permutation circuits
implemented using multiple levels of swap operations
[16, 19, 35, 36] have large quantum cost, and (2) classical
permutation techniques such as index scheduling are space and
time e�cient for hardware implementation.

Moreover, among the previous work there have been no
experimental demonstrations of QWTs on actual quantum
hardware or on any quantum emulators. In our work, we

|ψ〉 = cos (θ/2) |0〉 + eiφsin (θ/2)|1〉

where, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π

= α|0〉 + β|1〉,

= cos (θ/2) |0〉 + (cosφ + i sinφ) sin (θ/2)|1〉θ

φ

|ψ〉
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z

Figure 1: Bloch sphere representation of a single qubit.
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present simplified architectures for implementing multilevel,
multidimensional QHT operations on classical hardware and
propose application of these methods in dimensionality re-
duction of particle tracking data in high-energy physics ap-
plications. Our proposed algorithms and architectures are
easily generalizable, compared to previous works. In addition,
our proposed architectures are more effective in utilizing
minimal quantum and classical hardware resources which is
more suited for dimension reduction. We experimentally
evaluate the architectures on a high-throughput and high-
accuracy FPGA quantum emulator. To the best of our
knowledge, this work is the first to present experimental
demonstrations of quantum wavelets used for dimension re-
duction in large-scale applications, e.g., LHC.

2.3.High-EnergyParticleDetectors. -eATLAS Fast Tracker
(FTK) is a hardware processor upgrade [9] for the Large
Hadron Collider (LHC) which has been developed for faster
reconstruction of tracks at 100 kHz. Details of the operating
principle, hardware components, and performance can be
found in [40]. -e reconstruction is done by matching
detector data with predefined track patterns that are stored
in associative memory on ASICs. -e data processing and
pattern matching are done using FPGA hardware. -e FTK
receives data from the ATLAS pixel detector and stores them
as clusters to reduce data size. -e clusters are arranged into
regions for parallel processing. In the processing units (PU),
the tracks are stored with full resolution on input FPGAs,
while other FPGA processors are responsible for converting
the stored data into coarser resolution segments. -is is
followed by comparison of the course-grained segments
with pre-stored Monte Carlo track patterns. -e coarse
granularity of the tracks can cause problems in identification
and pattern matching and lead to slower tracking perfor-
mance of the FTK. In this work, we propose QHTtechniques
to reduce dimensionality of full resolution data such as FTK
particle tracks. We also demonstrate an FPGA-based
hardware prototype that can be easily integrated into the
current FTK ATLAS architecture.

3. Methodology and Emulation Architectures

In this section, we elaborate ourmethodology that uses QHTto
achieve dimension reduction.We also detail the corresponding
emulation hardware architectures that were implemented [41].

3.1.DimensionReduction. -e classical wavelet transform has
been shown to achieve dimension reduction efficiently and can
be used in various applications that use hyperspectral data, for
example, remote sensing, mineralogy, and surveillance.
Depending on the type of data and the application in which
these data are being used, both 1D wavelet transform (1D-WT)
and 2Dwavelet transform (2D-WT) techniques can be used for
dimension reduction. For example, while the data in remote
sensing hyperspectral imagery is in the form of large 3D data
cubes, 1D wavelet transform (1D-WT) was previously pro-
posed [13, 14] for efficient dimensionality reduction of such
data cubes. In the experimental work in [14], five levels of

wavelet decomposition were used on images of size 217× 512
pixels by 192 bands to achieve ×32 reductions in data volume.
In current and future large-scale applications, the volume of
data can be overwhelming. For example, hyperspectral image
cubes are typically hundreds of pixels in width and height [13],
with 220–240 frequency bands [14]. -e ATLAS pixel detector
contains 1700 detection modules corresponding to 8 × 107
pixels [8] and has bandwidth capacity of 48Gb/s [11]. Hence, it
is necessary to investigate and apply newer paradigms of in-
formation processing and storage for supporting future ap-
plications at full bandwidths. In quantum information
processing, exponentially greater amount of information can
be held in the state of quantum system compared to a classical
binary system. -us, we propose using quantum information
processing techniques such as the QWT for the processing of
high volumes of data in large-scale applications. For example, a
64K× 64K image can be reduced to a smaller resolution of
32× 32 using a 32-qubit, 12-level QWT decomposition. -e
pixels are encoded as N basis states of a quantum state, where
N � 2n and n is the number of qubits, i.e., 32.

Our proposedmethodology for dimension reduction using
quantum wavelet transforms is shown in Figure 2 [41]. In our
proposed approach, each pixel of the input image is encoded as
a basis coefficient of a quantum state. Input image data first
undergoes a multidimensional quantum Haar transform, e.g.,
one-dimensional QHT (1D-QHT) or two-dimensional QHT
(2D-QHT) operation. -e operations can have multiple de-
composition levels and separate the input image into a number
of low frequency and high frequency replications, depending
on the number of decomposition levels. -e lowest frequency
image replication retains the principal components of the input
data without significant data loss.More importantly, themirror
images have reduced dimensionality and thus can be used for
reducing preprocessing overhead or communication band-
width congestion. Multidimensional inverse quantum Haar
transform (1D-IQHT or 2D-IQHT) is then applied to re-
construct the original data. -e 2D operations can be achieved
by cascading 1D operations and multiple permutation sets.

-e proposed kernel-based algorithms for multilevel 1D-
QHT and 2D-QHT are elaborated in Algorithms 1 and 2,
respectively. -e algorithms perform multilevel de-
compositions of 1D-QHTor 2D-QHToperations based on a
d-dimensional Haar wavelet kernel. -e kernel functionality
can be represented by a set of operations applied to some
input states/pixels and is preceded and followed by perfect
shuffle permutation operations [16] on the input and output
states/pixels. -e permutation operations are performed by
means of index calculations and scheduling. Algorithm 1
performs 1D-QHTon a set of input pixels, X, to produce an
output pixel set, Y. -e input pixels first undergo input
permutations, followed by 1D Haar kernel operations on 2
pixels every cycle, and output permutations. Algorithm 2
performs 2D-QHTon a set of input pixels, X, to produce an
output pixel set, Y. -e input pixels first undergo input
permutations, followed by 2D Haar kernel operations on 4
pixels every cycle, and output permutations.

To efficiently extract output state data, quantum-to-
classical readout techniques [28] such as quantum Fourier
transform (QFT) can be employed. However, this was not
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required to be implemented in this work as full emulation of
quantum computation was performed on classical hardware
and the output of the emulator is in classical representation.
For emulation, we develop circuit models based on these
algorithms and integrate them into reconfigurable hardware
architectures for multilevel, multidimensional (1D and 2D)
QHT and IQHT. -ese models and emulation architectures
are elaborated in the next section.

3.2. Quantum Haar Transform Kernel. -e Haar wavelet
kernel can be generalized by quantum operations using n
qubits and a d-dimension kernel as shown in (7), where ⊗ is
the Kronecker product [42], H is the Hadamard transform
[20], and I is an identity matrix. Here, a group of entangled
gates is denoted by the gate symbol with the size of the
equivalent operation matrix as subscript, for example, H2d .

-e quantum Haar function can be implemented using d
entangled H gates and n − d entangled I gates as shown in
(7). For example, the transformation matrix for 2D-QHT
with d � 2 can be derived as shown in (9):

UQHT � I2(n− d) ⊗ H2d , (7)

where

H2d � H⊗ H⊗ · · · ⊗ H􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽
d

,

I2(n− d) � I⊗ I⊗ · · · ⊗ I􏽼√√√√√√􏽻􏽺√√√√√√􏽽
(n− d)

,

H � H2 �
1
�
2

√
1 1

1 − 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

I � I2 �

1 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ,

(8)

where n⟹ number of qubits and d⟹ kernel dimension:

2D-QHT

2D-QHT

2D-QHT 2D-IQHT

1D-QHT
(Row
wise)

1D-QHT
(Column

wise) Haar 2D kernel
or

Figure 2: Dimension reduction using 2D-QHT and 2D-IQHT.

Input: X � [x0, x1, . . . xN− 1], nrows, ncols, nlevels
Output: Y � [y0, y1, . . . , yN− 1]

nstates � nrows × ncols � N

for ilevel � 1; ilevel ≤ nlevels; ilevel + + do
for igroup � 0; igroup < (nstates/2); igroup + + do
//Initial scheduler setup
icolGroup � ⌊igroup/(nrows/2)⌋
irowGroup � igroup − icolGroup × (nrows/2)

icol � icolGroup
irow � 2 × irowGroup
//Input Permutations/Scheduler
iX00

� irow + (icol × nrows)

iX10
� iX00

+ 1
X00⟵X[iX00

]

X10⟵X[iX10
]

//1D-QHT kernel
Y00 � (X00 + X10)/

�
2

√

Y10 � (X00 − X10)/
�
2

√

//Output Permutations/Scheduler
iY00

� (irow + (icol × nrows))/2
iY10

� iY00
+ (nrows/2)

Y[iY00
]⟵Y00

Y[iY10
]⟵Y10

end for
end for

ALGORITHM 1: Multilevel 1D quantum Haar transform.

Input: X � [x0, x1, . . . , xN− 1], nrows, ncols, nlevels
Output: Y � [y0, y1, . . . , yN− 1]

nstates � nrows × ncols � N

for ilevel � 1; ilevel ≤ nlevels; ilevel + + do
for igroup � 0; igroup < (nstates/4); igroup + + do
//Initial scheduler setup
icolGroup � ⌊igroup/(nrows/2)⌋
irowGroup � igroup − icolGroup × (nrows/2)

icol � 2 × icolGroup
irow � 2 × irowGroup
//Input Permutations/Scheduler
iX00

� irow + (icol × nrows)

iX10
� iX00

+ 1
iX01

� iX00
+ nrows

iX11
� iX01

+ 1
X00⟵X[iX00

]

X10⟵X[iX10
]

X01⟵X[iX01
]

X11⟵X[iX11
]

//2D-QHT kernel
Y00 � (X00 + X10 + X01 + X11)/2
Y10 � (X00 − X10 + X01 − X11)/2
Y01 � (X00 + X10 − X01 − X11)/2
Y11 � (X00 − X10 − X01 + X11)/2
//Output Permutations/Scheduler
iY00

� (irow + (icol × nrows))/2
iY10

� iY00
+ (nrows/2)

iY01
� iY00

+ (nstates/2)

iY11
� iY01

+ (nrows/2)

Y[iY00
]⟵Y00

Y[iY10
]⟵Y10

Y[iY01
]⟵Y01

Y[iY11
]⟵Y11

end for
end for

ALGORITHM 2: Multilevel 2D quantum Haar transform.
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U
2D
QHT � I2(n− 2) ⊗ H22 � I2n/4 ⊗ H4 � IN/4 ⊗ H4, (9)

where

H4 � H⊗ H �
1
2

1 1 1 1

1 − 1 1 − 1

1 1 − 1 − 1

1 − 1 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

3.3. Permutation Operations. Perfect shuffle permutation
on a given vector is described as partitioning the vector in
half and shuffling the top and bottom portions of the halves
[16]. In our algorithms for QHT and IQHT, we apply
similar input and output permutation operations before
and after applying the QHT kernel, respectively. -e QHT
kernel is performed on a set of k points, where k � 2d. An
input permutation operation involves dividing the input
vector of size N, into k groups, and selecting a state (pixel)
from every group(s), to be applied to the kernel operation.
For 1D-QHT and 2D-QHT operations, the input permu-
tations, P1D

in and P2D
in , are shown in (11) and (12), re-

spectively. An output permutation involves arranging the
pixels from k groups into a single output state sequence.
-e output permutation for 1D-QHT and 2D-QHT oper-
ations, P1D

out and P2D
out, are shown in (13) and (14),

respectively:

P
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⋮

x nrows( )

x nrows+1( )

⋮
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. (14)

3.4. Emulation Architectures. While developing the emula-
tion architectures for the proposed system, as an in-
termediate step, we design circuit models, illustrated in
Figures 3 and 4 for 1D- and 2D-QHT/IQHT, respectively.
-ese models are derived from the sequence of operations in
Algorithms 1 and 2 and can contain quantum and/or
classical circuits. -e 1D- and 2D-QHT models in
Figures 3(a) and 4(a), respectively, consist of input per-
mutation models (Pin), followed by Haar kernel models
(UQHT) and then output permutation models (Pout).-e 1D-
and 2D-IQHTmodels in Figures 3(b) and 4(b), respectively,
consist of inverse output permutation models (Pout)

− 1,
followed by Haar kernel models (UQHT) and then inverse
input permutation models (Pin)− 1. -e inverse models are
equivalent to the direct models, as the permutation oper-
ations are reversible. To achieve multilevel decompositions,
multiple iterations of the Haar kernel models are applied.
-e QHT and IQHT operations for 1D and 2D are sum-
marized as unitary transformations in (15) and (16), re-
spectively. -e emulation architectures of the 1D-QHT/
IQHT and 2D-QHT/IQHT are shown in Figures 5 and 6,
respectively. Since the hardware implementations of the 1D
and 2D are similar, we focus our following discussions on
the implementation of the 2D-QHTemulation architectures:

1D − QHT : P
1D
out · U

1D
QHT · P

1D
in ,

1D − IQHT : P
1D
in􏼐 􏼑

− 1
· U

1D
QHT · P

1D
out􏼐 􏼑

− 1
,

(15)

2D − QHT : P
2D
out · U

2D
QHT · P

2D
in ,

2D − IQHT : P
2D
in􏼐 􏼑

− 1
· U

2D
QHT · P

2D
out􏼐 􏼑

− 1
.

(16)

As shown in Figures 4(a) and (16), the first step in the
2D-QHT operation is the input permutation P2D

in , which is
described by (12). -e permutations can be modeled as
quantum circuits with multiple swap gates, but that would
incur high resource utilization in the corresponding emu-
lation architecture. For this reason, we use classical models
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that involve simple index scheduling, and the corresponding
emulation architecture is shown in Figure 6(a).-e input is a
vector of quantum state coefficients which are written to a
memory array in the index order 0 to N − 1. Four coefficient
values are then read out each clock cycle, with the scheduler
generating the read indices iX00

, iX01
, iX10

, and iX11
according

to the input permutation, see Algorithm 2 and (12). -e
scheduler maintains a counter, row index irow, and a column
index icol to calculate the output indices. Multiplications and
divisions by powers of two are replaced by logical shifts for
optimizing area and speed. -e scheduler also requires a
floor operation unit.

As shown in Figures 4(b) and (9), the 2D-Haar trans-
formation, U2D

QHT, is modeled using a pair of Hadamard
gates. -e Hadamard pair operation reduces to kernel op-
erations on a set of four coefficients as we described in
Algorithm 2. -e emulation architecture for the 2D-Haar
kernel is shown in Figure 6(b).-e design takes in four input
coefficients, applies the kernel operations which involve
addition and division, and outputs four coefficients per clock
cycle. Conventional operator sharing techniques and logical
shifts are applied to optimize for speed and area.

-e final step in the 2D-QHT operation is the output
permutation, P2D

out, described by (14). -e corresponding
emulation architecture is shown in Figure 6(c) and works
similar to the input permutation scheduler. -e input
vector of coefficients are written to a memory array, four
values per clock cycle, with the scheduler generating the
write indices iY00

, iY01
, iY10

, and iY11
according to the output

permutation described in Algorithm 2. -e permuted
coefficients are then read out from memory 4 values per
clock cycle.

-e emulation hardware architectures, i.e., input/output
schedulers and 1D/2D Haar kernels, were integrated into a
reconfigurable quantum emulator design based on our
previous works [21, 22], whose high-level architecture is

shown in Figure 7. -e emulator stores input and output
quantum states as vectors of the state coefficients and core
kernel operations are extracted from the input quantum
algorithm. -e input state vector goes through the input
permutations (input schedulers) before the kernel operation
is applied iteratively across each state. To get the correct final
quantum state that represents the transformed data, the
output permutation (output schedulers) is applied. -e
architecture uses a fully pipelined dataflow architecture and
supports single and double-precision floating-point arith-
metic. For example, each quantum state coefficient is
complex and is modeled in 32 bit floating-point precision for
the real and imaginary components, respectively. -e em-
ulator also supports features such as fully-entangled input
quantum state preparation from a set of input qubits and
output quantum state measurement as a classical bit string.
-e emulator is generic and can efficiently run a given
quantum algorithm that can be reduced to its corresponding
unitary transformation.

4. Experimental Work

-e experimental work was performed on DS8, a state-of-
the-art high-performance reconfigurable computing
(HPRC) system developed by DirectStream [25]. On the DS8
platform, developers can build applications on hardware
systems ranging from single-node compute instances to
multinode structures, see Figure 8. A single C2 compute
node of the DS8 system is equipped with a high-end Intel-
Altera Arria 10AX115N4F45E3SG FPGA, with on-chip
resources such as adaptive logic modules (ALMs), block
RAMs (BRAMs), digital signal processors (DSPs), and on-
board resources such as two 32GB SDRAM memory banks
and four 8MB SRAM memory banks, as shown in Figure 8.
A user-friendly programming environment, previously
known as Carte-C [43], is integrated into the DS hardware

1D-QHT

|qn–1〉
|qn–2〉

|q1〉
|q0〉 H

Pin UQHT
1D 1D 1DPout

(a)

1D-IQHT

|qn–1〉
|qn–2〉

|q1〉
|q0〉 H

UQHT
1DPout

–11D Pin
–11D

(b)

Figure 3: (a) 1D-quantum Haar transform circuit. (b) 1D-inverse quantum Haar transform circuit.

2D-QHT

|qn–1〉
|qn–2〉

|q1〉
|q0〉 H

H
UQHTPin

2D 2D 2DPout

(a)

2D-IQHT

|qn–1〉
|qn–2〉

|q1〉
|q0〉 H

H
Pout

–1
UIQHT

2D2D Pin
–12D

(b)

Figure 4: (a) 2D-quantum Haar transform circuit. (b) 2D-inverse quantum Haar transform circuit.
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systems. A high-level language (HLL) facilitates the devel-
opment of complex, parallel, and reconfigurable codes in an
efficient manner. -e study in [44] showed that Carte-C has
a highly productive environment, short acquisition time,
and short learning time as well as a short development time.
-e DS8 architecture provides a combination of high per-
formance, high scalability, runtime reconfiguration, and ease
of use.

-e QHT and IQHT architectures were implemented
using C++ on the DS8 programming environment. Input

images with a resolution of up to 1024 × 1024, and 256
shades of grayscale pixels, were used to test the designs.
MATLAB was used to convert the images into greyscale,
generate the input vectors for DS8, and reconstruct images
from the output vectors. Synthesis and hardware builds
were performed using Quartus Prime Version 17.02 on the
DS8 environment. Figure 9(a) shows one of the input
images converted to greyscale, and Figure 9(b) is the output
after a 1D-QHT operation with 1 level of decomposition.
Figure 9(c) is the output after a 1D-QHT operation with 2
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Figure 5: Emulation architectures for the (a) 1D input permutation, (b) 1D-Haar kernel, and (c) 1D output permutation.

irowGroup

nrows

irow

icol

iX00
iX10

iX01
iX11icolGroup

igroup

x0x1x(nrows)x(nrows+1)

x(N–1)

...
...

...
...

x0x1x2x3

x(N–1)

...
...

...
...

Memory
X = [x0, x1, x2, x3, ..., x(N–1)]

clk rst

floor

>>1

<<1

<<1

mod – (N/4)
counter

P2D
in

÷

1

1

(a)

X00

X10

X11

X01

Y00

Y10

Y11

Y01

>>1

>>1

>>1

>>1

2D-QHT kernel

(b)

nrows nstates

irowGroup irow

icol

iY00
iY01

iY11icolGroup

igroup

y0y1y2y3

y(N–1)

...
...

...
...

y0

y1y((nrows/2)+
(N/2))

y(nrows/2)

y(N–1)

...
...

...
...

Memory
Y = [y0, y1, y2, y3, ..., y(N–1)]

clkrst

floor

>>1

>>1 >>1

>>1
>>1

mod – (N/4)
counter

P2D
out

÷

iY10

(c)

Figure 6: Emulation architectures for the (a) 2D input permutation, (b) 2D-Haar kernel, and (c) 2D output permutation.
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levels of decomposition, and Figure 9(d) shows the
reconstructed images after a 1D-IQHT operation was ap-
plied. Figures 10(a)–10(d) show the results from repeating
the experiment using the 2D-QHT and 2D-IQHT
architectures.

Resource utilizations from the hardware implementa-
tions are summarized in Tables 1 and 2 for 1D and 2D,
respectively. �e on-chip resources (ALMs, BRAMs, DSPs)
are used up in implementing the static components of the
design such as counters, adders, and shift operators and
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hence are constant as the emulated circuit size (number of
qubits) increases. -e low on-chip resource utilizations
indicate that our proposed approach and emulation archi-
tecture designs are highly space-efficient. -e 1D-QHT ar-
chitecture consumes lower on-chip resources than 2D-QHT
due to its less complex kernel operations. -e low resource
utilizations also indicate the flexibility of the QHTand IQHT
designs for integrating with larger algorithms.

-e SDRAM memory requirements for storage of the
input and output images as quantum state vectors are also
reported in Tables 1 and 2. For the highest resolution image
of size 1024 × 1024, the pixels occupy 25% of the total on-
board SDRAM memory (64GB) available on a single DS
node. -e pixels of the input images are encoded as basis
coefficients of a quantum state. For example, to store 16 ×

16 or 256 pixels, we need 256 complex coefficients each of
which have a real and imaginary component occupying
total 2 × 4 � 8 bytes in 32 bit floating-point representation.
-erefore, for storing both input and output images, 2 ×

256 × 8 � 4096 bytes of memory was required. -e ob-
tained memory usages for larger QHT circuits are con-
sistent with expected values.

-e hardware designs on the FPGA were pipelined to
ensure a constant and high operating frequency of 233MHz.
-e obtained emulation times for high resolution images are
also feasible. For a 1024 × 1024 image, 20 qubits were suf-
ficient for achieving dimension reduction using 1D-QHT
and 2D-QHT. From our experimental results, we observe
that the emulation time increases linearly with increase
in the number of image pixels (states), as illustrated in
Figure 11. -is is because a large portion of the emulation
time is dedicated to writing in and reading out the input/
output state vectors of size N (number of pixels); hence, the
emulation time complexity is O(N). -is indicates the
benefit of using quantum encoding of data, i.e., encoding
each image pixel as a basis state coefficient in the quantum
state space. Finally, the emulation times for 1D-QHT are
higher than 2D-QHT because of the higher number of it-
erations N/2 in the 1D algorithm, compared to N/4 itera-
tions in the 2D algorithm, see Algorithms 1 and 2.

In general, on a classical emulation platform, the em-
ulation execution time increases with both the spatial and
temporal complexities of the quantum circuit. In other
words, the emulation time of a quantum circuit on a classical

(a) (b)

(c) (d)

Figure 9: Experimental results of multilevel decomposition and reconstruction with 1D-QHTand 1D-IQHT. (a) Original image. (b) 1-level
1D-QHT. (c) 2-level 1D-QHT. (d) Reconstructed image using 1D-IQHT.
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(a) (b)

(c) (d)

Figure 10: Experimental results of multilevel decomposition and reconstruction with 2D-QHT and 2D-IQHT. (a) Original image.
(b) 1-level 2D-QHT. (c) 2-level 2D-QHT. (d) Reconstructed image using 2D-IQHT.

Table 1: 1D-QHT implementation results on Arria 10AX115N4F45E3SG FPGA.

Number of pixels Number of qubits
Resource utilization∗ (%)

SDRAM∗∗ (bytes) Emulation time (sec)
ALMs BRAMs DSPs

16×16 8 11 8 1 4K 0.00018
32× 32 10 11 8 1 16K 0.00071
64× 64 12 11 8 1 64K 0.00285
128×128 14 11 8 1 256K 0.01139
256× 256 16 11 8 1 1M 0.04557
512× 512 18 11 8 1 4M 0.18226
1024×1024 20 11 8 1 16M 0.72905
∗Total chip resources: NALM � 427,200; NBRAM � 2,713; NDSP � 1,518. ∗∗Total on-board SDRAM memory: 2 parallel banks of 32GB each.

Table 2: 2D-QHT implementation results on Arria 10AX115N4F45E3SG FPGA.

Number of pixels Number of qubits
Resource utilization∗ (%)

SDRAM∗∗ (bytes) Emulation time (sec)
ALMs BRAMs DSPs

16×16 8 14 9 2 4K 0.00012
32× 32 10 14 9 2 16K 0.00047
64× 64 12 14 9 2 64K 0.00187
128×128 14 14 9 2 256K 0.00746
256× 256 16 14 9 2 1M 0.02982
512× 512 18 14 9 2 4M 0.11926
1024×1024 20 14 9 2 16M 0.47704
∗Total chip resources: NALM � 427,200; NBRAM � 2,713; NDSP � 1,518. ∗∗Total on-board SDRAM memory: 2 parallel banks of 32GB each.
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platform is generally a function of both the circuit width
(number of qubits) and depth (number of gate levels). Due
to optimizations and encoding techniques we used, the
emulation time of our proposed emulation architectures is
a function of only the quantum circuit width (number of
qubits), as shown by our experimental results. On state-of-
the-art superconducting NISQ devices [45, 46], the exe-
cution time is a function of only the depth (number of gate
levels) of the circuit [47]. For our proposed 1D-QHT and
2D-QHT circuits, which are simple quantum circuits of
depth 1, we estimate an execution time of 0.01ms on a
typical NISQ device processing a 7 × 7 qubit array with
sampling frequency of 100 kHz [47]. -e estimated exe-
cution time is constant for a fixed circuit depth and
variable number of qubits in the quantum processing unit
(QPU) array; i.e., the time complexity is theoretically O(1).
In comparison, the time complexity of our emulation is
O(N).

Our emulation experiments and implementations help
in validating the functionality and feasibility of the proposed
QHT-based methodology in achieving dimension reduction
of high-resolution images. -e emulation provides impli-
cations for the proposed system’s application in fast, efficient
processing of particle tracking data in the large-scale, high-

energy physics domain. -e emulation is memory-bound by
the resources on a single DS FPGA node. For larger-scale
emulation, the on-board memory has to be increased, or
multi-node, and/or multichassis architectures of the DS
system can be utilized in conjunction with efficient sched-
uling techniques and high-bandwidth networks [22].

We further quantitatively compare our obtained ex-
perimental results with the existing FPGA-based emulation
work [48–53] as shown in Table 3. Among the related work
on FPGA emulation of quantum circuits, our emulator has
the capability of emulating the largest quantum circuits
(QFT, QHT, and Grover’s search), with highest operating
frequency (233MHz) and high precision (32 bit floating-
point). Current FPGA hardware-emulators have many
discrepancies (missing resource utilization, operating fre-
quency, and emulation time) in the reporting of their results
which makes a comprehensive comparison difficult. In our
comparison, we included only hardware emulators, as most
parallel-software-simulators are based on large-scale su-
percomputers such as Summit [47] and Sunway [54], which
are extremely costly, power-hungry, and resource-hungry
and are not comparable with FPGA-emulators. Also, they
provide simulations of random quantum circuits and not full
quantum algorithms.
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Figure 11: Emulation time as a function of data size (number of pixels).

Table 3: Comparison of the proposed work against previous works of FPGA emulation.

Reported work Algorithm Number of qubits Precision Frequency (MHz) Emulation time (sec)
Fujishima [48] Shor’s factoring — — 80 10

Khalid et al. [49] QFT 3 16 bit fixed pt. 82.1 61E − 9
Grover’s search 3 16 bit fixed pt. 82.1 84E − 9

Aminian et al. [50] QFT 3 16 bit fixed pt 131.3 46E − 9

Lee et al. [51] QFT 5 24 bit fixed pt. 90 219E − 9
Grover’s search 7 24 bit fixed pt. 85 96.8E − 9

Silva et al. [52] QFT 4 32 bit floating pt. — 4E − 6
Pilch et al. [53] Deutsch 2 — — —

Mahmud et al. [22] QFT 5 32 bit floating pt. 233 4.63E − 4†
Grover’s search 5 32 bit floating pt. 233 4.38E − 7†

Proposed work
QFT 20 32 bit floating pt. 233 18.4
QHT 20 32 bit floating pt. 233 0.477

Grover’s search 22 32 bit floating pt. 233 7.5E04
†Results obtained at a later time to publication.
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5. Conclusions

Quantum information processing and quantum computing
will have significant implications in the future of computing
technology. As current quantum technology continues to
improve, there is a great need to investigate useful appli-
cations in quantum information theory. In this work, we
presented a first effort, to the best of our knowledge, to
efficiently reduce data dimensionality using quantum pro-
cessing methods such as quantum wavelet transform. We
propose to apply these techniques in physics applications
that investigate high-energy particle detection and tracking,
where dimension reduction helps to reduce communication
bandwidth and speedup preprocessing computations. Our
proposed architectures are simpler and optimized for
hardware implementation than previously reported works.
We demonstrated the minimal resource utilization, high
performance/throughout, and high precision of the pro-
posed architectures. We prototyped our designs on a
quantum emulator and demonstrated the feasibility of
proposed techniques by conducting experiments using high-
resolution test image data.

Due to limitations of the current state of quantum
technology, e.g., cost, availability, and current scale (size) of
quantum processors, it is beyond the scope of this work to
actually implement the system and measure performance.
Although not yet integrated with the ATLAS FTK project,
the proposed approach and emulation hardware archi-
tectures are feasible for future implementations, with the
maturing of current quantum technology. For future in-
tegration into the ATLAS FTK project, data conversion
techniques such as quantum-to-classical and classical-to-
quantum, which are heavily-researched current topics,
must be perfected first, and we plan to conduct in-
vestigations of these techniques in our future work. Our
future plans also include application of the proposed
methods using real HEP data and combining QHT with
Grover’s search algorithm as a complete solution to HEP
FTK problems. We will also investigate 3D-QHT, Dau-
bechies wavelet transforms, and their application for real-
time data streaming.
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