
Research Article
Implementing and Evaluating an Heterogeneous, Scalable,
Tridiagonal Linear System Solver with OpenCL to Target FPGAs,
GPUs, and CPUs

Hamish J. Macintosh ,1,2 Jasmine E. Banks ,1 and Neil A. Kelson2

1School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane,
Queensland 4001, Australia
2eResearch Office, Division of Research and Innovation, Queensland University of Technology, Brisbane,
Queensland 4001, Australia

Correspondence should be addressed to Hamish J. Macintosh; hj.macintosh@hdr.qut.edu.au

Received 27 February 2019; Revised 3 August 2019; Accepted 6 September 2019; Published 13 October 2019

Guest Editor: Sven-Bodo Scholz

Copyright © 2019 Hamish J. Macintosh et al. /is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Solving diagonally dominant tridiagonal linear systems is a common problem in scientific high-performance computing (HPC).
Furthermore, it is becomingmore commonplace for HPC platforms to utilise a heterogeneous combination of computing devices.
Whilst it is desirable to design faster implementations of parallel linear system solvers, power consumption concerns are in-
creasing in priority. /is work presents the oclspkt routine. /e oclspkt routine is a heterogeneous OpenCL implementation of the
truncated SPIKE algorithm that can use FPGAs, GPUs, and CPUs to concurrently accelerate the solving of diagonally dominant
tridiagonal linear systems. /e routine is designed to solve tridiagonal systems of any size and can dynamically allocate optimised
workloads to each accelerator in a heterogeneous environment depending on the accelerator’s compute performance. /e
truncated SPIKE FPGA solver is developed first for optimising OpenCL device kernel performance, global memory bandwidth,
and interleaved host to device memory transactions. /e FPGA OpenCL kernel code is then refactored and optimised to best
exploit the underlying architecture of the CPU and GPU. An optimised TDMA OpenCL kernel is also developed to act as a serial
baseline performance comparison for the parallel truncated SPIKE kernel since no FPGA tridiagonal solver capable of solving
large tridiagonal systems was available at the time of development. /e individual GPU, CPU, and FPGA solvers of the oclspkt
routine are 110%, 150%, and 170% faster, respectively, than comparable device-optimised third-party solvers and applicable
baselines. Assessing heterogeneous combinations of compute devices, the GPU+FPGA combination is found to have the best
compute performance and the FPGA-only configuration is found to have the best overall estimated energy efficiency.

1. Introduction

Given the ubiquity of tridiagonal linear system problems in
engineering, economic, and scientific fields, it is no surprise
that significant research has been undertaken to address the
need for larger models and higher resolution simulations.
Demand for solvers for massive linear systems that are faster
and more memory efficient is ever increasing. First proposed
in 1978 by Sameh and Kuck [1] and later refined in 2006 [2],
the SPIKE algorithm is becoming an increasingly popular
method for solving banded linear system problems [3–7].

/e SPIKE algorithm has been shown to be an effective
method for decomposing massive matrices whilst remaining
numerically stable and demanding little memory overhead
[8]. /e SPIKE algorithm has been implemented with good
results to solve banded linear systems using CPUs and GPUs
and in CPU+GPU heterogeneous environments often using
vendor-specific programming paradigms [6].

A scalable SPIKE implementation targeting CPUs and
GPUs in a clustered HPC environment to solve massive
diagonally dominant linear systems has previously been
demonstrated with good computation and communication

Hindawi
International Journal of Reconfigurable Computing
Volume 2019, Article ID 3679839, 13 pages
https://doi.org/10.1155/2019/3679839

mailto:hj.macintosh@hdr.qut.edu.au
https://orcid.org/0000-0002-1543-4499
https://orcid.org/0000-0003-1507-9682
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3679839

efficiency [5]. Whilst it is desirable to design faster imple-
mentations of parallel linear system solvers, it is necessary
also to have regard for power consumption, since this is a
primary barrier to exascale computing when using tradi-
tional general purpose CPU and GPU hardware [9, 10].

FPGA accelerator cards require an order of magnitude
less power compared to HPC grade CPUs and GPUs.
Previous efforts in developing FPGA-based routines to solve
tridiagonal systems have been limited to solving small
systems with the serial /omas algorithm [11–13]. We have
previously investigated the feasibility of FPGA imple-
mentations of parallel algorithms including the parallel
cyclic reduction and SPIKE [14] for solving small tridiagonal
linear systems. /is previous work utilised OpenCL to
produce portable implementations to target FPGAs and
GPUs. /e current work again utilises OpenCL since this
programming framework allows developers to target a wide
range of compute devices including FPGAs, CPUs, and
GPUs with a unified language.

An OpenCL application consists of C-based kernel code
intended to execute on a compute device and C/C++ host
code that calls OpenCL API’s to set up the environment and
orchestrate memory transfers and kernel execution. In
OpenCL’s programming model, a device’s computer re-
sources are divided up at the smallest level as processing
elements (PEs), and depending on the device architecture,
one or more PEs are grouped into one or many compute
units (CUs) [15]. Similarly, the threads of device kernel code
are called work items (WIs) and are grouped into work
groups (WGs). WIs and WGs are mapped to the PE and CU
hardware, respectively.

OpenCL’s memory model abstracts the types of
memory that a device has available. /ese are defined by
OpenCL as global, local, and private memory. Global
memory is generally hi-capacity off-chip memory banks
that can be accessed by all PEs across the device. Local
memory is on-chip memory and has higher bandwidth and
lower capacity than global memory and is only accessible to
PE of the same CU. Finally, private memory refers to on-
chip register memory space and is only accessible within a
particular PE.

/e motivation for this paper is to evaluate the feasibility
of utilising FPGAs, along with GPUs and CPUs concurrently
in a heterogeneous computing environment in order to
accelerate the solving of a diagonally dominant tridiagonal
linear system. In addition, we aimed at developing a solution
that maintained portability whilst providing an optimised
code base for each target device architecture and was capable
of solving large systems. As such, we present the oclspkt
routine, an heterogeneous OpenCL implementation of the
truncated SPIKE algorithm that can dynamically load bal-
ance work allocated to FPGAs, GPUs, and CPUs concur-
rently or in isolation, in order to solve tridiagonal linear
systems of any size. We evaluate the oclspkt routine in terms
of computational characteristics, numerical accuracy, and
estimated energy consumption.

/is paper is structured as follows: Section 2 provides
an introduction to diagonally dominant tridiagonal linear
systems and the truncated SPIKE algorithm. Section 3

describes the implementation of the oclspkt-FPGA
OpenCL host and kernel code and the optimisation pro-
cess. /is is followed by the porting and optimisation of
the oclspkt-FPGA kernel and host code to the GPU and
CPU devices as oclspkt-GPU and oclspkt-CPU. Section 3
concludes with discussion of the integration of the three
solvers to produce the heterogeneous oclspkt solver. In
Section 4, the individual solvers are compared to optimised
third-party tridiagonal linear systems solvers. /e three
solvers are further compared in terms of estimated energy
efficiency, performance, and numerical accuracy in ad-
dition to an evaluation of different heterogeneous com-
binations of the oclspkt. Finally, in Section 5, we draw
conclusions from the results and discuss the implications
for future work.

2. Background

2.1. Tridiagonal Linear Systems. A coefficient band matrix
with a bandwidth of β � 1 in the linear system Ax � y is
considered tridiagonal:

A �

a1,1 a1,2

a2,1 a2,2 a2,3

⋱ ⋱ ⋱

an− 1,n− 2 an− 1,n− 1 an− 1,n

an,n− 1 an,n

⎡⎢⎢⎣

⎤⎥⎥⎦

, (1)

d � min
Ai,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐i≠j Ai,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (2)

For nonsingular diagonally dominant systems where
d> 1 in equation (2), a special form of nonpivoting
Gaussian elimination called the /omas algorithm [16] can
perform LU decomposition in Θ(n) operations. /e
/omas algorithm provides good performance when
solving small tridiagonal linear systems; however, since this
algorithm is intrinsically serial, it fails to scale well in highly
parallel computing environments. More advanced, in-
herently parallel methods must be applied if the problem
requires solving large systems. Many parallel algorithms
exist for solving tridiagonal and block tridiagonal linear
systems and are implemented in well-established numerical
libraries [17–19].

2.2. ,e SPIKE Algorithm. /e SPIKE algorithm [2] is a
polyalgorithm that uses domain decomposition to partition
a banded matrix into mutually independent subsystems
which can be solved concurrently. Consider the tridiagonal
linear system AX � Y where A is n × n in size with only a
single right-hand side vector Y. We can partition the system
into p partitions of m elements, where k � (1, 2, . . . , p), to
give a main diagonal partition Ak, off-diagonal partitions Bk

and Ck, and the right-hand side partition Yk:

2 International Journal of Reconfigurable Computing

Ak �

ai,j ai,j+1

ai+1,j ai+1,j+1 ai+1,j+2

⋱ ⋱ ⋱

ai+m− 2,j+m− 3 ai+m− 2,j+m− 2 ai+m− 2,j+m− 1

ai+m− 1,j+m− 2 ai+m− 1,j+m− 1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

,

Bk, Ck, Yk􏼂 􏼃 �

0 amk+1,m(k− 1) ymk

⋮ ⋮ ⋮

am(k+1)− 1,m(k+1) 0 ym(j+1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3)

/e coefficient matrix partitions are factorised so A �

DS where D is the main diagonal block matrix and S is the
SPIKE matrix as shown in the following equation:

DS �

A1

A2

⋱ ⋱ ⋱

Ap− 1

Ap

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

·

I V1

W2 I V2

⋱ ⋱ ⋱

Wp− 1 I Vp− 1

Wp I

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

.

(4)

where Vk � (Ak)− 1Bk for k � 1, . . . , p − 1 and
Wk � (Ak)− 1Bk for k � 2, . . . , p. By first solving DF � Y,
the solution can be retrieved by solving SX � F. As SX � F is
the same size as the original system, solving for X can be
simplified by first extracting a reduced system of the
boundary elements between partitions to form 􏽢S 􏽢X � 􏽢F as
shown in equation (5), where t and b denote the top- and
bottommost elements of the partition:

1 0 Vt
1 0

0 1 Vb
1 0

0 Wt
2 1 0

0 Wb
2 0 1

⋱ ⋱ ⋱

1 0 Vt
p− 1 0

0 1 Vb
p− 1 0

0 Wt
p 1 0

0 Wb
p 0 1

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

·

Xt
1

Xb
1

Xt
2

Xb
2

⋮

Xt
p− 1

Xb
p− 1

Xt
p

Xb
p

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

�

Ft
1

Fb
1

Ft
2

Fb
2

⋮

Ft
p− 1

Fb
p− 1

Ft
p

Fb
p

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (5)

/e reduced system 􏽢S is a sparse banded matrix of size
2p × 2p and has a bandwidth of 2. Polizzi and Sameh [2]
proposed strategies to handle solving the reduced system.
/e truncated SPIKE algorithm states for a diagonally
dominant system where d> 1 (equation (2)) the reduced
SPIKE partitions Vt

k and Wb
k can be set to zero [2]. /is

truncated reduced system takes the form of p − 1 in-
dependent systems as shown in equation (6) which can be
solved easily using direct methods:

1 Vb
k

Wt
k+1 1

⎡⎣ ⎤⎦
Xb

k

Xt
k+1

⎡⎣ ⎤⎦ �
Fb

k

Ft
k+1

⎡⎣ ⎤⎦, k � 1, . . . , p − 1. (6)

With 􏽢X computed, the remaining values of X can be
found with perfect parallelism using the following equation:

A1X1 � F1 − Vb
1X

t
2,

AkXk � Fk − Vb
kXt

k+1 − Wt
kXb

k− 1, k � 2, . . . , p − 1.

ApXp � Fp − Wt
pXb

p− 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Mikkelsen and Manguoglu [20] conducted a detailed
error analysis of the truncated SPIKE algorithm and showed
that a reasonable approximation of the upper bound of the
infinity norm is dependent on the degree of diagonal
dominance, the partition size, and bandwidth of the matrix
given by

|􏽢x − x|∞ ≈ d
− m/β

. (8)

3. Implementation

/e general SPIKE algorithm consists of four steps: (1)
partitioning the system, (2) factorising the partitions, (3)
extracting and solving the reduced system, and (4) re-
covering the overall solution.

For diagonally dominant tridiagonal linear systems, the
truncated SPIKE algorithm may be employed. /is requires
only the bottom SPIKE element vb

km and top SPIKE element
wt

km+1 in order to resolve the boundary unknown elements
xb

km and xt
km+1 [2]. /is decouples the partition from the rest

of the matrix and can be achieved by performing only the
forward-sweep steps of LU factorisation, referred to as LUFS,
and forward-sweep steps of UL factorisation, referred to as
ULFS. LUFS and ULFS will be computed for partitions k and
k + 1 for k � 1, 2, . . . , p − 1.

/e factorised right-hand side elements fb
km and ft

km+1
and SPIKE elements wt

km+1 and vb
km are used to form and

solve the reduced system 􏽢SkX̂k � 􏽢Fk using equation (6) to
produce xb

km and xt
km+1. /is algorithmic step is referred to

as RS.
/e remaining elements of the solution Xk can then be

recovered with equation (7) via the back-sweep step of LU,
referred to as LUBS, and the back-sweep step UL factor-
isation, referred to as ULBS, on the top and bottom half of the
partitions k and k + 1, respectively. We use the /omas
algorithm to compute the forward- and back-sweep fac-
torisation steps giving the overall complexity of our trun-
cated SPIKE algorithm as O(n). A high-level overview of the
anatomy and execution flow of our oclspkt routine is shown
in Figure 1. /e oclspkt solver expects the size of the system
n, the RHS vector Y, and the tridiagonal matrix split into
vectors of its lower diagonal L, main diagonal D, and upper
diagonal U as inputs. /e solution vector X is returned.

In the following subsections, we describe the truncated
SPIKE algorithm implementation for the FPGA (oclspkt-
FPGA) using OpenCL and the development considerations
to obtain optimised performance. As a part of this process,
we design and implement an optimised TDMA OpenCL
kernel to act as a serial baseline performance comparison for

International Journal of Reconfigurable Computing 3

the parallel truncated SPIKE kernel. Since the optimised
TDMA implementation is constrained by the available
global memory bandwidth, we are able to make genuine
comparisons of FPGA hardware utilisation and computa-
tional complexity for these two kernels.

We then discuss the process of porting and optimising
the oclspkt code for CPU and GPU. Finally, we describe
integrating the three oclspkt (FPGA, GPU, and CPU)
implementations as a heterogeneous solver. /e specific
hardware we target for these implementations are Bittware
A10PL4 FPGA, NVIDIA M4000 GPU, and the Intel Xenon
E5-1650 CPU.

3.1. FPGAImplementation. In order to take advantage of the
FPGA’s innate pipelined parallelism, we implement both the
TDMA and truncated SPIKE algorithm as single work item
kernels. A single work item kernel has no calls to the
OpenCL API for the local or global relative position in a
range of work items. /is allows the Intel FPGA compiler to
pipeline as much of the kernel code as possible, whilst not
having to address WI execution synchronisation and access

to shared memory resources. /is reduces the OpenCL
FPGA resource consumption overhead, allowingmore of the
logic fabric to be used for computation.

3.1.1. TDMA Kernel Code. We found no suitable FPGA
implementation of a tridiagonal linear system solver able to
solve large systems. In order to provide a suitable perfor-
mance baseline for the more complex SPIKE algorithm, we
implemented the /omas algorithm or TDMA with
OpenCL. /e TDMA implementation calculates the for-
ward-sweep and backsubsitution for one block of the input
system at a time, effectively treating the FPGA’s on-chip
BRAM as cache for the current working data. /e block size
m is set as high as possible and is only limited by the available
resources on the FPGA. An OpenCL representation of the
kernel implementation is shown in Figure 2.

/e forward-sweep section loadsm elements of the input
vectors L, D, U, Y, from off-chip DDR4 RAM to on-chip
BRAM. With this input, the upper triangular and modified
RHS is calculated, overwriting the initial values of D and Y.
D and Y are then written back to DDR4 RAM due to BRAM
limitation on the FPGA. /e forward-sweep section iterates
over 1, . . . , p blocks. /e back-substitution section loadsm
elements of D, U, and Y vectors and writes m elements of X

after recovering the solution via back-substitution./e back-
substitution section iterates over p, . . . , 1 blocks.

3.1.2. Truncated SPIKE Kernel Code. An OpenCL algorithm
representation of the truncated SPIKE kernel spktrunc is
shown in Figure 3. /e FPGA oclspkt implementation ex-
ecutes p iterations of its main loop, loading one block of the
linear system given, where block size is m, and we solve 1
partition per iteration of the main loop.

A partition of size m is loaded from global memory and
partitioned as per equation (3). LUFS(k) and ULFS(k) are
executed concurrently to compute and store half of the
upper and lower triangular systems [D′UY′]k((m/2); m)

and [LD′Y′]k(1; (m/2)), and the SPIKE elements vb
k andwt

k,
respectively. Next, using yb

k− 1 and vb
k− 1 from the previous

iteration and yt
k and wt

k as inputs for RS(k), the boundary
elements xb

k− 1 and xt
k are computed.

Finally, Xk(1; (m/2)) and Xk− 1((m/2); m) are then
recovered with ULBS(k) and LUBS(k − 1) of [LD′Y′]k

(1; (m/2)) and [D′UY′]k− 1((m/2); m). [D′UY′]k

((m/2); m) and vb
k are stored for the next iteration of the

main loop. /e FPGA solver is initialised with an upper
triangular identity matrix in [D′UY′]k− 1((m/2); m) for
k � 0.

/is results in a streaming linear system solver where
loading in a block of partitions at the start of the pipeline will
compute a block of the solution vector with a − (m/2) ele-
ment offset.

3.1.3. Host Code. On the host side, in order to interleave the
PCIe memory transfers to the device with the execution of
the solver kernel, we create in-order command queues for
writing to, executing on, and reading from the FPGA.

oclspkt-FPGA

O
pe

nC
L

de
vi

ce
ho

st
co

de

O
pe

nC
L

ke
rn

el
 co

de
H

et
er

og
en

eo
us

w
ra

pp
er

 co
de

GPU

GPU

CPU

CPU

FPGA

FPGA

OpenCL platform
initialisation

Partitioning and
load balancing

Recover
boundary
solutions

Input
{n, L, D, U, Y}

Output
{X}

oclspkt-GPU oclspkt-CPU

oclspkt

Execution location:
FPGA card
GPU card
Host CPU

Figure 1: An overview of the anatomy and execution flow of the
oclspkt solver.

4 International Journal of Reconfigurable Computing

We create two copies of read-only memory objects
L, D, U, Y and a write-only memory object X. /e spktrunc
kernel and the FPGA’s DMA controller for the PCIe bus
share the total bandwidth of the DDR4 RAM bank. To
maximise FPGA global memory bandwidth, the device
memory objects are explicitly designated specific RAM bank
locations on the FPGA card in such a way that the PCIe to
device RAM, and device RAM to FPGA bandwidth, is
optimised.

/e execution kernel is enqueued as a 1-by-1-by-1 di-
mension task with arguments p, L, D, U, Y, and X, where
p, the number of partitions to solve, is given by
ceil((n/m) + 1). /e execution kernel is scheduled and
synchronised with the write and read operations of the
device memory objects using OpenCL event objects.

/e kernel code is dependent on the partition size m, so
memory buffers for the input and output vectors are created
as 1-by-size vectors, where size is given by p × m. /e input
matrix consists of lower, main, and upper diagonal vectors of
A and a single right-hand side vector Y is stored in row-
major order.

/e memory objects L, D, U, Y are padded with an
identity matrix and zeros in order to accommodate linear
systems where m is not a factor of n, giving the overall
memory requirement as 5 × size.

As the kernel is implemented as a single work item, this
allows for single-strided memory access patterns when the
FPGA loads partitions from global memory for processing.
/is means that it is not necessary to implement a preex-
ecution data marshalling stage as is often required for SIMD
or SIMD-like processors.

3.1.4. Kernel Complexity and Hardware Utilisation. /e
FLOP requirements for our TDMA and truncated SPIKE
OpenCL kernels are presented in Table 1. /e TDMA kernel
has significantly fewer FLOPs compared to the truncated
SPIKE kernel. /is is expected as the TDMA kernel only
computes the LU factorisation and back-substitution,
compared to the more computationally complex truncated
SPIKE polyalgorithm described previously. However, since
the TDMA kernel requires the upper triangular matrix of the
entire system to be stored to global memory as an in-
termediate step and then subsequently reread, the TDMA
kernel requires double the number of FPGA to off-chip
memory transactions in comparison with the truncated
SPIKE kernel.

/e FLOP and memory transaction requirements shown
in Table 1 are reflected in the FPGA kernel hardware uti-
lisation presented in Table 2. OpenCL requires a static
partition of the available FPGA hardware resources in order
to facilitate host to FPGA memory transfers and OpenCL
kernel execution. Per Table 2, this static partition is sig-
nificant, consuming at least 10% of measured resource types.
/e total resource utilisation for each kernel is given by the
addition of OpenCL static resource utilisation and the
kernel-specific resource utilisation.

/e more computationally complex truncated SPIKE
kernel requires more lookup tables (ALUT), flip-flops (FF),
and digital signal processor (DSP) tiles than the TDMA
kernel. /e TDMA kernel however requires more block
RAM (BRAM) tiles due to implementing a greater number
of load store units to cater for the extra global memory
transactions. Furthermore, both kernels are constrained by
the available amount of BRAM on the FPGA, with the
BRAM utilisation by far the highest resource utilisation for
both kernels.

3.1.5. FPGA OpenCL Optimisation Considerations. Our
implementation of the truncated SPIKE algorithm is global
memory bandwidth constrained. It requires large blocks of
floating point data to be accessible at each stage of the al-
gorithm. By far the largest bottleneck to computational
throughput is ensuring coalesced aligned global memory
transactions.

When loading matrix partitions from the global to local
or private memory, a major optimisation consideration is
the available bandwidth on the global memory bus. /e
available bandwidth per memory transaction is 512 bits, and
the load-store units that are implemented by the Intel FPGA

L
D

U
Y

X

LUFS

LUBS

tdma

L
D

U
Y

X

Global
mem PC

I b
us

PC
I b

rid
ge

IO
 b

us

Host
mem

FPGA

Figure 2: /e FPGA TDMA OpenCL kernel tdma, with the ex-
ecution path and data dependencies shown. /e tdma executes as a
single WI kernel.

ULFSLUFS

ULBSLUBS

RSZ–1

spktrunc

L
D

U
Y

X

Global
mem

FPGA

PC
I b

us
PC

I b
rid

ge
IO

 b
us

L
D

U
Y

X

Host
mem

Figure 3: /e FPGA truncated SPIKE OpenCL kernel spktrunc,
with the execution path and data dependencies shown. /e
spktrunc executes as a single WI kernel.

International Journal of Reconfigurable Computing 5

compiler are of the size 2b bits where bmin � 9 and bmax is
constrained by the available resources on the FPGA.
/erefore, to ensure maximum global memory bandwidth
with the aforementioned constraints, we set partition size m
to 32 for single precision floating point data for both kernels
resulting in 1024 bit memory transactions.

/e value ofm is hard-coded and known at compile time
allowing for unrolling of the nested loops at the expense of
increased hardware utilisation. Unrolling a loop effectively
tells the compiler to generate a hardware instance for each
iteration of the loop, meaning that if there are no loop-
carried dependencies, the entire loop is executed in parallel.
However, for loops with carried dependencies such as LU/
UL factorisation, each iteration cannot execute in parallel.
Nonetheless, this is still many times faster than sequential
loop execution despite the increase in latency that is de-
pendent on the loop size.

Loop unrolling is our primary computational opti-
misation step, thereby allowing enough compute band-
width for our kernel to act as a streaming linear system
solver. Note that in our optimisation process, we either
fully unroll loops or not at all. It is possible to partially
unroll loops for a performance boost when hardware
utilisation limitations do not permit a full unroll. Partially
unrolling a loop can however be inefficient since the
hardware utilisation does not scale proportionally with the
unroll factor due to the hardware overhead required to
control the loop execution.

3.2. Porting the Truncated SPIKE Kernel to CPU and GPU.
In order to investigate the full potential for a heterogeneous
computing implementation of the truncated SPIKE algo-
rithm for solving tridiagonal linear systems of any size, we
exploited the portability of OpenCL. We modified the host
and kernel code used for the FPGA implementation to target
CPU and GPU hardware. To achieve this, it was necessary to
make modification to the host and kernel side memory
objects and data access patterns, remap the truncated SPIKE
algorithm to different kernel objects, and modify the work

group sizes and their mapping to compute units with respect
to CPU and GPU hardware architecture.

3.2.1. Partitioning and Memory Mapping. /e memory
requirements for CPU and GPU implementations are de-
pendent on the partitioning scheme for each device. /e
memory required to solve for a partition of sizemmultiplied
by a multiple of the GPU’s preferred work group size must
be less than the available local memory. /is constrains the
size and number of partitions m, since it is preferable to
maximise the occupancy of the SIMD lane whilst ensuring
that sufficient local memory is available.

Unlike the GPU, all OpenCL memory objects on the
CPU are automatically cached into local memory by
hardware [21]. However, considering that the CPU has a
lower compute unit count, we maximise the partition sizem
to minimise the number of partitions, thereby minimising
the operation count required to recover the reduced system.
/e relative values for p and size in terms of m and work
group size are shown in Table 3.

For our implementation of the truncated SPIKE algo-
rithm for the CPU and GPU, the host and kernel memory
requirements are five 1-by-size vectors, L, D, U, Y, X, of the
partitioned system and four 1-by-(p + 2) vectors,
V, W, Yt, Yb, of the reduced system. By storing the values
for V, W, Yt, Yb in a separate global memory space, we
remove the potential for bank conflicts in memory trans-
actions that may occur if the reduced system vectors are
stored in place in the partitioned system.

/e reduced system memory objects are padded with
zeros to accommodate the top- and bottommost partitions
j � 0 and j � p removing the need for excess control code in
the kernel to manage the topmost and bottommost parti-
tions. Further, to ensure data locality for coalesced memory
transactions on both the CPU and GPU, the input matrix is
transformed in a preexecution data marshalling step. /e
data marshalling transforms the input vectors so that data
for adjacent work items are sequential instead of strided.
/is allows the data to be automatically cached and for

Table 1: FLOP and global memory transactions required for the TDMA and truncated SPIKE FPGA kernels.

Operation TDMA Truncated SPIKE
ADD/SUB 3mp (5m + 3)p

MUL 3mp (6m + 5)p

DIV 3mp (3m + 3)p

MEM 10mp 5mp

Table 2: FPGA hardware utilisation for the OpenCL static portion, TDMA, and truncated SPIKE kernels, and total utilisation for each
implementation (static+ kernel).

Resource OpenCL static (%)
TDMA Truncated SPIKE

Kernel (%) Total (%) Kernel (%) Total (%)
ALUTs 13 14 27 18 31
FFs 13 10 23 13 23
BRAMs 16 52 68 49 65
DSPs 10 16 26 27 37

6 International Journal of Reconfigurable Computing

vector processing of work items on the CPU and for full
bandwidth global memory transactions on the GPU.

3.2.2. Remapping the Kernel. In contrast to the FPGA
implementation of the truncated SPIKE algorithm, for the
CPU and GPU implementations, we split the code into two
separate kernels for the CPU and three separate kernels for
the GPU. /is allows for better work group scheduling and
dispatching for multiple compute unit architectures as we
enqueue the kernels for execution as arrays of work items
known as an NDRange in OpenCL’s parlance.

In remapping the kernel to the CPU, the underlying
architecture provides relatively few processing elements per
compute unit and a fast clock speed. As such, in order to
make best use of this architecture, the number of partitions
of the truncated SPIKE algorithm should be minimised,
thereby ensuring allocation of work groups of the maximum
possible size to each compute unit to ensure maximum
occupancy. Figure 4 shows an OpenCL representation of the
CPU implementation, its execution order, and data path.

For the CPU implementation, we use the partitioning
scheme proposed by Mendiratta [22]. We compute the LU
and UL forward-sweep factorisation in the spkfaccpu kernel
where we apply UL factorisation to elements 0 to 2mmin and
apply LU factorisation to elements mmin to m where mmin is
the smallest partition size required to purify the resulting
factorisations of error as per equation (8). /is reduces the
overall operation count and is only possible when m≫mmin.
/e spktfaccpu kernel is enqueued as a p-by-1-by-1 NDRange,
in a single in-order command queue.

/e reduced system and the recovery of the overall
solution are handled by a second kernel spktrec. /e spktrec
kernel is enqueued as per spktfaccpu in a single in-order
command queue. /e reduced system is solved, and the
boundary unknown elements are recovered and used to
compute the UL back-sweep of elements 0 to mmin − 1 and
the LU back-sweep of elements m to mmin.

In contrast to the CPU, the GPU has many processing
elements per compute unit and a relatively low clock speed.
In order to optimise performance, it was important to
maximise the number of partitions of the SPIKE algorithm,
by reducing the partition size and thereby ensuring maxi-
mum occupancy of the processing elements. Figure 5 shows
an OpenCL representation of the GPU implementation, its
execution order, and data path.

For the GPU, partitioning the system and the LU andUL
factorisation of the code are handled by the first kernel,
spkfactgpu. Unlike the CPU, the GPU computes the entire
block size m of the UL and the LU factorisations. Only the
top half of the UL and the bottom half of the LU results are
then stored in global memory in order to reduce global

memory transactions and overall global memory space re-
quirements. /e reduced system and the recovery of the
overall solution are handled by two kernels, spktreclu and
spktrecul. spktreclu and spktrecul only load the bottom half of
partition m and top half of partition m, respectively, to
compute the back-sweep portions of LU and UL factorisa-
tion. /e three kernels are again enqueued as p-by-1-by-1
NDRange in in-order command queues for writing to, ex-
ecuting on, and reading from the GPU. As with the FPGA,
this effectively interleaves the PCIe data transfer with kernel
execution.

3.3. ,e Heterogeneous Solver. We further extend our
truncated SPIKE implementation to utilise all available

Table 3: oclspkt kernel partitioning schemes.

Device Partitions (p) size
FPGA ceil(n/m) + 1 p × m

GPU n/(WGsize × m) p × m × WGsize
CPU n/(CUs × WGsize) p × CU × WGsize

V
b

W
t

Y
t

Y
b

X
L

D
U

Y

ULFSLUFS

RSHIRSLO

LUBS ULBS

spkfact

a. = spkrec

a.

IO
 b

us Host
mem

CPU

Figure 4: /e CPU truncated SPIKE OpenCL kernels spkfact and
spkrec, with the execution path and data dependencies shown. Both
kernels are executed as an NDRange of work items.

V
b

W
t

Y
t

Y
b

X
L

D
U

Y

V
b

W
t

Y
t

Y
b

X
L

D
U

Y

ULFSLUFS

RSHIRSLO

LUBS ULBS

a. b.

spkfact

a. = spkreclu; b. = spktrecul

Global
mem PC

I b
us

PC
I b

rid
ge

IO
 b

us Host
mem

GPU

Figure 5: /e GPU truncated SPIKE OpenCL kernels spkfact,
spkrecul, and spkreclu, with the execution path and data de-
pendencies shown. All kernels are executed as an NDRange of work
items.

International Journal of Reconfigurable Computing 7

computation resources available on a platform, as shown in
Figure 1.

/is heterogeneous solver first checks for available de-
vices on the host using OpenCL APIs and then queries if
device profiling data exist for found devices. If profiling data
are not available for all devices, each device will be allocated
an even portion of the input system and profiling data will be
collected on the next execution of the solver. Otherwise, each
device will be allocated a portion of the input system de-
termined by the percentage of the total system throughput
over the individual devices’ previously recorded throughput.
/roughput in this case includes data transit time across the
PCIe bus, data marshalling, and compute time of the kernel.

/e heterogeneous solver then asynchronously dis-
patches chunks of the input data to the devices, executes the
device solvers, and recovers the solution. /e interchunk
boundary solutions recovered from the devices are cleansed
of error by executing a “top” level of the truncated SPIKE
algorithm on the chunk partitions.

4. Evaluation

In the following subsections, we evaluate the oclspkt routine
in terms of compute performance, numerical stability, and
estimated power efficiency. /e results presented use single
precision floating point and all matrices are random and
nonsingular, and the main diagonal has a diagonal domi-
nance factor d> 3.

All results presented in this paper have been executed on
a Dell T5000 desktop PC with an Intel Xeon CPU E5-1620
v4, 64GB of RAM, a Bittware A10PL4 FPGA, and a NVIDIA
M4000 GPU; full specifications are listed in Table 4.

4.1. Compute Performance. To evaluate the compute per-
formance of the oclspkt, we first only consider the kernel
execution time for our target devices in isolation, assuming
predistributed memory. In Figure 6, we show the time to solve
a system where N � 256 × 106, specifically identifying the
solution and data marshalling components of the overall
execution time. We set N to 256 × 106 in-order to showcase
the best possible performance for the computing-device only
without introducing PCI memory transactions. In this ex-
periment, the GPU kernel takes on average 78.4ms to solve the
tridiagonal system, where the FPGA and CPU are 2.6 and 4.8×

slower at 200ms and 376ms, respectively. Furthermore, when
also considering the data marshalling overheads required by
the GPU and CPU kernels, the GPU is still the quickest at
152ms with the FPGA and CPU now 1.3 and 6.1× slower.

/e compute performance figures are not surprising
when we consider that the performance of oclspkt is bound
by the available memory bandwidth. For large matrices, the
global memory transactions required for oclspkt-GPU and
oclspkt-CPU are ≈13N where the oclspkt-FPGA solver
requires ≈5N. We can estimate the performance of the
compute devices using the required memory transactions of
the individual solvers and with the total available memory
bandwidth of the devices. Performance estimation is cal-
culated using MT/B, where MT is the number of required

memory transactions and B is the maximum available
memory bandwidth. /e estimated relative estimated per-
formance is calculated to be 1, 2.17, and 4.57× slower for the
GPU, FPGA, and CPU, respectively (normalised for the
GPU). /ese values closely correspond to the measured
relative performance of the kernel solve time in Figure 6.

In Figure 7, we compare these results to other di-
agonally dominant tridiagonal solver algorithms, our
TDMA FPGA kernel, a CUDA-GPU implementation,
dgtsv, [6], the Intel MKL sdtsvb routine [23], and a se-
quential CPU implementation of the TDMA. For each of
the three target devices, our oclspkt implementation out-
performs the comparison routines for solving a tridiagonal
system of N � 256 × 106. /e oclspkt (FPGA) is 1.7× faster
than the TDMA (FPGA) kernel, the oclspkt (GPU)
implementation is 1.1× faster than the dgtsv, and our
oclspkt (CPU) is 1.5 and 3.5× faster than the sdtsvb and
TDMA CPU solvers, respectively. Note that for each of
these results, we include any data marshalling overhead,
but exclude host to PCIe device transfer time.

A comparison of the compute performance targeting
single and heterogeneous combinations of devices executing
the oclspkt routine is shown in Figure 8. We normalise the
performance metric to rows solved per second (RSs− 1) to
provide a fair algorithmic comparison across different device
hardware architectures. Furthermore, when evaluating the
heterogeneous solver performance of oclspkt, we use a ho-
listic system approach, which includes the host to device
PCIe data transfer times for the FPGA and GPU devices, and
all data marshalling overheads. As shown in Table 5, the
GPU+FPGA device combination has the best average
maximum performance. /e GPU+FPGA device combi-
nation performs 1.38× better than the next best device, the
GPU-only, and performs 2.48× better than the worst per-
forming device, the CPU-only implementation.

Curiously, we would expect performance metrics of the
heterogeneous combinations of devices to be close to the
summation of the individual device performance metrics. In
fact, our results show that only the GPU+FPGA hetero-
geneous performance is close to the summation of the GPU
and FPGA-only performance at 88% of the theoretical total.
/e CPU+FPGA, CPU+GPU, and CPU+GPU+FPGA
average maximum performance are only 65%, 51%, and
55%, respectively.

Table 4: Specifications for Dell T5000 desktop PC.

Component Specification
CPU Intel Xeon E5-1620 v4 @ 3.50GHz

GPU NVIDIA M4000 8GB GDDR5
PCIe G3 x16

FPGA
Bittware A10PL4 w/

Intel Arria 10 GX 8GB DDR4
PCIe G3 x8

RAM 64GB DDR4 @ 2400MHz
OS CentOS 7.4

Software

ICC 18.0.3
CUDA 9.0

Intel Quartus Pro 17.0
Intel OpenCL SDK 7.0.0.2568

8 International Journal of Reconfigurable Computing

0 500 1000 1500 2000 2500 3000

TDMA (CPU)

sdtsvb (CPU)

oclspkt (CPU)

dgtsv (GPU)

oclspkt (GPU)

oclspkt (FPGA)

TDMA (FPGA)

Time (ms) to solve N = 256M

Figure 7: Comparing time (ms) to solve a system of size N � 256 × 106 using oclspkt, dgtsv, sdtsvb, and TDMA.

CPU
FPGA

CPU + FPGA
CPU + GPU

CPU + GPU + FPGA
GPU

GPU + FPGA

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

256
512

768
1024

1280

Ro
w

s s
ol

ve
d/

se
co

nd
 (×

10
8)

Size of matrix (×106)

Heterogeneous compute performance of oclspkt

Figure 8: Performance comparison in rows solved per second for N � (256 . . . 1280) × 106 when targeting CPU, GPU, FPGA, and
heterogeneous combinations of devices.

0 100 200 300 400 500 600 700 800 900 1000

CPU

GPU

FPGA

Time (ms) to solve N = 256 × 106

Data marshalling
Solve

Figure 6: Time (ms) to solve a system of size N � 256 × 106 using oclspkt, targeting CPU, GPU, and FPGA devices.

International Journal of Reconfigurable Computing 9

For the PCIe attached devices, the GPU and FPGA
performance metrics are determined by the available PCIe
bus bandwidth. We have provisioned primary and sec-
ondary memory spaces in the GPU and FPGA global
memory space. /is allows the oclspkt routine to execute the
OpenCL kernel on the primary memory space whilst writing
the next input chuck to the secondary memory space. /is
ensures the PCIe bus, and available memory bandwidth is
being used in an efficient way. /at is to say, the OpenCL
kernel execution time (Figure 6) is completely interleaved
with the host to device memory transfers. As such, the
M4000 GPU card with 16 PCIe Gen 3.0 lanes available will
outperform the A10PL4 FPGA card with 8 PCIe Gen 3.0
lanes regardless of the kernel compute performance. Simi-
larly, the CPU performance is determined by the available
host RAM bandwidth.

Using the de facto industry standard benchmark for
measuring sustained memory bandwidth, STREAM [24, 25],
our desktop machine, specified in Table 4, has a maximum
measured memory bandwidth of 42GBs− 1. Profiling our
CPU implementation of oclspkt using Intel VTune Amplifier
shows very efficient use of the available memory bandwidth
with sustained average 36GBs− 1 and peak 39GBs− 1 memory
bandwidth utilisation. /is saturation of host memory

bandwidth by the CPU solver creates a processing bottleneck
and negatively affects the PCIe data transfer to the FPGA
and GPU./is, coupled with the heterogeneous partitioning
scheme described in subsection 3.3, will favour the increase
in the chunk size of the input system allocated for CPU
computation on each successive invocation of the oclspkt
routine and subsequently decrease the performance of GPU
and FPGA devices.

One thing that may increase the performance of the
CPU + [GPU | FPGA |GPU + FPGA] combinations of
solvers is to change the workload partitioning scheme to
only look at data marshalling and kernel execution times,
excluding the PCIe data transfer times. /is would mean on
successive calls of the routine the host would be tuned to
send more workload to the GPU and FPGA and minimise
the workload allocated to the CPU, thus improving
performance.

4.2.NumericalAccuracy. In Figure 9, we show the numerical
accuracy of the oclspkt in terms of the infinity norm of the
known and calculated results, varied by the diagonal
dominance of the input matrix compared to the TDMACPU
implementation. /e TDMA approaches the machine

Table 5: Maximum observed average (n� 16) compute performance and estimated energy efficiency of oclspkt for devices and hetero-
geneous combinations.

Device Compute performance Estimated energy efficiency
CPU 279 1.39
GPU 501 12.9
FPGA 280 28.6
CPU+GPU 396 1.67
CPU+FPGA 365 1.81
GPU+FPGA 691 15.6
CPU+GPU+FPGA 431 2.06

1E – 8

1E – 7

1E – 6

1E – 5

1E – 4

1E – 3

1E – 2

1E – 1

1E + 0

1E + 1

1.2 1.4 1.5 1.6 1.8 2 2.2 2.4 2.6 2.8

||X
 –

 X
ca

l||
∞

Diagonal dominance factor (d)

Numerical accuracy

oclspkt (GPU)
oclspkt (FPGA)

oclspkt (CPU)
TDMA (CPU)

Figure 9: Numerical accuracy of oclspkt for varying diagonal dominance compared to CPU TDMA solver.

10 International Journal of Reconfigurable Computing

epsilon value for single precision floating point numbers
when the diagonal dominance of the input system is 2,
whereas the oclspkt for the CPU, GPU, and FPGA requires a
diagonal dominance of 2.8 to achieve a similar accuracy.
Equation (8) shows that an approximation of the upper
bound of the infinity norm error is dependent on the SPIKE
partition size, the bandwidth, and the degree of diagonal
dominance. As the GPU and FPGA partition sizes and the
small CPU partition sizes are equal, that is,
mGPU � mFPGA � mCPUmin

, the numerical accuracy for all
implementations is expected to be very similar.

4.3. Estimated Energy Consumption and Efficiency. To de-
termine estimated energy consumption in Joules for each
device, we used the manufacturer’s rated thermal design
power (TDP) and multiplied it by the kernel execution time
for data marshalling and solved steps of the oclspkt. TDP

represents the average power in watts used by a processor
when the device is fully utilised. Whilst this is not a precise
measurement of power used to solve the workload, it
nevertheless provides a relative interdevice benchmark. /e
TDP of theM4000 GPU is 120W, the Xeon E-1650 is 140W,
and the A10PL4 FPGA is 33W.

When solving a system of N � 256 × 106 as shown in
Figure 10, the FPGA implementation uses 2.8× less and 20×

less energy than the GPU and CPU implementations, re-
spectively. Further, in Figure 11, we can see the estimated
energy efficiency of each hardware configuration of oclspkt
in rows solved per Joule. Across the range of the experiment,
each solver shows consistent results with the FPGA-only
solver estimated to be the most energy-efficient peaking at
28 × 106 rows solved per Joule.

/e FPGA-only solver is estimated to be on average 1.8×

more energy efficient than the next best-performing solver,
the GPU+FPGA, and is 20.0×more energy efficient than the

0 20 40 60 80 100 120 140

CPU

GPU

FPGA

Energy (J) to solve N = 256 × 106

Figure 10: Joules required to solve a tridiagonal system of N � 256 × 106 per device using the oclspkt routine.

CPU

CPU + GPU
CPU + GPU + FPGA

CPU + FPGA
GPU

GPU + FPGA
FPGA

0

5

10

15

20

25

30

256
512

768
1024

1280

Ro
w

s s
ol

ve
d/

jo
ul

e (
×1

06)

Size of matrix (×106)

Heterogeneous energy efficiency of oclspkt

Figure 11: Estimated energy efficiency: comparison in rows solved per second for N � (256 . . . 1280) × 106 for oclspktwhen targeting CPU,
GPU, FPGA, and heterogeneous combinations of devices.

International Journal of Reconfigurable Computing 11

poorest performing CPU-only solver. /is is not surprising
since the TDP for the FPGA is an order of magnitude smaller
than the other devices. Similarly to the heterogeneous results
in subsection 4.1, the addition of the CPU solver significantly
constrains the available bandwidth to host memory slowing
down the PCIe data transfer rates. In turn, this pushes more
work to the CPU solver and slows down the overall compute,
and since the CPU has the highest TDP, this exacerbates the
poor energy efficiency.

5. Conclusion

In this paper, we presented a numerically stable heteroge-
neous OpenCL implementation of the truncated SPIKE
algorithm targeting FPGAs, GPUs, CPUs, and combinations
of these devices. Our experimental case has demonstrated
the feasibility of utilising FPGAs, along with GPUs and
CPUs concurrently in a heterogeneous computing envi-
ronment in order to accelerate the solving of a diagonally
dominant tridiagonal linear system. When comparing our
CPU, GPU, and FPGA implementation of oclspkt to a
suitable baseline implementation and third-party solvers
specifically designed and optimised for these devices, the
compute performance of our implementation showed 150%,
110%, and 170% improvement, respectively.

Profiling the heterogeneous combinations of oclspkt
showed that targeting the GPU+FPGA devices gives the best
compute performance and targeting FPGA-only will give the
best estimated energy efficiency. Also adding our highly
optimised CPU implementation to a heterogeneous device
combination with PCIe attached devices significantly reduced
the expected performance of the overall system. In our ex-
perimental case, with a compute environment that has CPUs,
GPUs, and FPGAs, it is advantageous to relegate the CPU to a
purely task orchestration role instead of computation.

Under our experimental conditions, all device compute
performance results are memory bandwidth constrained.
Whilst the GPU kernel compute performance is several
times faster than the FPGA kernel, the FPGA test hardware
has several times less available memory bandwidth. As high-
bandwidth-data transfer technology is introduced to the new
generations of FPGA accelerator boards, this performance
gap between devices is expected to close. Given the signif-
icantly lower power requirements, incorporation of FPGAs
has the potential to reduce some of the power consumption
barriers currently faced by HPC environments as we move
towards exascale computing.

A natural progression of this work would be to extend
the oclspkt routine to be able to solve nondiagonally
dominant and block tridiagonal linear systems. Further, it
would be advantageous to extend the heterogeneous par-
titioning routine to be able to tune the solver to maximise
energy efficiency where desired. A part of this extension
would involve a more detailed power analysis and direct in-
line monitoring of the host power usage.

An extension of this work may also seek to account for
memory bottlenecks detected on successive invocations of
the solver further enhancing performance in heterogeneous
applications.

Data Availability

/e source code and data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

/e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

/is project utilised the High-Performance Computing
(HPC) Facility at the Queensland University of Technology
(QUT). /e facility is administered by QUT’s eResearch
Department. Special thanks go to the eResearch Department
for their support, particularly for providing access to spe-
cialist FPGA and GPU resources.

References

[1] A. H. Sameh and D. J. Kuck, “On stable parallel linear system
solvers,” Journal of the ACM, vol. 25, no. 1, pp. 81–91, 1978.

[2] E. Polizzi and A. H. Sameh, “A parallel hybrid banded system
solver: the SPIKE algorithm,” Parallel Computing, vol. 32,
no. 2, pp. 177–194, 2006.

[3] E. Polizzi and A. Sameh, “SPIKE: a parallel environment for
solving banded linear systems,” Computers & Fluids, vol. 36,
no. 1, pp. 113–120, 2007.

[4] M. Manguoglu, F. Saied, A. Sameh, and A. Grama, “Per-
formance models for the SPIKE banded linear system solver,”
in Proceedings of the 2010 Ninth International Symposium on
Parallel and Distributed Computing (ISPDC), IEEE, Istanbul,
Turkey, July 2010.

[5] X. Wang, Y. Xu, and W. Xue, “A hierarchical tridiagonal
system solver for heterogenous supercomputers,” in Pro-
ceedings of the 2014 5th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, IEEE, New
Orleans, LA, USA, November 2014.

[6] L.-W. Chang, J. A. Stratton, H.-S. Kim, and W.-M. W. Hwu,
“A scalable, numerically stable, high-performance tridiagonal
solver using GPUs,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis, pp. 1–11, IEEE Computer Society Press,
Salt Lake City, UT, USA, November 2012.

[7] H. Gabb, “Intel® adaptive SPIKE-based solver,” Technical
report, Intel, Santa Clara, CA, USA, 2010.

[8] L. W. Chang and W. M. Hwu, A Guide for Implementing
Tridiagonal Solvers on GPUs, Springer, Berlin, Germany, 2014.

[9] J. Mair, Z. Huang, D. Eyers, and Y. Chen, “Quantifying the
energy efficiency challenges of achieving exascale computing,”
in Proceedings of the 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 943–
950, IEEE, Shenzhen, China, May 2015.

[10] M. U. Ashraf, F. Alburaei Eassa, A. Ahmad Albeshri, and
A. Algarni, “Performance and power efficient massive parallel
computational model for HPC heterogeneous exascale sys-
tems,” IEEE Access, vol. 6, pp. 23095–23107, 2018.

[11] D. J. Warne, N. A. Kelson, and R. F. Hayward, “Solving tri-
diagonal linear systems using field programmable gate ar-
rays,” in Proceedings of the 4th International Conference on

12 International Journal of Reconfigurable Computing

Computational Methods (ICCM 2012), Gold Coast, QLD,
Australia, November 2012.

[12] D. J.Warne, N. A. Kelson, and R. F. Hayward, “Comparison of
high level FPGA hardware design for solving tri-diagonal
linear systems,” Procedia Computer Science, vol. 29, pp. 95–
101, 2014.

[13] S. Palmer, Accelerating Implicit Finite Difference Schemes
Using a Hardware Optimised Implementation of the ,omas
Algorithm for FPGAs, Cornell University, Ithaca, NY, USA,
2014.

[14] H. Macintosh, D. Warne, N. A. Kelson, J. Banks, and
T. W. Farrell, “Implementation of parallel tridiagonal solvers
for a heterogeneous computing environment,” ,e ANZIAM
Journal, vol. 56, pp. 446–462, 2016.

[15] B. R. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa,
“Chapter 2—introduction to OpenCL,” in Heterogeneous
Computing with OpenCL, B. R. Gaster, L. Howes, D. R. Kaeli,
P. Mistry, and D. Schaa, Eds., pp. 15–38, Morgan Kaufmann,
Burlington, MA, USA, 2nd edition, 2013.

[16] B. P. Flannery, S. Teukolsky, W. H. Press, and
W. T. Vetterling, Numerical Recipes in FORTRAN: ,e Art
of Scientific Computing, Cambridge University Press,
Cambridge, UK, 1992.

[17] P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland, “A
comparison of parallel solvers for diagonally dominant and
general narrow-banded linear systems II,” in Euro-Par’99
Parallel Processing, pp. 1078–1087, Springer, Berlin, Germany,
1999.

[18] C. R. Dun, M. Hegland, and M. R. Osborne, “Parallel stable
solution methods for tridiagonal linear systems of equations,”
in Proceedings of the Computational Techniques and Appli-
cations Conference (CTAC95), pp. 267–274, World Scientific
Publishing, River Edge, NJ, USA, August 1996.

[19] M. Hegland, “On the parallel solution of tridiagonal systems
by wrap-around partitioning and incomplete LU factoriza-
tion,” Numerische Mathematik, vol. 59, no. 1, pp. 453–472,
1991.

[20] C. C. K. Mikkelsen and M. Manguoglu, “Analysis of the
truncated SPIKE algorithm,” SIAM Journal on Matrix
Analysis and Applications, vol. 30, no. 4, pp. 1500–1519, 2008.

[21] Intel Corporation, “Developer guide for Intel® Sdk for
openCL™ applications,” 2018, https://software.intel.com/en-
us/openclsdk-devguide-2017.

[22] K. Mendiratta, “a banded SPIKE algorithm and solver for
shared memory architectures,” Masters’ thesis, University of
Massachusetts, Amherst, MA, USA, 2011.

[23] Intel Corporation, “?dtsvb,” 2018, https://software.intel.com/
en-us/mkl-developer-reference-c-dtsvb.

[24] J. D. McCalpin, “STREAM: sustainable memory bandwidth in
high performance computers,” Technical report, University of
Virginia, Charlottesville, VA, USA, 1995.

[25] J. McCalpin, Memory Bandwidth and Machine Balance in
High Performance Computers, IEEE Technical Committee on
Computer Architecture Newsletter, 1995.

International Journal of Reconfigurable Computing 13

https://software.intel.com/en-us/openclsdk-devguide-2017
https://software.intel.com/en-us/openclsdk-devguide-2017
https://software.intel.com/en-us/mkl-developer-reference-c-dtsvb
https://software.intel.com/en-us/mkl-developer-reference-c-dtsvb

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

