
Research Article
FPGA Implementation of an Improved Reconfigurable
FSMIM Architecture Using Logarithmic Barrier Function Based
Gradient Descent Approach

Nitish Das and Aruna Priya P

Department of ECE, SRM Institute of Science & Technology, Kattankulathur-603203, Chennai, India

Correspondence should be addressed to Aruna Priya P; arunapriya.p@ktr.srmuniv.ac.in

Received 31 October 2018; Revised 2 January 2019; Accepted 10 January 2019; Published 1 April 2019

Academic Editor: John Kalomiros

Copyright © 2019 Nitish Das and Aruna Priya P.This is an open access article distributed under the Creative Commons Attribution
License,whichpermits unrestricteduse, distribution, and reproduction in anymedium, provided the original work is properly cited.

Recently, the Reconfigurable FSM has drawn the attention of the researchers for multistage signal processing applications. The
optimal synthesis of Reconfigurable finite state machine with input multiplexing (Reconfigurable FSMIM) architecture is done
by the iterative greedy heuristic based Hungarian algorithm (IGHA). The major problem concerning IGHA is the disintegration
of a state encoding technique. This paper proposes the integration of IGHA with the state assignment using logarithmic barrier
function based gradient descent approach to reduce the hardware consumption of Reconfigurable FSMIM. Experiments have been
performed using MCNC FSM benchmarks which illustrate a significant area and speed improvement over other architectures
during field programmable gate array (FPGA) implementation.

1. Introduction

Digital signal processing (DSP) [1–3], pattern matching [4],
and circuit testing [5] are the primary applications for most
of the digital systems. These applications require a hardware-
oriented as well as high-speed control unit. A finite state
machine (FSM) is an integral part of any complex digital
system. Its inputs are multiplexed to make it hardware ori-
ented, which is known as the finite state machine with input
multiplexing (FSMIM). It serves as a control unit, and its
operating speed determines the processing speed of the sys-
tem. The applications as mentioned earlier can be observed
as cascaded stages (i.e., multistage) of operations [2], where
each stage requires a specific FSM. Hence, a Reconfigurable
FSM is investigated in the literature for optimal performance
in such applications [6, 7]. A Reconfigurable FSM is defined
as a single FSM, which acts as one of the FSMs from the
set (i.e., set of FSMs for a specific application) by applying
particular mode bits. Its implementation is performed on
field programmable gate array (FPGA) platforms [6].

The Reconfigurable FSMIM architecture is created by
joining (A) Conventional FSMIM architecture [8] and (B)

multiplexer bank (which defines the mode based reconfig-
uration). The optimal synthesis of both the constituting ele-
ments is done by Iterative greedy heuristic based Hungarian
algorithm (IGHA) [6]. An efficient state encoding technique
for an FSM serves as a vital tool to optimize the hardware
utilization while implementing on an FPGA platform [9, 10].
In the case of Reconfigurable FSMIM, the state encoding
of the constituent FSMs altogether affects the look-up table
(LUT) requirement of the Reconfigurable FSMIM [6].

The major problem concerning IGHA is the disintegra-
tion of a state encoding technique. It uses binary state encod-
ing as a default state assignment technique for operation.
The state assignment method for the Reconfigurable FSMIM
architecture leads to an optimization problem [6]. To the best
of the authors’ knowledge, all the state assignment techniques
proposed in the literature provide state codes only for a single
FSM. Therefore, the objective of this work is the integration
of IGHA with an optimal state encoding technique to reduce
the hardware consumption of Reconfigurable FSMIM on an
FPGA platform.

In the literature, another direction in the implementation
of an FSM is RAM-based architectures. The following three

Hindawi
International Journal of Reconfigurable Computing
Volume 2019, Article ID 3727254, 17 pages
https://doi.org/10.1155/2019/3727254

http://orcid.org/0000-0002-3920-0304
http://orcid.org/0000-0002-5612-3312
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3727254

2 International Journal of Reconfigurable Computing

types of RAM-based FSM architectures are studied [11]: (a)
basic RAM-based FSM architecture, (b) RAM-based FSM
architecture with transition-controlled multiplexers, and (c)
RAM-based FSM architecture with state-controlled multi-
plexers. In the basic RAM-based FSM architecture, bits are
stored in the form of words. For each transition (i.e., present
state combined with the external inputs), the outputs and the
state assignment bits for next state are stored in the RAM-
word memory [12, 13]. The RAM size required for basic
RAM-based FSM implementation is enormous. Hence, to
reduce the RAM depth, RAM-based FSM architecture with
transition-controlled multiplexers is used. It consists of an
input selector bank, which provides active inputs from the
external inputs for selecting a particular state [11]. RAM-
based FSM architecture with state-controlled multiplexers
is used to reduce the RAM size further. It consists of two
separate RAM blocks, out of which the smaller RAM block
is assigned to operate the input selector bank [11]. Thus,
designing such architecture is very complicated.

In this paper, the ImprovedReconfigurable FSMIMarchi-
tecture is proposed, which surmounts the issue of high LUT
consumption during FPGA implementation. The proposed
architecture is formed using the improved iterative greedy
heuristic based Hungarian algorithm (Improved-IGHA).The
Improved-IGHA is the integration of IGHA with the state
assignment using logarithmic barrier function based gradient
descent approach.

To validate the proposed approach, experiments have
been performed using MCNC FSM benchmarks [14]. Exper-
imental results for the proposed architecture illustrate a
significant area reduction by an average of 20.38% and
speed improvement by an average of 32.73% over VRMUX
[11] during FPGA implementation. It also demonstrates an
adequate area reduction by an average of 16.05% and speed
improvement by an average of 1.77% over Reconfigurable
FSMIM-S architecture [6] during FPGA implementation.
When these results are compared with CRMUX [11], a
speed improvement by an average of 11.06% is obtained. The
proposed architecture requires an average of 58.38% more
LUTs as compared with CRMUX [11] during FPGA imple-
mentation. It is the only trade-off for the proposed design.

The remainder of this article is formed as follows. The
research problem formulation is made in Section 2. Sec-
tion 3 consists of state assignment using logarithmic barrier
function based gradient descent approach and an illustrative
example. Experimental setup and comparative analysis of this
work with the literature are devised in Section 4. In the end,
concluding remarks are drawn in Section 5.

2. Problem Formulation

Recently, the Reconfigurable FSM has drawn the attention of
the researchers for multistage signal processing applications.
Anovel framework for the creation of Reconfigurable FSMIM
is given in [6].

A Mealy FSM is represented in a vector form, such as(𝑆,𝑋, 𝑌, 𝛿, 𝜋, 𝑆0) where
𝑆 = (𝑆0, . . . , 𝑆(𝑀)) ←󳨀 set of states;

𝑋 = (𝑥1, . . . , 𝑥𝐿) ←󳨀 set of input variables;
𝑌 = (𝑦1, . . . , 𝑦𝑁) ←󳨀 set of output variables;
𝛿 󳨐⇒ 𝑆 ∗ 𝑋 󳨀→ 𝑆 ←󳨀 transition function;
𝜋 󳨐⇒ 𝑆 ∗ 𝑋 󳨀→ 𝑌 ←󳨀 output function;
𝑆0 ←󳨀 initial state.

Moreover, the following variables are defined to illustrate
the complete functionality of an FSM:

𝑆(𝑚) ←󳨀 any instantaneous state 𝑆(𝑚) ∈ 𝑆 where𝑚 ∈ (0, 1, . . . ,𝑀);
𝐾(𝑆(𝑚)) ←󳨀 binary state code for the, state 𝑆(𝑚) ∈ 𝑆;
𝐻 = (𝑡1, . . . , 𝑡𝑀) ←󳨀 set of number of transitions per
state corresponding to 𝑆;
ℎ ←󳨀 number of transitions per state where ℎ ∈(1, 2, . . . , 𝐻);
𝑅 ←󳨀 theminimum length of a binary-state code,𝑅 =⌈log2𝑀⌉.

The Reconfigurable FSMIM is defined as a single FSM,
which acts as any one of the FSM from the set (i.e., set
of FSMs for a specific application) by applying particular
mode bits. A set of FSM for a specific application is chosen,
where 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 ←󳨀 the largest FSM (i.e., the FSM with the
highest total number of transitions, states, and inputs) in the
set and 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1, 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 2, . . . , 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵 ←󳨀 rest of
the FSMs in the set. 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡-mode is the default mode of
operation for the Reconfigurable FSMIM [6].

The Reconfigurable FSMIM architecture is created by
joining the following two parts: (A) Conventional FSMIM
architecture [8], & (B) Multiplexer bank (which defines the
mode based reconfiguration). The optimal synthesis of the
Multiplexer bank is done by iterative greedy heuristic based
Hungarian algorithm (IGHA) [6]. At the last phase of IGHA,
state transitions of each constituent FSM of the Reconfig-
urable FSMIM architecture are presented in Figure 1. There-
fore, the state encoding of the constituent FSMs altogether
affects the LUT requirement of the Reconfigurable FSMIM
architecture. At the end of IGHA, a modified description of a
single FSM (i.e., 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡) is obtained which is used to create
the Conventional FSMIM part [6].

In FSM implementation on an FPGA platform, state
encoding technique acts as a tool for minimizing the hard-
ware consumption [9, 10]. For example, an MCNC FSM
benchmark 𝑡𝑏𝑘 requires 82 LUTs when implemented on a
Xilinx xc6vlx75t-3 device (Virtex-6) using the Grey encoding
technique. But it needs only 41 LUTs on the same platform
using the binary encoding technique.

The major problem concerning IGHA is the disintegra-
tion of a state encoding technique. It uses binary state encod-
ing as a default state assignment technique for operation [6].
The state assignment method for the Reconfigurable FSMIM
architecture leads to an optimization problem as evident from
Figure 1. To the best of the authors’ knowledge, all the state
assignment techniques proposed in the literature provide
state codes only for a single FSM.

International Journal of Reconfigurable Computing 3

Current
State (PS)

Next
State (NS)

recon_ckt_B

Current
State (PS)

Next
State (NS)

recon_ckt_1

S0base_ckt

S1base_ckt

S2base_ckt

Current
State (PS)

Next
State (NS)

base_ckt

S(M)base_ckt

S(M-1)base_ckt

S0base_ckt

S1base_ckt

S2base_ckt

S(M)base_ckt

S(M-1)base_ckt

S0recon_ckt_1

S1recon_ckt_1

S2recon_ckt_1

S(M)recon_ckt_1

S(M-1)recon_ckt_1

S0recon_ckt_B

S1recon_ckt_B

S2recon_ckt_B

S(M)recon_ckt_B

S(M-1)recon_ckt_B

S0recon_ckt_B

S1recon_ckt_B

S2recon_ckt_B

S(M)recon_ckt_B

S(M-1)recon_ckt_B

S0recon_ckt_1

S1recon_ckt_1

S2recon_ckt_1

S(M)recon_ckt_1

S(M-1)recon_ckt_1

11|base_ckt
12|base_ckt

13|base_ckt

1(M-1)|base_ckt

1M|base_ckt

11|recon_ckt_1

mm|recon_ckt_1

12|recon_ckt_1

13|recon_ckt_1

1(M-1)|recon_ckt_1

1M|recon_ckt_1

11|recon_ckt_B

12|recon_ckt_B

13|recon_ckt_B

1(M-1)|recon_ckt_B

1M|recon_ckt_B

mm|base_ckt

0

1

if transition does not
exist between states

if transition
exist between states

=

0

1

if transition does not
exist between states

if transition
exist between states exist between states

= mm|recon_ckt_B

0

1

if transition does not
exist between states

if transition
=

Figure 1: State transitions of each constituent FSM of the Reconfigurable FSMIM architecture at the last phase of iterative greedy heuristic
based Hungarian algorithm (IGHA).

Therefore, the objective of this work is the integration of
IGHA with an optimal state encoding technique to reduce
the hardware consumption of Reconfigurable FSMIM on an
FPGA platform.

3. Methodology

This work is an extension of work presented in [6]. Hence, all
the variables from [6] are used in the same context through-
out the article. An improved version of IGHA (Improved-
IGHA) is proposed. It addresses the issue of optimal state
encoding.

A recent body of literature has investigated the perfor-
mance of three fundamental types of state encoding tech-
niques on an FPGA platform [9].The studied methods are as
follows: (a) structural approaches, (b) heuristic approaches,
and (c) pragmatic approaches. Out of these three approaches,
structural state encoding technique outperforms on an FPGA
platform [9, 10]. It uses the knowledge of internal structure
(i.e., state transition) of the FSM to generate optimal state
codes. Therefore, structural information of FSMs is consid-
ered to develop the proposed state encoding technique for the
Reconfigurable FSMIM.

The structural information of the Reconfigurable FSMIM
(i.e., state transition) is obtained from Figure 1. Hence, a
unified weight matrix is defined by adding the weight of all
component FSMs for the same corresponding states. It is
given in (1).

The mathematical formulation of the cost function for
an FSM is given in [15]. It uses the structural information
(i.e., state transitions) of the particular FSM. Let 𝜔𝑖𝑗 ←󳨀
element of weightmatrix and 𝐷𝑖𝑠𝑡 𝑀𝑎𝑡𝑟𝑖𝑥𝑖𝑗 be the hamming
distance between two particular state codes. 𝐷𝑖𝑠𝑡 𝑀𝑎𝑡𝑟𝑖𝑥𝑖𝑗

is obtained by counting the number of 1’s after an exclusive-
OR operation between the binary state codes as shown
in Figure 2. Therefore, from the literature [15], the cost
associated with a particular set of state codes (i.e., 𝜇) is
defined by (2).

𝜔11 = 𝜔11|𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 + 𝜔11|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1 + 𝜔11|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 2 + ⋅ ⋅ ⋅
+ 𝜔11|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵

⋅ ⋅ ⋅
⋅ ⋅ ⋅
𝜔1(𝑀−1) = 𝜔1(𝑀−1)|𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 + 𝜔1(𝑀−1)|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1

+ 𝜔1(𝑀−1)|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 2 + ⋅ ⋅ ⋅ + 𝜔1(𝑀−1)|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵

𝜔1𝑀 = 𝜔1𝑀|𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 + 𝜔1𝑀|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1 + 𝜔1𝑀|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 2

+ ⋅ ⋅ ⋅ + 𝜔1𝑀|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵

⋅ ⋅ ⋅
⋅ ⋅ ⋅
𝜔(𝑀−1)1 = 𝜔(𝑀−1)1|𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 + 𝜔(𝑀−1)1|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1

+ 𝜔(𝑀−1)1|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 2 + ⋅ ⋅ ⋅ + 𝜔(𝑀−1)1|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵

𝜔𝑀1 = 𝜔𝑀1|𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 + 𝜔𝑀1|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1 + 𝜔𝑀1|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 2

+ ⋅ ⋅ ⋅ + 𝜔𝑀1|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵

⋅ ⋅ ⋅
⋅ ⋅ ⋅
𝜔𝑀𝑀 = 𝜔𝑀𝑀|𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 + 𝜔𝑀𝑀|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1 + 𝜔𝑀𝑀|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 2

+ ⋅ ⋅ ⋅ + 𝜔𝑀𝑀|𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵

(1)

𝑐𝑜𝑠𝑡 (𝜇) = 𝑀−1∑
𝑖=0

𝑀−1∑
𝑗=0

(𝜔𝑖𝑗 × 𝐷𝑖𝑠𝑡 𝑀𝑎𝑡𝑟𝑖𝑥𝑖𝑗) (2)

3.1. State Assignment Using Logarithmic Barrier Function
Based Gradient Descent Approach for the Reconfigurable FSM.
Let the graph described by (2) be 𝐺𝑚𝑎𝑝 = (𝑉𝑚𝑎𝑝, 𝐸𝑚𝑎𝑝),

4 International Journal of Reconfigurable Computing

N
ex

t
St

at
e (

N
S)

S0 S1 S2

S(
M

-1
)

S(
M

)

0
0

0
--

-
0

0
1

1

--
-

1

--
-

0

--
-

0

--
-

1

Current
State (PS)

S0

S1

S2

S(M-1)

S(M)

0 0 0 - - - 0

0 1 0 - - - 1

1 0 0 - - - 0

0 1 0 - - - 0

1 1 0 - - - 1

0 1 0 - - - 0

0 0 0 - - - 0

S(M-1)

S0

0 + 1 + - - +

Hamming Distance

1 1 0 - - - 1

0 1 0 - - - 0

S(M)

1 + 0 + 0 - - + 1

Hamming Distance

S(M-1)

= Dist_Matrix



M × M

0

0
0

1
0

0

1
1

0

0 0

Figure 2: Formation of𝐷𝑖𝑠𝑡 𝑀𝑎𝑡𝑟𝑖𝑥 by calculating the Hamming distance between particular nodes (i.e., states).

where 𝐸𝑚𝑎𝑝 (i.e., 𝜔𝑖𝑗) indicates the edge weights between the
nodes & 𝑉𝑚𝑎𝑝 (i.e., columns of 𝜇) represents the set of nodes.
Hence, each node corresponds to a particular binary state
code because 𝜇𝑖𝑗 opts only the binary labels. 𝑀 symbolizes
the total number of nodes in the graph 𝐺𝑚𝑎𝑝.

Let a hypercube be characterized as 𝜒𝜂 = (𝑉𝜒, 𝐸𝜒), where𝜂 is the dimension, 𝐸𝜒 is the set of edges, and 𝑉𝜒 is the set of
vertices of the hypercube [16].The cardinality of 𝐸𝜒 and𝑉𝜒 is
given in (3) and (4), respectively.

󵄨󵄨󵄨󵄨󵄨𝐸𝜒
󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝑉𝜒

󵄨󵄨󵄨󵄨󵄨 ×
𝜂
2 = 2𝜂−1 × 𝜂 (3)

󵄨󵄨󵄨󵄨󵄨𝑉𝜒
󵄨󵄨󵄨󵄨󵄨 = 2𝜂 (4)

Now, the concept of hypercube embedding is used to
reduce (2). An embedding is performed from graph 𝐺𝑚𝑎𝑝

onto a hypercube 𝜒𝜂 as described earlier [16, 17]. It is defined
as 𝜇 : 𝑉𝑚𝑎𝑝 󳨀→ 𝑉𝜒 which is a one-to-one mapping function.
Consequently,𝑀-binary 𝜂-vectors are defined as in (5).Thus,
if a node of graph 𝐺𝑚𝑎𝑝 (i.e., 𝑖) is expressed by a binary state
code, the corresponding vertex of the hypercube (i.e., 𝑘𝑖) is
represented by the same binary state code.

𝑘𝑖 ∈ {𝑘 : 𝑘 ∈ {0, 1}𝜂}
𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 𝑉𝑚𝑎𝑝 (𝑖.𝑒., 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝜇) (5)

In a hypercube, 𝐷𝑖𝑠𝑡 𝑀𝑎𝑡𝑟𝑖𝑥𝑖𝑗 (𝑖, 𝑗 ∈ 𝑉𝑚𝑎𝑝) represents
the hamming distance between 𝑘𝑖 and 𝑘𝑗. It is shown in

International Journal of Reconfigurable Computing 5

(6), where 𝜏𝑖𝑗 is the instantaneous value of 𝑘𝑖𝑗. The value of𝜏𝑖𝑗 varies between −1 and 1. Therefore, the cost function is
reduced to (7) using hypercube embedding.

𝐷𝑖𝑠𝑡 𝑀𝑎𝑡𝑟𝑖𝑥𝑖𝑗 =
𝜂

∑
𝜅=1

(𝜏𝑖𝜅 − 𝜏𝑗𝜅)2

𝑤ℎ𝑒𝑟𝑒, 𝑘𝑖𝑗 = {
{{
1 𝑖𝑓 𝜏𝑖𝑗 ≥ 0
0 𝑖𝑓 𝜏𝑖𝑗 < 0

(6)

𝑐𝑜𝑠𝑡 (𝜇) = 𝑀−1∑
𝑖=0

𝑀−1∑
𝑗=0

𝜂

∑
𝜅=1

(𝜔𝑖𝑗 × (𝜏𝑖𝜅 − 𝜏𝑗𝜅)2) (7)

The objective is thus confined to minimize the cost
function given in (7). Evidently, it is a discrete optimization
problem, where each state can opt only a particular binary
state code.

The convergence of Improved-IGHA depends on the
convergence of its constituent algorithms, i.e., IGHA and the
applied state assignment technique. Therefore, an algorithm
with a high convergence speed is preferred to construct the
state assignment technique for Improved-IGHA.

The evolutionary technique, such as genetic algorithm
(GA), presents a significant shortcoming as its convergence
speed slows down near the global optimum [18, 19]. Sim-
ilarly, particle swarm optimization (PSO) and differential
evolution (DE) operate with a high convergence rate but
offer premature convergence which is a critical drawback
[20, 21]. In the literature, penalty-based approaches, such
as Lagrangian technique and logarithmic-barrier function
(LBF) method, have proven their potentials to obtain the
optimum solution with a high convergence speed [22, 23].
These methods are advantageous in solving a discrete or
combinatorial optimization problem [24, 25].

Therefore, the LBF-based Gradient descent approach is
adopted to construct the state assignment technique for
Improved-IGHA. It is an interior point method that assures
the feasible solution. The mathematical formulation of the
cost minimization function is performed by LBF. Then, it is
reduced iteratively by the gradient-projection approach. The
flow chart for the Improved-IGHA is presented in Figure 3.

In LBF technique, the search operation is performed in a
continuous space domain to deduce the optimal points.Then,
these points are discretized to obtain the optimal solution [26,
27].

In LBF method, an objective function subject to inequal-
ity constraints is given in

min 𝑓 (𝜏)
𝑠.𝑡. 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑖 (𝜏) ≥ 0, 𝑖 = 1, . . . , 𝑢 (8)

The logarithmic barrier function to minimize the cost
function (as in (7)) is given in (9). In LBF search, for any
move which omits the constraints, the second term serves as
a barrier [28] as shown in

min𝜓 (𝜏, 𝜙) = 𝑓 (𝜏) + 𝜙 𝑢∑
𝑖=1

log𝑒 (𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑖 (𝜏)) (9)

Input & State Matching using Hungarian Algorithm

Output Matching using Bitwise-XOR Operations

Dummy State & Position Replacement

Update the descriptions of FSMs

Start

Initialization (Define “base_ckt” & “recon_ckt”)

State assignment using logarithmic barrier function
based gradient descent approach for the

Reconfigurable FSM

Halt
Ite

ra
tiv

e g
re

ed
y

he
ur

ist
ic

 b
as

ed
 H

un
ga

ri
an

al

go
ri

th
m

 (I
G

H
A

)
Figure 3: Flow chart for the improved iterative greedy heuristic
based Hungarian algorithm (Improved-IGHA).

At the iteration 𝑖𝑡𝑒𝑟 𝑡, (9) is defined as shown in

min𝜓 (𝜏, 𝜙𝑖𝑡𝑒𝑟 𝑡)
𝑖𝑡𝑒𝑟 𝑡

= 𝑓 (𝜏) + 𝜙𝑖𝑡𝑒𝑟 𝑡
𝑢∑
𝑖=1

log𝑒 (𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑖 (𝜏))
(10)

Initially, LBF selects a feasible 𝜏0 and 𝜙0 > 0. Then, it
chooses𝜙𝑖𝑡𝑒𝑟 𝑡+1 = 𝜎⋅𝜙𝑖𝑡𝑒𝑟 𝑡, where𝜎 < 1.This iterative process
goes on until 𝜙𝑖𝑡𝑒𝑟 𝑡 reaches an adequately small value.

A full-fledged method is required to solve (10) with
respect to 𝜏. A first-order gradient-projection approach [29]
is well-suited for iterativelyminimizing (10). In this approach,
the model parameters (a.k.a. weight vectors) are evaluated to
minimize the objective function when an analytical calcula-
tion is not possible [30, 31]. In this approach, the underlying
representation of the objective function of the problem is
given in

min 𝜓 (𝜏, 𝜙)
𝑠.𝑡. 𝜗 (𝜏) = 0 (11)

An iteration of this projection method is defined by (12).
In (12), 𝜌 denotes the step size. 𝜌 is chosen to be a small
positive real number [29].

𝜏 ←󳨀 𝜏 − 𝜌 (∇𝜓 (𝜏, 𝜙)) (12)

Thus, small steps (i.e.,𝜌) are taken in the negative gradient
direction of the objective function as illustrated in (12).Then,
(13) is used to outline the value of 𝜏 on the constraint surface
at the next iteration (i.e., 𝜏(𝑖𝑡𝑒𝑟 𝑡+1)).

𝜏 ←󳨀 [𝜏]𝜗(𝜏)=0 (13)

6 International Journal of Reconfigurable Computing

The convergence criterion for this iterative process is
defined by (14), where 𝜃 ∈ [0, 1].

󵄨󵄨󵄨󵄨󵄨𝜏(𝑖𝑡𝑒𝑟 𝑡+1) − 𝜏(𝑖𝑡𝑒𝑟 𝑡)󵄨󵄨󵄨󵄨󵄨 < 𝜃 (14)

In this way, embedding problem is reduced to the deter-
mination of 𝑀-binary 𝜂-vectors (as shown in (15)) which
optimizes the cost function (i.e., (7)).

𝜏𝑖 ∈ {𝜏 : 𝜏 ∈ R
𝜂& 󵄩󵄩󵄩󵄩𝜏󵄩󵄩󵄩󵄩2 = 1} ;

𝑖 ∈ 𝑉𝑚𝑎𝑝 𝑤ℎ𝑒𝑟𝑒 󵄩󵄩󵄩󵄩𝜏󵄩󵄩󵄩󵄩2 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚 𝑜𝑓 𝜏
(15)

Hence, the cost function (from (7)) is defined in terms of
Hamming distance as shown in

𝑐𝑜𝑠𝑡 (𝜇) = 𝑀−1∑
𝑖=0

𝑀−1∑
𝑗=0

(𝜔𝑖𝑗 × 󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩2)

𝑤ℎ𝑒𝑟𝑒, 𝜏𝑖 = [𝜏𝑖1, 𝜏𝑖2, . . . , 𝜏𝑖𝜂]𝑇 󵄩󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩󵄩2 =
𝜂

∑
𝜅=1

(𝜏𝑖𝜅 − 𝜏𝑗𝜅)2
(16)

The constraint (i.e., boundary condition) for this problem
is formed, such as any two vertices on hypercube should not
contain the same binary state code (i.e., 𝜏𝑖−𝜏𝑗 ̸= 0).Hence, the
mathematical representation of the constraint is presented in

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝜏) = 󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩2 > 0 (17)

By applying (16) and (17) on (9), the objective function for
LBF is reduced to

min𝜓 (𝜏, 𝜙) = 𝑀−1∑
𝑖=0

𝑀−1∑
𝑗=0

(𝜔𝑖𝑗 × 󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩2)

+ 𝜙𝑀−1∑
𝑖=0

𝑀−1∑
𝑗=0

log𝑒 (󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩2)
(18)

Therefore, the entity 𝜗(𝜏) (from (13)) is defined by

𝜗 (𝜏) = [(󵄩󵄩󵄩󵄩𝜏1󵄩󵄩󵄩󵄩2 − 1) , (󵄩󵄩󵄩󵄩𝜏2󵄩󵄩󵄩󵄩2 − 1) , . . . , (󵄩󵄩󵄩󵄩𝜏𝑀󵄩󵄩󵄩󵄩2 − 1)]𝑇

𝑠.𝑡. 𝜏 = [𝜏1, 𝜏2, . . . , 𝜏𝑀]𝑇

𝜏𝑖 = [𝜏𝑖1, 𝜏𝑖2, . . . , 𝜏𝑖𝜂]𝑇 ;
𝑤ℎ𝑒𝑟𝑒 𝑒𝑎𝑐ℎ 𝜏𝑖 (1 ≤ 𝑖 ≤ 𝑀)

(19)

The evaluation of the derivative term (i.e., ∇𝜓(𝜏, 𝜙)) is
required to move in the gradient descent direction as shown
in (12). The needed derivative term is obtained by putting

(20), (21), (22), and (23) into (18). Hence, ∇𝜓(𝜏, 𝜙) is defined
by (24).

𝜕
𝜕𝜏𝑖 (

󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩2) = 2 (𝜏𝑖 − 𝜏𝑗) (20)

𝜕
𝜕𝜏𝑗 (

󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩2) = 2 (𝜏𝑗 − 𝜏𝑖) (21)

𝜕
𝜕𝜏𝑖 {log𝑒 (

󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩2)} = 2 (𝜏𝑖 − 𝜏𝑗)󵄩󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩󵄩
2 (22)

𝜕
𝜕𝜏𝑗 {log𝑒 (

󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩2)} = 2 (𝜏𝑗 − 𝜏𝑖)󵄩󵄩󵄩󵄩󵄩𝜏𝑖 − 𝜏𝑗󵄩󵄩󵄩󵄩󵄩
2 (23)

∇𝜓 (𝜏, 𝜙)

= 2

[[[[[[[[[[[[[[[[[[[[[
[

𝑀∑
𝑗=1

{𝜔1𝑗 × (𝜏1 − 𝜏𝑗)} + 𝜙𝑀∑
𝑗=1

{
{{

(𝜏1 − 𝜏𝑗)󵄩󵄩󵄩󵄩󵄩𝜏1 − 𝜏𝑗󵄩󵄩󵄩󵄩󵄩
2

}
}}

𝑀∑
𝑗=1

{𝜔2𝑗 × (𝜏2 − 𝜏𝑗)} + 𝜙𝑀∑
𝑗=1

{
{{

(𝜏2 − 𝜏𝑗)󵄩󵄩󵄩󵄩󵄩𝜏2 − 𝜏𝑗󵄩󵄩󵄩󵄩󵄩2
}
}}⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝑀∑
𝑗=1

{𝜔𝑀𝑗 × (𝜏𝑀 − 𝜏𝑗)} + 𝜙𝑀∑
𝑗=1

{
{{

(𝜏𝑀 − 𝜏𝑗)󵄩󵄩󵄩󵄩󵄩𝜏𝑀 − 𝜏𝑗󵄩󵄩󵄩󵄩󵄩2
}
}}

]]]]]]]]]]]]]]]]]]]]]
]

(24)

By applying (19) into (13), the normalized vector 𝜏 is
defined as shown in

[𝜏]𝜗(𝜏)=0 =

[[[[[[[[[[[[
[

𝜏1󵄩󵄩󵄩󵄩𝜏1󵄩󵄩󵄩󵄩𝜏2󵄩󵄩󵄩󵄩𝜏2󵄩󵄩󵄩󵄩⋅ ⋅ ⋅
⋅ ⋅ ⋅
𝜏𝑀󵄩󵄩󵄩󵄩𝜏𝑀󵄩󵄩󵄩󵄩

]]]]]]]]]]]]
]

(25)

If (14) is satisfied, a solution vector which is defined as 𝜏𝑖𝑗
is obtained at the end of the iteration. Therefore, the required
set of state codes (i.e., 𝑘̂𝑖𝑗) is deduced by discretizing 𝜏𝑖𝑗 using

𝑘̂𝑖𝑗 = {
{{
1 𝑖𝑓 𝜏𝑖𝑗 ≥ 0
0 𝑖𝑓 𝜏𝑖𝑗 < 0 (26)

The pseudocode for the proposed state assignment
approach is presented in Algorithm 1.

3.2. An Illustrative Example for the Improved Reconfigurable
FSMIM Architecture. The following MCNC FSM bench-
marks [14] are considered to demonstrate the steps involved
in the creation of the Improved Reconfigurable FSMIM
architecture:

International Journal of Reconfigurable Computing 7

Input: the objective function defined by Equation (7)
Output: 𝜇∗ (i.e., the final state code vector)

begin
Initialization: 𝜇 ←󳨀 𝐵𝑖𝑛𝑎𝑟𝑦 𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑑𝑒𝑠;

𝜙 ←󳨀 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝜙 (𝑠.𝑡. 𝜙0 > 0);
while (𝜙 > 𝑓𝑖𝑛𝑎𝑙 𝜙) do

repeat
for 𝑖𝑡𝑒𝑟 𝑡 ←󳨀 1 𝑡𝑜 𝜃

𝜏𝑖𝑡𝑒𝑟 𝑡 ←󳨀 𝜏(𝑖𝑡𝑒𝑟 𝑡−1)

−𝜌{∇𝜓(𝜏, 𝜙)};
/ ∗ 𝑏𝑦 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12)
& 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (24)∗/

end
return 𝜏𝑖𝑗 (𝑖.𝑒. 𝑡ℎ𝑒 V𝑎𝑙𝑢𝑒 𝑜𝑓 𝜏

𝑎𝑡 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝜃);
evaluate 𝑘̂𝑖𝑗 = {1, 𝑖𝑓 𝜏𝑖𝑗 ≥ 0; 0, 𝑖𝑓 𝜏𝑖𝑗 < 0};

/ ∗ 𝑏𝑦 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (26)∗/
𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 V𝑎𝑙𝑢𝑒 𝑜𝑓 𝜇

𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7);
if (𝑐𝑜𝑠𝑡(𝑜𝑙𝑑 𝜇)

≥ 𝑐𝑜𝑠𝑡(𝑛𝑒𝑤 𝜇)) then
𝑢𝑝𝑑𝑎𝑡𝑒, 𝜇∗ ←󳨀 𝑛𝑒𝑤 𝜇;

else if (𝑐𝑜𝑠𝑡(𝑜𝑙𝑑 𝜇)
< 𝑐𝑜𝑠𝑡(𝑛𝑒𝑤 𝜇)) then
𝑢𝑝𝑑𝑎𝑡𝑒, 𝜇∗ ←󳨀 𝑜𝑙𝑑 𝜇;

end
until 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑠
𝜙 ←󳨀 𝜎 ⋅ 𝜙;

end
return 𝜇∗;
end

Algorithm 1: State assignment using logarithmic barrier-function based gradient descent approach for the Reconfigurable FSM.

(1) 𝑡𝑟𝑎𝑖𝑛11 (description is provided in Table 1)
(2) 𝑙𝑖𝑜𝑛9 (description is provided in Table 2)

The improved Reconfigurable FSMIM architecture is
created by joining (A) Conventional FSMIM architecture
and (B) Multiplexer bank (which defines the mode based
reconfiguration). The optimal synthesis of the Multiplexer
bank is done by the proposed Improved-IGHA. At the end
of the proposed algorithm, a modified description of a single
FSM (i.e., 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡) is obtained which is used to create the
Conventional FSMIM part [6].The Improved-IGHA consists
of the following steps:

(i) Initialization (Define 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 and 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡):𝑡𝑟𝑎𝑖𝑛11 is selected as 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 because its complexity
is greater than 𝑙𝑖𝑜𝑛9 as observed from their
descriptions. Consequently, 𝑙𝑖𝑜𝑛9 acts as 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡.

(ii) Input and State Matching using Hungarian Algo-
rithm: Input and state matchings are performed
together using Algorithms 1, 2, 5, and 6 from
[6]. Combinations of input lines of 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 (i.e.,
2P2 = 2) are generated. For the first combination(𝑥1|𝑡𝑟𝑎𝑖𝑛11, 𝑥2|𝑡𝑟𝑎𝑖𝑛11), states are matched as 𝑆0𝑙𝑖𝑜𝑛9 󳨀→𝑆0𝑡𝑟𝑎𝑖𝑛11, 𝑆1𝑙𝑖𝑜𝑛9 󳨀→ 𝑆1𝑡𝑟𝑎𝑖𝑛11, 𝑆3𝑙𝑖𝑜𝑛9 󳨀→ 𝑆2𝑡𝑟𝑎𝑖𝑛11,

𝑆4𝑙𝑖𝑜𝑛9 󳨀→ 𝑆3𝑡𝑟𝑎𝑖𝑛11, 𝑆7𝑙𝑖𝑜𝑛9 󳨀→ 𝑆4𝑡𝑟𝑎𝑖𝑛11, 𝑆2𝑙𝑖𝑜𝑛9 󳨀→𝑆5𝑡𝑟𝑎𝑖𝑛11, 𝑆8𝑙𝑖𝑜𝑛9 󳨀→ 𝑆6𝑡𝑟𝑎𝑖𝑛11, 𝑆5𝑙𝑖𝑜𝑛9 󳨀→ 𝑆7𝑡𝑟𝑎𝑖𝑛11 ,𝐷𝑢𝑚𝑚𝑦 𝑠𝑡𝑎𝑡𝑒 󳨀→ 𝑆8𝑡𝑟𝑎𝑖𝑛11, 𝑆6𝑙𝑖𝑜𝑛9 󳨀→ 𝑆9𝑡𝑟𝑎𝑖𝑛11 ,
and 𝐷𝑢𝑚𝑚𝑦 𝑠𝑡𝑎𝑡𝑒 󳨀→ 𝑆10𝑡𝑟𝑎𝑖𝑛11. It offers zero𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 and 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡. For the second com-
bination (𝑥2|𝑡𝑟𝑎𝑖𝑛11, 𝑥1|𝑡𝑟𝑎𝑖𝑛11), states are matched as𝑆0𝑙𝑖𝑜𝑛9 󳨀→ 𝑆0𝑡𝑟𝑎𝑖𝑛11, 𝑆3𝑙𝑖𝑜𝑛9 󳨀→ 𝑆1𝑡𝑟𝑎𝑖𝑛11, 𝑆1𝑙𝑖o𝑛9 󳨀→𝑆2𝑡𝑟𝑎𝑖𝑛11, 𝑆4𝑙𝑖𝑜𝑛9 󳨀→ 𝑆3𝑡𝑟𝑎𝑖𝑛11, 𝑆5𝑙𝑖𝑜𝑛9 󳨀→ 𝑆4𝑡𝑟𝑎𝑖𝑛11,𝑆2𝑙𝑖𝑜𝑛9 󳨀→ 𝑆5𝑡𝑟𝑎𝑖𝑛11, 𝐷𝑢𝑚𝑚𝑦 𝑠𝑡𝑎𝑡𝑒 󳨀→ 𝑆6𝑡𝑟𝑎𝑖𝑛11,𝑆7𝑙𝑖𝑜𝑛9 󳨀→ 𝑆7𝑡𝑟𝑎𝑖𝑛11, 𝑆8𝑙𝑖𝑜𝑛9 󳨀→ 𝑆8𝑡𝑟𝑎𝑖𝑛11 , 𝑆6𝑙𝑖𝑜𝑛9 󳨀→𝑆9𝑡𝑟𝑎𝑖𝑛11, and 𝐷𝑢𝑚𝑚𝑦 𝑠𝑡𝑎𝑡𝑒 󳨀→ 𝑆10𝑡𝑟𝑎𝑖𝑛11. It also
offers zero 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 and 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡. There-
fore, the first combination (𝑥1|𝑡𝑟𝑎𝑖𝑛11 , 𝑥2|𝑡𝑟𝑎𝑖𝑛11) is final-
ized to match with (𝑥1|𝑙𝑖𝑜𝑛9, 𝑥2|𝑙𝑖𝑜𝑛9).

(iii) Dummy State and Position Replacement: The
replacements of the dummy states and positions in𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 and 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 are performed using Algo-
rithm 3 from [6]. The replaced dummy states (high-
lighted in “bold italic font”) and dummy positions
(highlighted in “bold font”) are presented in Tables 3
and 4.

(iv) Output Matching using Bitwise-XOR Operations:
Output Matching is not required in this case, as

8 International Journal of Reconfigurable Computing

Table 1: Description of 𝑡𝑟𝑎𝑖𝑛11 fromMCNCFSMBenchmarks [14].

Input PS NS O/P
𝑥1 𝑥2 𝑦1

0 0 𝑆0 𝑆0 0
1 0 𝑆0 𝑆1 -
0 1 𝑆0 𝑆2 -
1 0 𝑆1 𝑆1 1
0 0 𝑆1 𝑆3 1
1 1 𝑆1 𝑆5 1
0 1 𝑆2 𝑆2 1
0 0 𝑆2 𝑆7 1
1 1 𝑆2 𝑆9 1
0 0 𝑆3 𝑆3 1
0 1 𝑆3 𝑆4 1
0 1 𝑆4 𝑆4 1
0 0 𝑆4 𝑆0 -
1 1 𝑆5 𝑆5 1
0 1 𝑆5 𝑆6 1
0 1 𝑆6 𝑆6 1
0 0 𝑆6 𝑆0 -
0 0 𝑆7 𝑆7 1
1 0 𝑆7 𝑆8 1
1 0 𝑆8 𝑆8 1
0 0 𝑆8 𝑆0 -
1 1 𝑆9 𝑆9 1
1 0 𝑆9 𝑆10 1
1 0 𝑆10 𝑆10 1
0 0 𝑆10 𝑆0 -

there is a single output line in 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 as well as in𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡.
(v) Update the descriptions of FSMs: The updated

descriptions of 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 and 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 are presented
in Tables 3 and 4, respectively.

(vi) State assignment using logarithmic barrier func-
tion based gradient descent approach for the
Reconfigurable FSM: The pictorial representation
of state transitions for 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 and 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 (from
Tables 3 and 4) is given in Figure 4. Therefore, the
weight matrix 𝜔 is formed using (1). It is given in

𝜔 =

[[[[[[[[[[[[[[[[[[[[[[[[[
[

2 2 1 0 0 0 0 0 0 0 0
1 2 0 1 0 2 0 0 0 0 0
0 0 2 1 0 1 0 1 0 1 0
0 0 1 2 1 0 0 1 0 0 0
1 0 0 0 2 0 1 0 0 1 0
0 1 1 0 0 2 1 0 0 0 0
1 0 0 0 1 0 2 0 0 0 0
0 0 0 1 0 0 0 2 1 1 0
2 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 2 1
2 1 0 0 0 0 0 0 0 0 1

]]]]]]]]]]]]]]]]]]]]]]]]]
]

(27)

Table 2: Description of 𝑙𝑖𝑜𝑛9 fromMCNC FSM Benchmarks [14].

Input PS NS O/P
𝑥1 𝑥2 𝑦1

1 0 𝑆0 𝑆1 0
0 0 𝑆0 𝑆0 0
0 0 𝑆1 𝑆0 0
1 0 𝑆1 𝑆1 0
1 1 𝑆1 𝑆2 0
1 0 𝑆2 𝑆1 0
1 1 𝑆2 𝑆2 0
0 1 𝑆2 𝑆3 0
1 1 𝑆3 𝑆2 1
0 1 𝑆3 𝑆3 1
0 0 𝑆3 𝑆4 1
0 1 𝑆4 𝑆3 1
0 0 𝑆4 𝑆4 1
1 0 𝑆4 𝑆5 1
0 0 𝑆5 𝑆4 1
1 0 𝑆5 𝑆5 1
1 1 𝑆5 𝑆6 1
1 0 𝑆6 𝑆5 1
1 1 𝑆6 𝑆6 1
0 1 𝑆6 𝑆7 1
1 1 𝑆7 𝑆6 1
0 1 𝑆7 𝑆7 1
0 0 𝑆7 𝑆8 1
0 1 𝑆8 𝑆7 1
0 0 𝑆8 𝑆8 1

The proposed state assignment algorithm starts by
considering the binary state codes as an initial solu-
tion. It offers the cost as 62 (from (2)).

At the 100𝑡ℎ iteration, the instantaneous value 𝜏 (from
previous iteration, 𝜏(𝑖𝑡𝑒𝑟 99)) is obtained as defined by

𝜏(𝑖𝑡𝑒𝑟 99) =

[[[[[[[[[[[[[[[[[[[[[[[[[
[

0.51 0.85 −0.85 0.84
−0.52 −0.85 −0.51 0.85
0.85 −0.52 −0.51 −0.85
0.84 −0.51 0.51 −0.52
−0.51 0.51 0.85 −0.52
−0.85 −0.52 −0.85 −0.51
−0.52 0.84 −0.51 −0.85
0.84 0.51 −0.52 −0.85
0.51 −0.85 −0.85 0.51
0.85 0.84 0.51 −0.52
−0.51 0.51 −0.52 0.85

]]]]]]]]]]]]]]]]]]]]]]]]]
]

𝑇

(28)

International Journal of Reconfigurable Computing 9

Table 3: Updated description of 𝑡𝑟𝑎𝑖𝑛11.
Input PS NS O/P

𝑥1 𝑥2 𝑦1

0 0 𝑆0 𝑆0 0
1 0 𝑆0 𝑆1 -
0 1 𝑆0 𝑆2 -
1 0 𝑆1 𝑆1 1
0 0 𝑆1 𝑆3 1
1 1 𝑆1 𝑆5 1
0 1 𝑆2 𝑆2 1
0 0 𝑆2 𝑆7 1
1 1 𝑆2 𝑆9 1
0 0 𝑆3 𝑆3 1
0 1 𝑆3 𝑆4 1
0 0 S3 S3 1
0 1 𝑆4 𝑆4 1
0 0 𝑆4 𝑆0 -
0 1 S4 S4 1
1 1 𝑆5 𝑆5 1
0 1 𝑆5 𝑆6 1
1 1 S5 S5 1
0 1 𝑆6 𝑆6 1
0 0 𝑆6 𝑆0 -
0 0 𝑆7 𝑆7 1
1 0 𝑆7 𝑆8 1
1 0 S7 S8 1
1 0 𝑆8 𝑆8 1
0 0 𝑆8 𝑆0 -
0 0 S8 S0 -
1 1 𝑆9 𝑆9 1
1 0 𝑆9 𝑆10 1
1 1 S9 S9 1
1 0 𝑆10 𝑆10 1
0 0 𝑆10 𝑆0 -
0 0 S10 S0 -

The derivative (from (24)) is evaluated as defined by

∇𝜓 (𝜏, 𝜙) =

[[[[[[[[[[[[[[[[[[[[[[[[[
[

−1517 −1224 −2118 2126
−1739 1258 −2622 2960
2135 701 1558 402
−1223 1598 1793 736
722 −739 2886 760
1262 723 −2888 1550
1506 −1209 −1775 401
−398 1754 763 −2889
−1549 −2118 418 −1579
2945 2953 1761 −1736
−2583 −1504 1506 2079

]]]]]]]]]]]]]]]]]]]]]]]]]
]

𝑇

(29)

Table 4: Updated description of 𝑙𝑖𝑜𝑛9.
Input PS NS O/P

𝑥1 𝑥2 𝑦1

0 0 𝑆0 𝑆0 0
1 0 𝑆0 𝑆1 0
0 0 S0 S0 0
1 0 𝑆1 𝑆1 0
0 0 𝑆1 𝑆0 0
1 1 𝑆1 𝑆5 0
0 1 𝑆2 𝑆2 1
0 0 𝑆2 𝑆3 1
1 1 𝑆2 𝑆5 1
0 0 𝑆3 𝑆3 1
0 1 𝑆3 𝑆2 1
1 0 𝑆3 𝑆7 1
0 1 𝑆4 𝑆4 1
0 0 𝑆4 𝑆6 1
1 1 𝑆4 𝑆9 1
1 1 𝑆5 𝑆5 0
0 1 𝑆5 𝑆2 0
1 0 𝑆5 𝑆1 0
0 1 𝑆6 𝑆4 1
0 0 𝑆6 𝑆6 1
0 0 𝑆7 𝑆3 1
1 0 𝑆7 𝑆7 1
1 1 𝑆7 𝑆9 1
1 0 S8 S1 0
0 0 S8 S0 0
0 0 S8 S0 0
1 1 𝑆9 𝑆9 1
1 0 𝑆9 𝑆7 1
0 1 𝑆9 𝑆4 1
1 0 S10 S1 0
0 0 S10 S0 0
0 0 S10 S0 0

So, the current value of 𝜏 (i.e., 𝜏(𝑖𝑡𝑒𝑟 100)) is obtained
from (12). It is given in (30) by choosing 𝜌 = 10−3 (a
very small value).

𝜏(𝑖𝑡𝑒𝑟 100) =

[[[[[[[[[[[[[[[[[[[[[[[[[
[

2.027 2.074 1.268 −1.286
1.219 −2.108 2.112 −2.11
−1.285 −1.221 −2.068 −1.252
2.063 −2.108 −1.283 −1.256
−1.232 1.249 −2.036 −1.28
−2.112 −1.243 2.038 −2.06
−2.026 2.049 1.265 −1.251
1.238 −1.244 −1.283 2.039
2.059 1.268 −1.268 2.089
−2.095 −2.113 −1.251 1.216
2.073 2.014 −2.026 −1.229

]]]]]]]]]]]]]]]]]]]]]]]]]
]

𝑇

(30)

10 International Journal of Reconfigurable Computing

Then, 𝜏 is directed towards the unity radius hyper-
sphere. It is given in

𝜏 =

[[[[[[[[[[[[[[[[[[[[[[[[[
[

0.85 0.84 0.51 −0.52
0.51 −0.85 0.85 −0.85
−0.52 −0.51 −0.85 −0.51
0.84 −0.85 −0.52 −0.51
−0.51 0.51 −0.85 −0.52
−0.85 −0.52 0.84 −0.85
−0.85 0.85 0.51 −0.51
0.51 −0.51 −0.52 0.85
0.85 0.51 −0.51 0.85
−0.85 −0.85 −0.51 0.51
0.84 0.84 −0.85 −0.51

]]]]]]]]]]]]]]]]]]]]]]]]]
]

𝑇 ←󳨀 𝑆0
←󳨀 𝑆1
←󳨀 𝑆2
←󳨀 𝑆3
←󳨀 𝑆4
←󳨀 𝑆5
←󳨀 𝑆6
←󳨀 𝑆7
←󳨀 𝑆8
←󳨀 𝑆9
←󳨀 𝑆10

(31)

The required set of state codes is deduced as 𝑆0 󳨀→1110, 𝑆1 󳨀→ 1010, 𝑆2 󳨀→ 0000, 𝑆3 󳨀→ 1000, 𝑆4 󳨀→0100, 𝑆5 󳨀→ 0010, S6 󳨀→ 0110, 𝑆7 󳨀→ 1001, 𝑆8 󳨀→1101, 𝑆9 󳨀→ 0001, and 𝑆10 󳨀→ 1100 by discretizing
the current value of 𝜏 using (26). Hence, the cost is
reduced to 48 (from (2)).

In the end, a Bitwise-XOR operation is performed
between the updated descriptions of 𝑡𝑟𝑎𝑖n11 and 𝑙𝑖𝑜𝑛9. It
provides the Multiplexer bank (i.e., part-B). The updated
descriptions of 𝑡𝑟𝑎𝑖𝑛11 are used to construct the Conven-
tional FSMIM part (i.e., part-A).

4. Numerical Results and Discussions

To validate the proposed approach, experiments have been
performed using MCNC FSM benchmarks [14]. MATLAB
(2016b) environment is used to implement the proposed
Improved-IGHA. It produces the optimized description
for the constituting parts of the Improved Reconfigurable
FSMIM architecture. The obtained description is then con-
verted into the Verilog HDL code using MATLAB HDL
Coder tool-box.The implementation of the Improved Recon-
figurable FSMIM architecture is performed on the Virtex-
6 speed-3 device as in [6, 11]. The configuration of the
workstation to execute computations is as follows: Intel(R)
Core i7 (6th Gen), 16 GB RAM, and 3.5 GHz CPU.

In Improved-IGHA, combinations of input lines, states,
and output lines are generated using permutation to perform
input, state, and output matching, respectively. The number
of input and output lines used for matching is restricted to
7 (i.e., 7P7 = 5040 combinations) to utilize the resources
efficiently. Hence, the information content of an input/output
line becomes the criteria for selection. An input/output line
with high information content is preferred.

The following MCNC FSM benchmarks [14] are selected
to illustrate the implementation of the Improved Recon-
figurable FSMIM architecture and present its comparative
analysis with the existing literature: 𝑠1494, 𝑠832, 𝑠208, 𝑝𝑙𝑎𝑛𝑒𝑡,𝑠386, 𝑠𝑎𝑛𝑑,𝑚𝑐, 𝑠𝑡𝑦𝑟, 𝑐𝑠𝑒, 𝑒𝑥6, 𝑝𝑙𝑎𝑛𝑒𝑡1, and 𝑠1488.

𝑠1494 is chosen as 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 (i.e., the circuit added at the0𝑡ℎ iteration of Improved-IGHA), as it is more complex (i.e.,
the total number of transitions is high) as compared with the
other FSMs in the set. The other FSMs in the set are added
iteratively in the design in their respective order.

In an FSM, a specific state is chosen only if a particular set
of input bits (i.e., 1’s or 0’s) are present. Hence, the percentage
of 1’s and 0’s together in an input line acts as information
content as shown in Table 5 (the selected input lines to match
with 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 are highlighted). Similarly, the output is always
defined by “1.” Hence, the percentage of 1’s in an output line
serves as information content as shown in Tables 6 and 7 (the
selected output lines to match with 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 are highlighted).

At the first phase of Improved-IGHA, input and state
matching are performed together, and optimal assignments
(with respect to 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡) are made. It is presented in Table 5.
All the 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 states are mapped onto 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 states
in their respective order. Output matching (with respect to𝑏𝑎𝑠𝑒 𝑐𝑘𝑡) is performed iteratively by Bitwise-XOR opera-
tions. It is presented inTables 6 and 7.Then, after updating the
descriptions of constituting FSMs, the state assignment using
logarithmic barrier function based gradient descent approach
is performed.

To present a comparative analysis of the total compu-
tation time required by IGHA [6] and Improved-IGHA,
an inbuilt feature in MATLAB named “stopwatch timer” is
used. It evaluates the elapsed time (i.e., the execution time
between the starting and stopping of a function). As evident
from the literature [6], linear assignment problems (LAPs)
are solved several times by IGHA to perform matchings
among all generated combinations to add 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝑏 ∈{𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1, . . . , 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵} iteratively. The convergence
period of IGHA to solve a single LAP ranges from 0.03ms to0.6ms. Hence, the total elapsed time taken by IGHA (i.e., 𝑡𝐼𝐺)
is given in (32).The convergence time for the state assignment
using LBF-based gradient descent approach (i.e., 𝑡𝑆𝐸) to add𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝑏 ∈ {𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1, . . . , 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵} iteratively is
given in Table 8. Therefore, the total elapsed time taken by
Improved-IGHA (i.e., 𝑡𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑) is an addition of 𝑡𝐼𝐺 and 𝑡𝑆𝐸
(from Figure 3). It is presented in Table 8.

𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝐼𝐺𝐻𝐴
= ∑

𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝑏

(1 + 𝐸) (𝑀 𝑏𝑎𝑠𝑒 × 𝑀 𝑟𝑒𝑐𝑜𝑛)

× 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝐼𝐺𝐻𝐴 𝑡𝑜 𝑠𝑜𝑙V𝑒 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝐿𝐴𝑃

𝑠.𝑡. 𝐸 = {
{{

𝐿 𝑏𝑎𝑠𝑒P𝐿 𝑟𝑒𝑐𝑜𝑛 𝑖𝑓 𝐿 𝑏𝑎𝑠𝑒 ≥ 𝐿 𝑟𝑒𝑐𝑜𝑛;
𝐿 𝑟𝑒𝑐𝑜𝑛P𝐿 𝑏𝑎𝑠𝑒 𝑖𝑓 𝐿 𝑏𝑎𝑠𝑒 < 𝐿 𝑟𝑒𝑐𝑜𝑛;
𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝑏 ∈ {𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 1, . . . , 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡 𝐵} .

(32)

The experimental results presented in Table 8 illustrate
that the total computation time required by IGHA is far
higher than the convergence time for the proposed state
assignment technique (i.e., 𝑡𝐼𝐺 ≫ 𝑡𝑆𝐸). Therefore, the total
computation time required by Improved-IGHA is equiva-
lent to the total computation time needed by IGHA (i.e.,𝑡𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 ≅ 𝑡𝐼𝐺).

International Journal of Reconfigurable Computing 11

Table 5: The information content for input lines of MCNC FSM Benchmarks and their matching with input lines of 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡.
FSM No. of I/P Input lines with their Matched with 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 No. of state

information content

𝑠1494 8

x1(99.6%), 𝑥2(10%), 𝑥1, 𝑥3,

48x3(25.6%), x4(24.8%), 𝑥4, 𝑥5,
x5(12.4%), x6(66%), 𝑥6, 𝑥7,

x7(41.6%), x8(20.4%) 𝑥8

𝑠832 18

𝑥1(2.04%), 𝑥2(6.93%),

25

𝑥3(2.44%), 𝑥4(4.48%),
x5(70.61%), 𝑥6(1.63%),
x7(14.28%), x8(9.79%), 𝑥9, 𝑥11,
x9(8.97%), 𝑥10(8.16%), 𝑥18, 𝑥17,
x11(8.57%), 𝑥12(6.12%), 𝑥8, 𝑥7, 𝑥5𝑥13(4.081%), 𝑥14(4.08%),
𝑥15(1.63%), 𝑥16(1.63%),

x17(59.18%), x18(81.63%),

𝑠208 11

x1(96.73%), x2(91.5%),

18

𝑥3(0%), 𝑥4(0%), 𝑥1, 𝑥8,𝑥5(0%), x6(2.61%), 𝑥6, 𝑥9,𝑥7(2.61%), x8(5.22%), 𝑥11, 𝑥2,
x9(12.41%), x10(49.01%), 𝑥10

x11(77.12%)

𝑝𝑙𝑎𝑛𝑒𝑡 7

x1, x2, 𝑥6, 𝑥3,

48x3, x4, 𝑥4, 𝑥2,
x5, x6, 𝑥5, 𝑥7,

x7 𝑥1

𝑠386 7

x1, x2, 𝑥4, 𝑥3,

13x3, x4, 𝑥2, 𝑥7,
x5, x6, 𝑥1, 𝑥5,

x7 𝑥6

𝑠𝑎𝑛𝑑 11

x1(52.17%), x2(52.17%),

32

x3(52.17%), x4(52.17%), 𝑥4, 𝑥2,
x5(24.45%), 𝑥6(3.26%), 𝑥1, 𝑥10,𝑥7(18.47%), x8(26.63%), 𝑥5, 𝑥3,𝑥9(1.08%), x10(79.89%), 𝑥8𝑥11(19.56%)

𝑚𝑐 3

−, 𝑥3,

4x1, x2, 𝑥1,−,
x3 𝑥2, −,−

𝑠𝑡𝑦𝑟 9

x1(92.16%), x2(4.81%),
30

x3(48.79%), x4(69.87%), 𝑥2, 𝑥4,
x5(68.67%), x6(39.15%), 𝑥5, 𝑥3,𝑥7(4.81%), x8(5.42%), 𝑥8, 𝑥6, 𝑥1𝑥9(3.61%)

𝑐𝑠𝑒 7

x1, x2, 𝑥5, 𝑥2,

16x3, x4, 𝑥7, 𝑥3,
x5, x6, 𝑥4, 𝑥1,

x7 𝑥6

𝑒𝑥6 5

𝑥3, 𝑥4,

8x1, x2, −, 𝑥1,
x3, x4, x5 𝑥2, −,𝑥5

12 International Journal of Reconfigurable Computing

Table 5: Continued.

FSM No. of I/P Input lines with their Matched with 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 No. of state
information content

𝑝𝑙𝑎𝑛𝑒𝑡1 7

x1, x2, 𝑥5, 𝑥1,

48x3, x4, 𝑥6, 𝑥3,
x5, x6, 𝑥4, 𝑥2,

x7 𝑥7

𝑠1488 8

x1(98.8%), 𝑥2(12.74%), 𝑥1, 𝑥5,

48x3(23.5%), x4(23.9%), 𝑥3, 𝑥4,
x5(16.33%), x6(65.73%), 𝑥8, 𝑥7,
x7(40.23%), x8(18.32%) 𝑥6

Current
State (PS)

Next
State (NS)

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

Current
State (PS)

Next
State (NS)

recon_ckt (lion9)

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

base_ckt (train11)

Figure 4: The pictorial representation of state transitions for 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡 and 𝑟𝑒𝑐𝑜𝑛 𝑐𝑘𝑡.

Convergence plot for the state assignment using logarith-
mic barrier function based gradient descent approach after
adding the last constituting FSM in the proposed architecture
is presented in Figure 5. It starts by taking binary state
codes as an initial code. The cost offered to the proposed
architecture is calculated by (2). It converges to 200 iterations.
The cost is reduced from 1028 to 923 as shown in Figure 5.
Consequently, at 200𝑡ℎ iteration, the following state codes are
obtained: 𝑆0 󳨀→ 010111, 𝑆1 󳨀→ 000000, 𝑆2 󳨀→ 000111,𝑆3 󳨀→ 110000, 𝑆4 󳨀→ 010100, 𝑆5 󳨀→ 110101, 𝑆6 󳨀→000110, 𝑆7 󳨀→ 011101, 𝑆8 󳨀→ 001100, 𝑆9 󳨀→ 011010,

𝑆10 󳨀→ 011110, 𝑆11 󳨀→ 001110, 𝑆12 󳨀→ 010110, 𝑆13 󳨀→111011, 𝑆14 󳨀→ 000011, 𝑆15 󳨀→ 100110, 𝑆16 󳨀→ 110111,𝑆17 󳨀→ 001010, 𝑆18 󳨀→ 011100, 𝑆19 󳨀→ 100001, 𝑆20 󳨀→
101001, 𝑆21 󳨀→ 110010, 𝑆22 󳨀→ 100000, 𝑆23 󳨀→ 001000,𝑆24 󳨀→ 001111, 𝑆25 󳨀→ 101101, 𝑆26 󳨀→ 010011, 𝑆27 󳨀→
101010, 𝑆28 󳨀→ 110001, 𝑆29 󳨀→ 001011, 𝑆30 󳨀→ 111010,𝑆31 󳨀→ 011111, 𝑆32 󳨀→ 000101, 𝑆33 󳨀→ 000100, 𝑆34 󳨀→111101, 𝑆35 󳨀→ 000001, 𝑆36 󳨀→ 001101, 𝑆37 󳨀→ 101000,𝑆38 󳨀→ 000010, 𝑆39 󳨀→ 100111, 𝑆40 󳨀→ 110110, 𝑆41 󳨀→011001, 𝑆42 󳨀→ 100010, 𝑆43 󳨀→ 001001, 𝑆44 󳨀→ 010001,𝑆45 󳨀→ 100101, 𝑆46 󳨀→ 101111, and 𝑆47 󳨀→ 010010.

International Journal of Reconfigurable Computing 13

Table 6: The information content for output lines of MCNC FSM Benchmarks & their matching with output lines of 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡.
FSM No. of O/P Output lines with their Matched with 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡

information content

𝑠1494 19

𝑦1(24.8%), 𝑦2(4.8%), 𝑦3(5.2%),
𝑦4(3.2%), 𝑦5(2.4%), 𝑦6(2.4%), 𝑦11, 𝑦12,

𝑦7(15.2%), 𝑦8(25.2%), 𝑦9(1.6%), 𝑦13, 𝑦14,
𝑦10(6.4%), y11(87.2%), y12(40.4%), 𝑦15, 𝑦17,
y13(32.8%), y14(70.4%), y15(38.4%), 𝑦19

𝑦16(18.4%), y17(70%), 𝑦18(31.2%),
y19(49.2%)

𝑠832 19

y1(5.71%), y2(2.44%), 𝑦3(1.22%),
𝑦4(1.63%), 𝑦5(2.44%), 𝑦6(0.81%), 𝑦19, 𝑦15,
y7(2.44%), y8(73.06%), 𝑦9(0.81%), 𝑦2, 𝑦8,𝑦10(0.81%), y11(5.3%), 𝑦12(2.44%), 𝑦7, 𝑦1,
𝑦13(0.81%), 𝑦14(1.63%), y15(6.12%), 𝑦11

𝑦16(0.81%), 𝑦17(1.63%), 𝑦18(2.44%),
y19(41.22%)

𝑠208 2 y1, y2

−, 𝑦1,
−, −,
𝑦2, −,
−

𝑝𝑙𝑎𝑛𝑒𝑡 19

y1(54.78%), 𝑦2(23.47%), y3(69.56%),
𝑦4(16.52%), y5(32.17%), y6(73.91%), 𝑦6, 𝑦8,
y7(26.08%), y8(28.69%), y9(91.3%), 𝑦9, 𝑦5,
𝑦10(4.34%), 𝑦11(1.73%), 𝑦12(22.6%), 𝑦3, 𝑦1,𝑦13(11.3%), 𝑦14(2.6%), 𝑦15(3.47%), 𝑦7

𝑦16(1.73%), 𝑦17(3.47%), 𝑦18(3.47%),
𝑦19(20%)

𝑠386 7

𝑦6, 𝑦1,
y1, y2, y3, 𝑦3, 𝑦4,
y4, y5, y6,y7 𝑦7, 𝑦5,𝑦2

𝑠𝑎𝑛𝑑 9
y1(22.28%), y2(36.41%), y3(16.84%), 𝑦4, 𝑦6,
y4(62.5%), y5(15.76%), y6(8.15%), 𝑦2, 𝑦7,
y7(17.39%), 𝑦8(1.63%), 𝑦9(3.26%) 𝑦3, 𝑦5, 𝑦1

𝑚𝑐 5

𝑦4, 𝑦2,
y1, y2, y3, 𝑦5, 𝑦1,
y4, y5 𝑦3, −,−

𝑠𝑡𝑦𝑟 10

y1(15.66%), y2(33.73%), y3(25.9%), 𝑦5, 𝑦6,𝑦4(3.012%), y5(8.43%), y6(7.22%), 𝑦7, 𝑦8,
y7(5.42%), y8(11.445%), 𝑦9(3.614%), 𝑦3, 𝑦2,

𝑦10(4.819%) 𝑦1

𝑐𝑠𝑒 7

𝑦7, 𝑦3,
y1, y2, y3, 𝑦5, 𝑦1,

y4, y5, y6, y7 𝑦4, 𝑦6,𝑦2

𝑒𝑥6 8
y1(58.82%), y2(29.41%), y3(55.88%), 𝑦5, 𝑦8,
y4(29.41%), y5(50%), y6(26.47%), 𝑦4, 𝑦1,

𝑦7(5.88%), y8(23.52%) 𝑦6, 𝑦2, 𝑦3

14 International Journal of Reconfigurable Computing

Table 7: The information content for output lines of MCNC FSM Benchmarks and their matching with output lines of 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡.
FSM No. of O/P Output lines with their Matched with 𝑏𝑎𝑠𝑒 𝑐𝑘𝑡

information content

𝑝𝑙𝑎𝑛𝑒𝑡1 19

y1(54.78%), 𝑦2(23.47%), y3(69.56%),
𝑦4(16.52%), y5(32.17%), y6(73.91%), 𝑦6, 𝑦7,
y7(26.08%), y8(28.69%), y9(91.3%), 𝑦1, 𝑦8,
𝑦10(4.34%), 𝑦11(1.73%), 𝑦12(22.6%), 𝑦5, 𝑦3,
𝑦13(11.3%), 𝑦14(2.6%), 𝑦15(3.47%), 𝑦9

𝑦16(1.73%), 𝑦17(3.47%), 𝑦18(3.47%),
𝑦19(20%)

𝑠1488 19

𝑦1(2.39%), 𝑦2(2.78%), 𝑦3(1.59%),
𝑦4(5.17%), 𝑦5(2.39%), 𝑦6(15.13%), 𝑦18, 𝑦7,
y7(71.31%), 𝑦8(3.98%), y9(51.39%), 𝑦13, 𝑦19,
𝑦10(6.3%), 𝑦11(16.7%), y12(37.1%), 𝑦9, 𝑦15,
y13(70.5%), 𝑦14(24.3%), y15(87.6%), 𝑦12𝑦16(31.1%), 𝑦17(25.4%), y18(31.4%),

y19(39.84%)
Table 8: Comparative analysis of the total computation time required by IGHA [6] and Improved-IGHA.

Iteration No.
FSM included Total elapsed time Total elapsed time Total elapsed time for Improved-IGHA
in the specific for IGHA [6] for state encoding (Hrs) 𝑡𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝑡𝐼𝐺 + 𝑡𝑆𝐸

iteration (Hrs) 𝑡𝐼𝐺 tech. (ms) 𝑡𝑆𝐸 ∵ 𝑡𝐼𝐺 ≫ 𝑡𝑆𝐸, ∴ 𝑡𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 ≅ 𝑡𝐼𝐺
0𝑡ℎ 𝑠1494 0 296.529 0
1𝑠𝑡 𝑠832 25.34 214.468 25.34
2𝑛𝑑 𝑠208 18.57 156.062 18.57
3𝑟𝑑 𝑝𝑙𝑎𝑛𝑒𝑡 48.65 338.560 48.65
4𝑡ℎ 𝑠386 13.17 182.808 13.17
5𝑡ℎ 𝑠𝑎𝑛𝑑 32.43 293.894 32.43
6𝑡ℎ 𝑚𝑐 0.182 148.784 0.182
7𝑡ℎ 𝑠𝑡𝑦𝑟 30.409 249.509 30.409
8𝑡ℎ 𝑐𝑠𝑒 16.21 387.923 16.21
9𝑡ℎ 𝑒𝑥6 4.38 167.144 4.38
10𝑡ℎ 𝑝𝑙𝑎𝑛𝑒𝑡1 48.544 312.809 48.544
11𝑡ℎ 𝑠1488 48.654 326.406 48.654

At the last phase of Improved-IGHA, a mutual Bitwise-
XOR operation is conducted between the updated descrip-
tions of FSMs. Therefore, the constituting parts of the
proposed architecture are created. The individual share of
constituent FSMs in the Improved-Reconfigurable FSMIM
architecture is determined by the difference between the
occupied LUTs in the recent and its previous iteration.
After adding all the constituting FSMs in the proposed
design (i.e., at the last iteration), the total LUT consumption
and operating frequency are obtained. It is presented in
Table 9.

Experimental results for the proposed architecture
illustrates a significant area reduction by an average of
20.38% and speed improvement by an average of 32.73%
over VRMUX [11] during FPGA implementation. It also
demonstrates an adequate area reduction by an average
of 16.05% and speed improvement by an average of 1.77%
over Reconfigurable FSMIM-S architecture [6] during

FPGA implementation. When these results are compared
with CRMUX [11], a speed improvement by an average of
11.06% is obtained. The proposed architecture requires an
average of 58.38% more LUTs as compared with CRMUX
[11] during FPGA implementation. It is the only trade-off for
the proposed design. A comparative analysis of the hardware
consumption and maximum operating frequency variation
on FPGA implementation is presented in Figures 6 and 7,
respectively.

5. Concluding Remarks

This article furnishes the framework for the Improved-
Reconfigurable FSMIM architecture. The Improved-
Reconfigurable FSMIM architecture is created by joining the
following two parts: (A) Conventional FSMIM architecture
and (B) Multiplexer bank (which defines the mode based
reconfiguration). An improved version of iterative greedy

International Journal of Reconfigurable Computing 15

Table 9: Implementation of the Improved Reconfigurable FSMIM architecture on the Virtex-6 speed-3 device in an iterative manner.

Iteration No.
FSM included #LUTs occupied Maximum Maximum #LUTs occupied by the FSM
in the specific in the specific Operating Path (#LUTs in the current iteration

iteration iteration Frequency (MHz) Delay (ns) - #LUTs in the previous iteration)
0𝑡ℎ 𝑠1494 40 831.693 3.898 40
1𝑠𝑡 𝑠832 97 803.44 4.288 57
2𝑛𝑑 𝑠208 114 793.583 5.252 17
3𝑟𝑑 𝑝𝑙𝑎𝑛𝑒𝑡 142 785.326 4.219 28
4𝑡ℎ 𝑠386 157 776.863 4.534 15
5𝑡ℎ 𝑠𝑎𝑛𝑑 187 760.88 4.117 30
6𝑡ℎ 𝑚𝑐 198 757.237 3.854 11
7𝑡ℎ 𝑠𝑡𝑦𝑟 217 743.431 4.204 19
8𝑡ℎ 𝑐𝑠𝑒 240 713.929 4.401 23
9𝑡ℎ 𝑒𝑥6 249 704.892 4.649 9
10𝑡ℎ 𝑝𝑙𝑎𝑛𝑒𝑡1 274 690.83 4.977 25
11𝑡ℎ 𝑠1488 293 676.928 5.151 19
#LUTs 󳨀→ number of LUTs occupied in ISE

X: 37
Y: 1019

X: 77

Cost offered by a particular set of state codes

Y: 989

X: 120
Y: 945

X: 145
Y: 925

X: 198
Y: 923

920

940

960

980

1000

1020

1040

C
os

t

20 40 60 80 100 120 140 160 180 2000
Iteration Number

Figure 5: Convergence plot for the state assignment using logarith-
mic barrier function based gradient descent approach after adding
the last constituting FSM in the proposed architecture.

heuristic based Hungarian algorithm (Improved-IGHA) is
proposed to establish the constituting parts as mentioned
earlier. Improved-IGHA is an integration of IGHA [6]
and a state assignment using logarithmic barrier function
based gradient descent approach. It reduces the hardware
consumption of the proposed architecture by performing
an optimal state encoding. An illustrative example using
MCNC FSM benchmarks is also given to demonstrate
the steps involved in the creation of the proposed
architecture.

The proposed architecture illustrates a significant area
reduction by an average of 20.38% and speed improve-
ment by an average of 32.73% over VRMUX [11] dur-
ing FPGA implementation. It also demonstrates an ade-
quate area reduction by an average of 16.05% and speed
improvement by an average of 1.77% over Reconfigurable
FSMIM-S architecture [6] during FPGA implementation.
When these results are compared with CRMUX [11], a

variation-based reconfigurable multiplexer
bank (VRMUX) [11]
combination-based reconfigurable
multiplexer bank (CRMUX) [11]
Reconfigurable FSMIM-S architecture [6]

Proposed Reconfigurable FSMIM
architecture

0

10

20

30

40

50

60

70

80
#L

U
Ts

 u
til

iz
at

io
n

pl
an

et
1

s1
48

8

s1
49

4

pl
an

et

s2
08

s3
86

s8
32

sa
nd ex

6

sty
r

cs
e

m
c

FSM

Figure 6: Comparative analysis of the number of LUT consumption
on FPGA implementation.

speed improvement by an average of 11.06% is obtained.
The proposed architecture requires an average of 58.38%
more LUTs as compared with CRMUX [11] during FPGA
implementation. It is the only trade-off for the proposed
design.

16 International Journal of Reconfigurable Computing

variation-based reconfigurable multiplexer bank (VRMUX) [11]
combination-based reconfigurable multiplexer bank (CRMUX) [11]
Reconfigurable FSMIM-S architecture [6]
Proposed Reconfigurable FSMIM architecture

s2
08m

c

s1
48

8

ex
6

cs
e

s3
86

pl
an

et
1

s8
32sty

r
pl

an
et

sa
nd

s1
49

4

FSM

300

350

400

450

500

550

600

650

700

M
ax

im
um

 O
pe

ra
tin

g
Fr

eq
ue

nc
y

(M
H

z)

Figure 7: Comparative analysis of maximum operating frequency
on FPGA implementation.

Further, the proposed architecture will be investigated
to develop an efficient architecture for multistage signal
processing [1, 2] and circuit testing [5] based applications.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The datasets generated during and/or analyzed during
the current study are available in [6] repository [DOI:
10.1155/2018/6831901].This work is conducted in the Depart-
ment of ECE, SRM Institute of Science and Technology,
Kattankulathur-603203, Chennai, India.

References

[1] E. De Lucas, M. Sanchez-Elez, and I. Pardines, “DSPONE48:
a methodology for automatically synthesize HDL focus on

the reuse of DSP slices,” Journal of Parallel and Distributed
Computing, vol. 106, pp. 132–142, 2017.

[2] J. Wu, D. Yang, and Z. Chen, “Design and application of
multi-stage reconfigurable signal processing flow on FPGA,”
Computers and Electrical Engineering, vol. 42, pp. 1–11, 2015.

[3] J. Zheng,W.Gao,D.Wu, andD.Xie, “An efficientVLSI architec-
ture for CBAC of AVSHDTV decoder,” Signal Processing: Image
Communication, vol. 24, no. 4, pp. 324–332, 2009.

[4] N. I. Rafla and I. Gauba, “A reconfigurable pattern matching
hardware implementation using on-chip RAM-based FSM,” in
Proceedings of the 53rd IEEE International Midwest Symposium
on Circuits and Systems, MWSCAS 2010, pp. 49–52, IEEE,
Seattle, Wash, USA, August 2010.

[5] Z. Ling, K. Ji-Shun, and Y. Zhi-Qiang, “Virtual scan chains
reordering using a RAM-based module for high test compres-
sion,”Microelectronics Journal, vol. 43, no. 11, pp. 869–872, 2012.

[6] N. Das and P. A. Priya, “FPGA implementation of reconfig-
urable finite state machine with input multiplexing architecture
using hungarian method,” International Journal of Reconfig-
urable Computing, vol. 2018, Article ID 6831901, 15 pages, 2018.

[7] J. Glaser, M. Damm, J. Haase, and C. Grimm, “TR-FSM:
transition-based reconfigurable finite state machine,” ACM
Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 4, no. 3, article no. 23, pp. 1–14, 2011.

[8] I. Garcia-Vargas and R. Senhadji-Navarro, “Finite state
machines with input multiplexing: a performance study,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 5, pp. 867–871, 2015.

[9] L. Jozwiak, A. Slusarczyk, and D. Gawlowski, “Multi-objective
optimal FSM state assignment,” in Proceedings of the 9th
EUROMICRO Conference on Digital System Design (DSD’06),
pp. 385–396, IEEE, Dubrovnik, Croatia, 2006.

[10] S. Deniziak and M. Wiśniewski, “FPGA-based state encoding
using symbolic functional decomposition,” IEEE Electronics
Letters, vol. 46, no. 19, pp. 1316–1318, 2010.

[11] R. Senhadji-Navaro and I. Garcia-Vargas, “high-speed and area-
efficient reconfigurable multiplexer bank for RAM-based finite
statemachine implementations,” Journal ofCircuits, Systems and
Computers, vol. 24, no. 7, Article ID 1550101, pp. 1–15, 2015.

[12] M. Kołopieńczyk, L. Titarenko, and A. Barkalov, “Design of
EMB-based moore FSMs,” Journal of Circuits, Systems and
Computers, vol. 26, no. 7, pp. 1–23, 2017.

[13] M. Kolopienczyk, A. Barkalov, and L. Titarenko, “Hardware
reduction for RAM-based moore FSMs,” in Proceedings of the
7th International Conference onHuman System Interactions, HSI
2014, pp. 255–260, IEEE, Costa daCaparica, Portugal, June 2014.

[14] https://people.engr.ncsu.edu/brglez/CBL/benchmark/.
[15] S. Devadas, H.-K. Ma, A. R. Newton, and A. Sangiovanni-

Vincentelli, “Mustang: state assignment of finite state machines
targeting multilevel logic implementations,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 7, no. 12, pp. 1290–1300, 1988.

[16] K. Kabyl, A. Berrachedi, and É. Sopena, “A note on the
cubical dimension of new classes of binary trees,” Czechoslovak
Mathematical Journal, vol. 65, no. 1, pp. 151–160, 2015.

[17] M. Liu and H.-M. Liu, “Vertex-fault-tolerant cycles embedding
on enhanced hypercube networks,” Acta Mathematicae Appli-
catae Sinica, vol. 32, no. 1, pp. 187–198, 2016.

[18] G. Pavai and T. V. Geetha, “New crossover operators using
dominance and co-dominance principles for faster convergence
of genetic algorithms,” Soft Computing, pp. 1–26, 2018.

https://people.engr.ncsu.edu/brglez/CBL/benchmark/

International Journal of Reconfigurable Computing 17

[19] S. Ganjefar andM. Tofighi, “Optimization of quantum-inspired
neural network using memetic algorithm for function approx-
imation and chaotic time series prediction,” Neurocomputing,
vol. 291, pp. 175–186, 2018.

[20] H.Huang, L. Lv, S. Ye, and Z.Hao, “Particle swarm optimization
with convergence speed controller for large-scale numerical
optimization,” Soft Computing, pp. 1–17, 2018.

[21] R. Knobloch, J.Mlýnek, andR. Srb, “The classic differential evo-
lution algorithmand its convergence properties,”Applications of
Mathematics, vol. 62, no. 2, pp. 197–208, 2017.

[22] F. E. Curtis, “A penalty-interior-point algorithm for nonlinear
constrained optimization,”Mathematical ProgrammingCompu-
tation, vol. 4, no. 2, pp. 181–209, 2012.

[23] P. Armand and R. Omheni, “A mixed logarithmic barrier-
augmented Lagrangian method for nonlinear optimization,”
Journal of Optimization Theory and Applications, vol. 173, no.
2, pp. 523–547, 2017.

[24] W. Murray and K.-M. Ng, “An algorithm for nonlinear opti-
mization problems with binary variables,” Computational Opti-
mization and Applications, vol. 47, no. 2, pp. 257–288, 2010.

[25] E. M. Soler, V. A. De Sousa, and G. R. M. Da Costa, “A
modified primal-dual logarithmic-barrier method for solving
the optimal power flow problem with discrete and continuous
control variables,” European Journal of Operational Research,
vol. 222, no. 3, pp. 616–622, 2012.

[26] R. Gárciga Otero and A. Iusem, “A proximal method with
logarithmic barrier for nonlinear complementarity problems,”
Journal of Global Optimization, vol. 64, no. 4, pp. 663–678, 2016.

[27] L. Menniche and D. Benterki, “A logarithmic barrier approach
for linear programming,” Journal of Computational and Applied
Mathematics, vol. 312, pp. 267–275, 2016.

[28] R. Shen, Z. Meng, C. Dang, andM. Jiang, “Algorithm of barrier
objective penalty function,” Numerical Functional Analysis and
Optimization, vol. 38, no. 11, pp. 1–17, 2017.

[29] I. Chakroun, T. Haber, and T. J. Ashby, “SW-SGD: the sliding
window stochastic gradient descent algorithm,” Procedia Com-
puter Science, vol. 108, pp. 2318–2322, 2017.

[30] A. Senov and O. Granichin, “Projective approximation based
gradient descentmodification,” IFAC-PapersOnLine, vol. 50, no.
1, pp. 3899–3904, 2017.

[31] B. Mu, J. Ren, and S. Yuan, “An efficient approach based on the
gradient definition for solving conditional nonlinear optimal
perturbation,”Mathematical Problems in Engineering, vol. 2017,
Article ID 3208431, 10 pages, 2017.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

