Hindawi

International Journal of Reconfigurable Computing
Volume 2019, Article ID 7348013, 12 pages
https://doi.org/10.1155/2019/7348013

Research Article

Hindawi

Automatic Pipelining and Vectorization of Scientific

Code for FPGAs

Syed Waqar Nabi® and Wim Vanderbauwhede

School of Computing Science, University of Glasgow, Glasgow, UK

Correspondence should be addressed to Syed Waqar Nabi; syed.nabi@glasgow.ac.uk

Received 4 May 2019; Revised 4 August 2019; Accepted 8 October 2019; Published 18 November 2019
Academic Editor: John Kalomiros

Copyright © 2019 Syed Waqar Nabi and Wim Vanderbauwhede. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

There is a large body of legacy scientific code in use today that could benefit from execution on accelerator devices like GPUs and
FPGAs. Manual translation of such legacy code into device-specific parallel code requires significant manual effort and is a major
obstacle to wider FPGA adoption. We are developing an automated optimizing compiler TyTra to overcome this obstacle. The
TyTra flow aims to compile legacy Fortran code automatically for FPGA-based acceleration, while applying suitable optimizations.
We present the flow with a focus on two key optimizations, automatic pipelining and vectorization. Our compiler frontend extracts
patterns from legacy Fortran code that can be pipelined and vectorized. The backend first creates fine and coarse-grained pipelines
and then automatically vectorizes both the memory access and the datapath based on a cost model, generating an OpenCL-HDL
hybrid working solution for FPGA targets on the Amazon cloud. Our results show up to 4.2x performance improvement over

baseline OpenCL code.

1. Introduction

Acceleration devices for high-performance computing
(HPC) and scientific computing are becoming increasingly
heterogeneous. There is a general consensus that no single
type of device-CPU, GPU, or FPGA-will be best suited
across the entire range of scientific applications. GPUs are
already well-established as a practical alternative to con-
ventional CPUs for accelerating scientific applications. A
considerable proportion of supercomputers in the top 500
list contains GPU accelerators. FPGAs are a more recent
addition to this canvas, and in spite of significant im-
provements in their performance and programmability in
recent years, they are still far from widespread adoption as
mainstream acceleration devices.

A key challenge that applies in a lesser or greater extent
to all accelerators is writing parallel, high-performance code
customized for performance specifically on that device. The
challenge is all the more acute for FPGAs, which are no-
toriously difficult to program. Improvements in FPGA logic
capacity as well as high-level synthesis (HLS) programming

frameworks such as Altera’s (Intel's) AOCL, Xilinx’s
SDAccel, and Maxeler have played an important role in their
transition from peripheral, embedded, or prototyping only
devices to first-order desktop accelerators. However, FPGAs
have failed to make the kind of inroads in HPC that GPUs
have made. This is, in part at least, due to the fact that until
very recently there were no practical high-level pro-
gramming platforms for FPGAs, and even with their in-
troduction, it is still a challenging task to write high-
performance code. While heterogeneous programming
languages like OpenCL provide code portability, they are not
performance portable across devices. For example, [1] report
that “even though OpenCL is functionally portable across
devices, direct ports of GPU-optimized code do not perform
well compared with kernels optimized with FPGA-specific
techniques such as sliding windows. However, by exploiting
FPGA -specific optimizations, it is possible to achieve up to
3.4x better power efficiency. ...” Our own previous work has
shown that even very simple OpenCL kernel code can lead to
very different performance profiles when moving from one
FPGA framework to another [2].

mailto:syed.nabi@glasgow.ac.uk
https://orcid.org/0000-0003-3835-4851
https://orcid.org/0000-0001-6768-0037
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7348013

It is our contention that such programming and opti-
mization challenges will remain a hurdle to the adoption of
acceleration devices—especially FPGAs-in mainstream HPC,
and that high-level programming frameworks like OpenCL
should themselves be targets for still higher level compilers
that can work with sequential, unoptimized legacy code, in
which case one could truly have performance portability.

We propose an optimizing compiler framework that uses
Type Transformations (TyTra) to explore FPGA-specific
optimizations for a given application and automatically
generates the implementation code from legacy Fortran
code, leading to the desired code and performance porta-
bility. It applies these type transformations on a high-level,
functional representation of the kernel (the code to be
accelerated on the FPGA), extracted from the Fortran code
and then uses a cost model for evaluating the search-space
for an optimized solution.

A flowchart of the TyTra framework is shown in Figure 1.
The frontend refactor Fortran 77 codes into modern,
maintainable, extensible, and accelerator-ready Fortran code
(available at https://github.com/wimvanderbauwhede/
RefactorF4Acc). We can then generate OpenCL code
targeted at GPUs (available at https://github.com/
wimvanderbauwhede/AutoParallel-Fortran) or FPGAs
(available at https://github.com/wimvanderbauwhede/
Fortran-to-OpenCL-FGPA). For FPGA targets specifi-
cally, we invoke a more involved optimization pass that
translates the OpenCL code to an intermediate repre-
sentation (IR) (available at https://github.com/waqarnabi/
ocl2tir) and then generates low-level hardware description
language (HDL) code from it. It is this optimizing route in
our flow that we will discuss in the paper, with a focus on
two key optimizations: pipelining and vectorization.

We briefly discuss the frontend of the TyTra flow in
Section 4. We present our view of the requirements of
optimizing code on FPGAs in Section 5, leading into the
main contribution of this paper in Section 6, the TyTra
backend compiler (TyBEC) and the automatic pipelining
and vectorization it enables. We present the evaluation of
our approach in the next section before concluding the
paper. We start by reviewing some related work.

2. Related Work

The viability of FPGAs as mainstream acceleration devices
for scientific computing is well established in literature. As
an example, reference [3] presents a suitability analysis of
FPGAs for heterogeneous HPC platforms, using the Ber-
keley 13 dwarfs as a reference. They found FPGAs to be
suitable for 5 of the 13 dwarves, but noted that they are
difficult to use for nonspecialized designers and emphasized
the importance of more abstraction and less customization.
Reference [4] demonstrates the suitability of FPGAs, pro-
grammed via OpenCL, for implementing partial differential
equation (PDE) based scientific models. The same article,
however, showing an OpenCL kernel written with differ-
ences in syntax and compiler hints for two different FPGA
target devices/vendors, supports our contention that
OpenCL code is not performance portable.

International Journal of Reconfigurable Computing

Legacy Scientific Code
(e.g. Fortran-77)

(i) Refactoring
(ii) Pattern-extraction (maps/folds)
(iii) Func'gionl Description

Convert to TyTra-CL +
Opaque Scalar Funct’s

Front-end DSE
(TyTra-CL)

Convert to TyTra-IR
(via LLVM-IR)

Cost Model

Back-end DSE
(TyTra-IR)

Back-end Code
Generation

FPGA Target FPGA Target FPGA Target
OpenCL-API OpenCL-API
OpenCL-HDL
OpenCL HDL
HDL

FIGURE 1: The TyTra optimizing compiler framework. The starting
point is Fortran 77 scientific code, though there can be other
possible entry points as well. There are a number of backend code-
generation options, with this paper’s focus on hybrid OpenCL-
HDL route, geared towards deployment on the Amazon cloud’s F1
instances.

There are a number of commercial tools available that
provide a high-level programming route for accelerating
scientific code on FPGAs. Maxeler [5] is a good example,
which provides a Java metaprogramming model for de-
scribing computation kernels and connecting data streams
between them. It has been used for accelerating applications
from various domains, e.g., scientific and financial model-
ling. Altera (now Intel) OpenCL or AOCL [6] is the
implementation of the OpenCL heterogeneous parallel
programming framework for Intel FPGAs. While it is based
on the OpenCL standard, it has vendor-specific optimization
extensions. Xilinx similarly has its own OpenCL imple-
mentation called SDAccel [7]. Like AOCL, SDAccel is based
on the OpenCL standard and also proposes custom opti-
mizations to improve performance.

There have been other studies that are motivated in a way
similar to ours, that is, by the need for a higher abstraction
design entry than conventional high-level languages. For
example, algorithmic skeletons have been proposed to
separate algorithm from architecture-specific parallel pro-
gramming [8]. SparkCL is an attempt to bring increasingly
diverse architectures, including FPGAs, into the familiar

https://github.com/wimvanderbauwhede/RefactorF4Acc
https://github.com/wimvanderbauwhede/RefactorF4Acc
https://github.com/wimvanderbauwhede/AutoParallel-Fortran
https://github.com/wimvanderbauwhede/AutoParallel-Fortran
https://github.com/wimvanderbauwhede/Fortran-to-OpenCL-FGPA
https://github.com/wimvanderbauwhede/Fortran-to-OpenCL-FGPA
https://github.com/waqarnabi/ocl2tir
https://github.com/waqarnabi/ocl2tir

International Journal of Reconfigurable Computing

Apache Spark framework [9]. Another route for increasing
the design abstraction is to use domain-specific languages
(DSLs), and there are numerous examples for FPGAs, e.g.,
FSMLanguage for designing FSMs [10] and CLICK for
networking applications [11].

A work that is quite similar to ours is the Geometry of
Synthesis project [12]. It proposes design entry in a func-
tional language paradigm, leading to generation of RTL code
for FPGAs. It does not have automatic generation and
evaluation of architectural design variants though. There has
also been work on exploring vectorization for FPGA
pipelines for specific applications (for example, see [13]).
Automatic pipelining of high-level code is now possible with
commercial tools like Xilinx’s SDAccel, Intel’s AOCL, and
Maxeler, and some tools allow vectorization as well, though
it has to be manually programmed or hinted via pragmas.
Automatic pipelining and vectorization of high-level code
based on a cost model, one that can work with legacy Fortran
code, is entirely novel as best as we know.

While not the focus of this paper, a key first step of our
flow is refactoring legacy Fortran 77 code to make it more
accelerator friendly. There are a number of similar refactoring
tools available for Fortran, though Fortran 77 is supported by
very few. ROSE framework (http://www.rosecompiler.org/
index.html) from LLNL [14] is probably the most well
known, which relies on the Open Fortran Parser (OFP)
(http://fortran-parser.sourceforge.net/). This parser claims
to support the Fortran 2008 standard. Furthermore, there is
the language-Fortran (https://hackage.haskell.org/package/
language-fortran) parser which claims to support Fortran
77 to Fortran 2003. A refactoring framework which claims to
support Fortran 77 is CamFort [15]; according to its docu-
mentation, it supports Fortran 66, 77, and 90 with various
legacy extensions. An eclipse-based interactive refactoring
tool Photran [16] supports FORTRAN 77-2008.

3. TyTra Frontend

We will briefly discuss this frontend of the TyTra flow here
for completeness; more details are in [17], where we assess its
correctness, completeness, and capability.

FORTRAN 77 can be both computationally efficient as
well as programmer efficient, allowing the programmer to
write code quickly without being too strict about it. How-
ever, it becomes very difficult to maintain and port very
quickly as a result of this. We aim to make our refactored
code modern, maintainable, and extensible.

The requirements in mind were very different compared
with today’s languages when FORTRAN 77 was designed,
especially in terms of avoiding bugs. Some specific features,
now unacceptable in modern languages, are: implicit typing,
subroutine arguments intended access absent, and absence
of a module system, required both for extensibility and
maintainability.

The TyTra frontend compiler converts all nonprogram
code units into modules. These are then used with an explicit
export (only) declaration. There are many more refactorings
applied by our compiler, such as rewriting label-bases loops
as do-loops etc.

The common feature of the vast majority of current
accelerators is that they have a separate memory space,
usually physically separate from the host memory. Fur-
thermore, the common offload model is to create a “kernel”
subroutine (either explicitly or implicitly) which is run on
the accelerator device.

It is extremely important to separate the memory-spaces
of the host and the kernel when generating code for modern
accelerators. Since Fortran 77 uses global variables liberally,
our frontend converts them to subroutine arguments across
the entire call tree of the program.

Our goal is to convert legacy Fortran 77 code into
parallel code so that the computation can be accelerated on
FPGAs. We use a three-step process.

First, the above refactorings give us a modern, main-
tainable, extensible, and accelerator-ready Fortran 95
codebase. This gives an excellent starting point for many of
the other existing tools, e.g., the generated code can be
conveniently parallelized using OpenMP or OpenACC
annotations. We want, however, to provide an end-to-end
solution to the user that does not require any annotations.

The next step in our process is identifying data-level
parallelism present in the code in the form of maps and folds.
The terms, map and fold, are from the functional pro-
gramming domain and refer to ways of performing an
operation on all elements of a list. These constructs are
broadly equivalent to loop nests with and without de-
pendencies, and as Fortran is loop-based, our analysis is
actually an analysis of loops and dependencies. Internally,
though our representation uses the functional programming
model where map and fold are higher-order functions
(functions operating on other functions), extracted from the
bodies of the loops; we thus raise the abstraction level of our
representation, making it independent of both the original
code and the final code to be generated. We then apply a
number of rewrite rules for map and fold based functional
programs (broadly speaking equivalent to loop fusion or
fission) to optimise the code.

The third step involves the backend of our framework,
the focus of the rest of this paper, where we use patterns
extracted to ensure that our kernels are guaranteed to be
both pipelineable and vectorizeable. Then, using our cost
model, we generate optimized, synthesizable code for Xilinx
FPGAs on the Amazon cloud F1 instances.

4. Transforming Scientific Applications for
Performance on FPGAs: A Perspective

The potential to get good performance and energy efficiency
on FPGAs is widely recognized, but coupled with the re-
alization that achieving the potential is not trivial. It is our
view that, in the context of the domain of scientific com-
puting, the guidelines for creating architectures on FPGAs
that give high throughput can be summed up as follows:

(1) Create a deep and custom pipeline, fine-grained as
well as coarse-grained
(2) Coalesce (vectorize) global memory accesses

(3) Vectorize the pipelined datapath

http://www.rosecompiler.org/index.html
http://www.rosecompiler.org/index.html
http://fortran-parser.sourceforge.net/
https://hackage.haskell.org/package/language-fortran
https://hackage.haskell.org/package/language-fortran

(4) Minimize data stalls on these pipelines

(5) Maximize throughput by replicating appropriate
functional units

(6) Minimize random access to external memory by
optimizing stencil computations

(7) Use optimized numerics where possible

(8) Use vendor-optimizations where suitable

The design-space exploration (DSE) in TyTra is informed
by the view summarized above and is carried out at two
abstractions: the frontend and the backend. In this work, we
highlight the backend, specifically two key optimizations:
pipelining and vectorization (points 1-3).

4.1. Pipelining. FPGAs consist of a fine-grained reconfig-
urable fabric that can be customized for a given application.
If the underlying application is amenable to pipeline par-
allelism, then high throughput on FPGAs can be achieved by
creating deep, custom pipelines. Pipelining can be done at
three hierarchical levels.

4.1.1. Pipelining inside Instructions. This refers to atomic
datapath instructions like floating point operations that
require multiple clock cycles to complete. It is important to
pipeline them to achieve a high operational frequency on the
FPGA and also to maintain throughput. Such pipelined
functional units are available both in the academia and via
vendor tools. For example, we use FloPoCo [18], an open-
source tool, to generate pipelined functional units for our
solution.

4.1.2. Pipelining across Instructions. To get good perfor-
mance, pipelining instructions inside computation kernels is
crucial. This requires a data-dependence analysis to ensure
data hazards are avoided. We refer to such pipelines in this
work as fine-grained pipelining.

4.1.3. Pipelining across Kernels. While most FPGA HLS tools
would automatically pipeline at the fine-grained level, it is
important to pipeline at this coarse-grained level as well to
get viable performance on FPGAs for large scientific
problems. Such pipelining obviates the need of using the
FPGA external DRAM (ie., global memory in OpenCL
terminology) to communicate between kernels.

4.2. Vectorization. To optimize throughput and utilize a
target device at its maximum or near-maximum potential,
the external memory interface should ideally be operating at
or near saturation. This is typically achieved by coalescing
access to memory [19] and/or using multiple memory banks
concurrently [13]. The purpose is to read multiple array
indices concurrently as a single, wider data word. This co-
alescing can also be called vectorizing the memory access. In
the previous work [2], we adapted a synthetic memory
performance benchmark to show the sustained bandwidth
to global memory of various devices (benchmark available at

International Journal of Reconfigurable Computing

https://github.com/waqarnabi/mp-stream), and we showed
that vectorization achieved up to 8.5x memory bandwidth
increase over the baseline. For any application that is
memory-bound, this improvement in memory bandwidth
will translate to an improved throughput for the overall
application. To complement the vectorized memory access,
the application’s datapath can also be vectorized, though one
must ensure data hazards are avoided.

We will now discuss pipelining and vectorization op-
timizations in the context of the TyTra backend.

5. TyTra Backend (TyBEC) Compiler

The TyTra backend is designed to be compatible with a
variety of frontend entry routes and is composed of a custom
intermediate representation (IR) language, a parser, a
scheduler, a cost/performance model, and finally an FPGA
code generator.

5.1. The TyTra Intermediate Language. The TyTra In-
termediate Language (TIR) is the interface provided by the
TyTra backend, to which a number of possible frontends can
be coupled, one of which was shown in Figure 1. However,
for the purpose of this discussion, how one arrives at a TIR
description of the problem is not relevant.

The TIR description of a problem lies halfway between
the frontend and backend optimizations that together seek
to identify the optimal design variant. Optimal in this
context means that the kernel has been pipelined, ideally
to achieve a throughput of one cycle per output, and then
vectorized to go beyond this throughput until we either
saturate the memory bandwidth (memory wall) or run out
of FPGA resources (compute wall). There are some op-
timizing transformations that take place in the frontend
DSE phase. These transformations relate primarily to
finding specific computation patterns such as maps and
folds and connecting them in a coarse-grained dataflow
graph. Once the design variant generated by the frontend
has been specified in the TIR, the backend optimizations
can be applied, and FPGA implementation code can
be generated. This context informs the underlying model
of computation and specific requirements for our custom
IR.

5.1.1. Model of Computation: Kahn Process Networks.
The TIR syntax is quite similar to the LLVM-IR; however, its
underlying model of computation is entirely different, as it
models a dataflow machine. The Kahn process network
(KPN) is a suitable abstraction to use, though we apply some
additional requirements and constraints on it.

KPNs were first introduced by Gilles Kahn when pre-
senting a simple language for parallel programming [20].
The use of the KPN abstraction for modelling architectures
for FPGAs is not a novel concept (e.g., see [21, 22]). The key
features of this abstraction, which make it very suitable for
use as the underlying model for our IR, are as follows (direct
quotes in the list are from [20]):

https://github.com/waqarnabi/mp-stream

International Journal of Reconfigurable Computing

(i) Processes (or nodes) communicate via unbounded
first-in first-out (FIFO) queues.

(ii) All processes run forever.

(iii) If any process were to stop for an external reason,
the whole system will stop.

(iv) Communication lines (or edges or channels) are
the only way in which processes communicate.

(v) The time taken by edges to transmit information
can be unpredictable, but always finite.

(vi) Atany given time, a process is either computing or
waiting for data on one of its input edges.

(vii) A process can have its own memory or state, so it is
a “function from the histories of its input lines to
the histories of its output lines.” This means nodes
that fold (or reduce) information are possible.

(viii) Writes to a channel are nonblocking, while reads
are blocking.

(ix) KPN process is monotonic: it “need not have all of
its inputs to start computing, since future input
concerns only future output.” Monotonicity allows
pipeline parallelism.

While these features of the KPN make it a suitable
abstraction for our purpose of modelling pipeline parallel-
ism on FPGAs, they cannot be used as is. The key departure
required from this abstraction is replacing unbounded FIFOs
(which are not possible in a real system) with bounded
FIFOs. Additionally, nonblocking writes are not suitable
with finite FIFOs, and we introduce blocking writes.
However, the introduction of blocking writes and finite
FIFOs can lead to deadlocks unless safe bounds for the sizes
of the FIFOs are derived properly [23]. We derive safe FIFO
bounds by statically scheduling all the nodes in our dataflow
graph discussed in more detail later.

5.1.2. Syntax and Semantics of the TIR. The TIR is strongly
and statically typed, and all computations are expressed
using Static Single Assignment (SSA). The syntax is based on
the LLVM-IR, but the semantics are built on top of a
streaming paradigm, suitable for inferring pipelined data-
paths on an FPGA target.

Static typing is a requirement for synthesizing an FPGA
design at compile time. Strong and static typing together
provide the basis for our static cost model that underpins the
TyTra flow. The FPGA code-generator too requires explicit
typing. TIR datatypes are mapped to LLVM datatypes
wherever possible and follow the same general scheme for
naming datatypes. However, LLVM-IR does not differen-
tiate between signed and unsigned data which are required
for TIR. Also, TIR allows custom and nonstandard data-
types, which in fact is one of the reasons for creating our own
IR. TIR supports arrays and vectors, again following the
syntax of LLVM-IR.

A design is constructed by creating a hierarchy of IR
functions, which may be considered equivalent to modules in
an HDL like Verilog. However, these functions are described

at a higher abstraction than the register transfer level typical
for an HDL. The TyTra backend parses the TIR description
and extracts a dataflow architecture from it.

The TIR is neither a subset nor a superset of the LLVM-
IR, but an independent language that is inspired by it. There
are many features of LLVM-IR that TIR does not support,
and at the same time, there are a number of extensions in the
TIR that are alien to LLVM-IR. Under the hood, these
languages have a fundamentally different view of the ma-
chine as discussed earlier, which is eventually the funda-
mental difference. Other ways in which TIR departs from the
LLVM-IR semantics are: all variables are data streams, ar-
guments represent ports for connectivity between peer or
parent-child functions, there is custom instruction for
splitting and merging nodes, there is a specialized syntax for
creating offset streams for stencils, we can have custom
datatypes with nonstandard widths, and there is an extended
syntax to express the creation and consumption of data
streams from/to memory. Further discussion of the TIR’s
syntax and semantics is outside the scope of this paper, but
interested readers can refer to [24]. We also show TIR for
two example problems later in Section 6.

5.2. Scheduling and Pipelining. Recall from the previous
section that our extension to the KPN requires us to have
bounded FIFOs, which are large enough to ensure there is no
deadlock in the presence of blocking writes. Hence, although
the hardware realization of our nodes is based on asyn-
chronous hand-shaking with back-pressure (based on the
AXI-Stream protocol), we do need to determine safe bounds
for all inferred buffers. This is why static scheduling of the
dataflow graph (DFG) is essential. Moreover, the TyTra flow
is predicated on the availability of a performance model that
can predict the latency and throughput of each node, which
too requires a static scheduler, even if in practice there is no
centralized scheduling controller in the synthesized FPGA
circuit.

The scheduling algorithm of TyBEC is based on the KPN
model of computation. The SSA syntax of the TIR lends itself
to a straightforward extraction of the pipelined dataflow
from primitive instructions in leaf functions. We have
adopted an As Soon As Possible (ASAP) algorithm for
scheduling the instructions. This can be suboptimal in terms
of resource usage [25]. More sophisticated algorithms are
possible, which exploit reuse of functional units across in-
structions to save resources. This however would require a
fundamental change in the architecture from the current one
with a distributed scheduling mechanism, to a centralized
one where a controller would orchestrate the reuse of re-
sources. This is a line of investigation we mean to pursue in
the future.

Functions can be hierarchical as well, reflected by hi-
erarchical nodes in the DFG. Each hierarchy is captured by
the same extended KPN model that we have discussed
earlier. The resultant DFG translates to dataflow pipelines on
the FPGA, which are reflected in the generated HDL. This
pipeline parallelism is, as we discussed earlier, an essential
component of the FPGA-oriented optimizations we wish to

apply. Both the coarse-grained pipelining of kernels (hier-
archical nodes) and fine-grained pipelining of instructions
(leaf nodes) are achieved by this hierarchical scheduling
process, illustrated in Figure 2. This aspect of our work may
be contrasted with tools like SDAccel, where coarse-grained
pipelines across kernels have to be explicitly modelled using
OpenCL pipe semantics.

A finer level of pipelining, where we pipeline multicycle
primitive instructions like floating point operations, is
achieved by using pipelined functional units generated from
the FloPoCo tool [18].

5.3. Vectorization. Vectorization is a well explored opti-
mization for improving performance and has been explored
for FPGAs as well. This is similar to, though not exactly the
same as, the vectorization optimization in CPUs. The way we
use this term, “vectorization” refers to both vectorization of
the datapath, and the coalescing of memory accesses. In the
TyTra backend, once the kernels have been pipelined, the
design can be vectorized automatically. Memory-access
vectorization results in coalesced transactions, which can
help achieve operation at or near memory bandwidth sat-
uration, as we have shown in our earlier work [2]. Vectorized
datapath ensures that the overall throughput is not limited
by the computation. Together, these automatic vectorization
operations enable our backend to push the solution closer to
both the memory and computation limits of the device,
which is where we ideally want to be. The key novelty in our
flow is the complete automation of the process of vectorizing
the memory access and the datapath.

5.3.1. Automatic Detection of Vectorizable Loops in Serial
Code. Vectorizing a loop by a factor N, implies concurrent
execution of Ny, iterations of the loop. Loops can be vec-
torized only if they have been unrolled, and if there are no
loop-carried dependencies with reaches smaller than the
vectorization width N,. The TyTra flow is based on
extracting map and fold patterns from serial scientific code,
as shown in Figure 1 and then scalarizing them before
passing them on to the backend. Scalarization here implies
replacing index-based array accesses with scalar variables,
effectively subsuming loops that iterate over arrays. Since the
(ostensibly) scalar variables actually refer to data streams, the
semantics of the program are preserved, though that does
require some metainformation to be carried through by the
compiler, e.g., the size of the loops. An example of this
transformation in Figure 3 shows two versions of an up-
date() function from a scientific model. The code on the left
is a conventional loop-based function, converted by our
frontend (while we show the loop-based function written in
C to emphasize the transformation, the frontend actually
uses loop-based Fortran code as the source and emits sca-
larized C as shown.) to the scalarized version.

These transformations convert loops iterating over ar-
rays to scalar kernels operating on streams. The advantage of
this frontend transformation is that we get vectorization
opportunities at the backend for free. Loop-unrolling is no
longer required, as the frontend has ported the code into the

International Journal of Reconfigurable Computing

streaming dataflow domain. More importantly, the frontend
transformations guarantee that the kernels exposed to the
backend do not have any loop-carried dependencies and
thus are vectorizable to arbitrary widths. The TyTra flow is in
fact conservative in exposing vectorization opportunities.
This is because our flow only vectorizes mappable loops that
have no loop-carried dependencies, whereas vectorization is
possible even if they are there, as long as their reach is larger
than the vector width.

5.3.2. Using a Cost Model for Identifying the Optimum Vector
Width. The vectorization of kernels results in additional
resource usage on the FPGA. By using our cost model, we
can estimate the resource usage for different vectorization
options. Then, we limit the vector width to the maximum
that we can fit within the target FPGA’s resources. Currently,
our backend supports vector widths of 1, 2, 4, 8, and 16 (for
OpenCL compatibility), but there is no innate reason for
limiting our flow to these vectorization factors.

The cost model is discussed in detail in [24], but we
present its brief outline here. Figure 4 shows how the cost
model is used in our flow. The TIR description of the design
variants is fed into the cost model, along with a description
of the target. This description is in the form of its available
resource, memory bandwidth profile, and the cost of various
primitive instructions on that device. The cost model then
accumulates the resource requirements for the entire device
and also estimates its performance after scheduling all in-
structions and functions. It then estimates the performance
of all variants (in case of the examples in this paper, variants
are generated by varying the vectorization factor) and
generates OCL-HDL hybrid code for the chosen one.

5.4. Generating OpenCL-HDL Hybrid Implementation for
FPGA (F1) Instances on the Amazon Cloud. We considered a
number of options for implementing the design generated
by the TyTra flow on an FPGA, as shown in Figure 1, finally
converging on an OpenCL-HDL hybrid for F1 instances on
the Amazon cloud. Commercial vendors like Xilinx, Intel,
and Maxeler all provide such a hybrid programming route.
The HLS abstraction can be used to handle the shell logic
conveniently, and kernel datapaths can be expressed at a
lower abstraction (register-transfer level or RTL), e.g., in
Verilog HDL. We avoid the need to generate complex RTL
code for shell logic yet maintain much more control over
optimizations for the kernel pipeline. Our hybrid approach
is more amenable to performance and cost prediction than
HLS-only routes. The generated kernel pipeline is more
performance portable across FPGA vendor tools and de-
vices, as no vendor-specific pragmas and optimizations are
used. We do need to generate vendor-specific shell code, but
that follows a standard template with little variation across
designs.

Amazon’s EC2 F1 instances on the cloud provide a
suitable way of accessing the latest FPGA hardware as well as
tools [26]. FPGA AMI machine images are available, which
come prebuilt with FPGA development and runtime tools
based on Xilinx’s SDAccel and Vivado frameworks. These

International Journal of Reconfigurable Computing 7

4 N
for all rel
Read in TIR code .Create n.odes. or all re ev.ant
instructions in the function
N\ J
4 N

Connect communicating nodes

Parse and generate abstract with edges

syntax tree

Mark nodes as leaf or
hierarchical

Find main() - J
Identify global-memory streams
4 N

Identify input nodes (directly
read an argument/port) and
schedule them

Schedule all functions for each function

Do an ASAP scheduling for the
remaining nodes

Infer buffers on un-balanced
paths. Calculate safe bounds.

Add function to global schedule

AN J
Cost and perf (Estimate function cost and
Model L performance

F1GURE 2: The TyTra backend scheduler. It reads in the TIR description of the problem, which has a syntax similar to LLVM-IR’s, using the
SSA (single static assignment) format. The output of the scheduler is the dataflow graph of the problem, with buffers inferred if needed (e.g.,
see Figures 6 and 9), which is then used to estimate performance, as well as generate synthesizable Verilog HDL.

/* The original function with loops */ | /* The "scalarized" function with streams */
void updates (host_t *h, host_t *hzero, ...){ | void update_map_24 (float *h_j_k, float hzero_j_k, ...)({
for (int j=0; j<= ROWS-1; j++) { | *h_j_k = hzero_j_k+eta_j_k;
for (int k=0; k<=COLS-1; k++) { *wet_j_k = 1;
h[§*COLS + k] = hzero[j*COLS + k] if ((*h_j_k)<hmin) *wet_j_k = 0;

+ eta [Jj*COLS + k]; *u_j_k = un_j_k;
wet [J*COLS + k] = 1;
if (h[j*COLS + k] < hmin)

wet [J*COLS + k] = 0;
u[§*COLS + k] = un[j*COLS + k];
v[j*COLS + k] = vn[j*COLS + k];

*v_j_k = vn_j_k;

|
|
|
|
| }
|
|
|
|
|

}

FIGURE 3: An illustration showing conversion of a loop-based function (left) to its scalarized version (right), where the “scalars” are
effectively streams of data. Metainformation extracted by the compiler, e.g., the sizes of the streams, is carried through to the backend in
order to preserve semantics.

International Journal of Reconfigurable Computing

One=-time input

Device-specific
parameter

for each unqiue

FPGA target
(Microbenchmarks) Plot variants on
[__ device roofline
s o (R
estimate roofline > Identify bottleneck
model param’s

Target description

> Best variant = X ‘

FIGURE 4: The use-case of the cost model that is integrated inside the TyTra flow’s backend. It is used to estimate the resource usage and

performance of variants being explored in the design-space.

tools provide various design-entry options. From our van-
tage point, the utility of these platforms is that we can work
with the latest hardware and tool versions, and we can
experiment with our hybrid HLS(OpenCL)-HDL(Verilog)
flow.

To integrate HDL kernels with the shell logic provided by
Xilinx’s SDAccel tool, they need to be compatible with the
AXT protocol: AXI4 for DDR read and write controllers;
AXI4-Stream for transferring data streams to and from these
controllers and also peer communication; and AXI4-Lite for
control information exchange with the host [27]. The DDR
(AXI4) and control (AXI4-Lite) interface logic is in-
corporated by using template code provided by SDAccel.
This reduces the kernel pipeline compatibility requirement
to the AXI4-Stream protocol for interfacing with the
memory controllers. Figure 5 demonstrates this setup.

6. Evaluation

We evaluate our approach with two examples, first through a
synthetic barebones kernel and then on a scientific code
simulating the Coriolis force.

6.1. A Synthetic Example. The simple, contrived example
creates a coarse-grained pipeline with integer arithmetic
operations. This translates to a single cycle throughput, and
single path dataflow. The TIR and DFG of this problem are
shown in Figure 6. Note that the DFG is generated auto-
matically as part of the backend scheduling and code-
generation. HDL code is also generated by the backend. It
can be viewed by running the backend on the TIR (the
prototype TyTra backend compiler is available at https://
github.com/waqarnabi/tybec).

This illustrative example highlights the backend auto-
matic pipelining and vectorization optimizations that are the
focus of this work. We generated code for all vector widths
supported by our flow, in order to demonstrate the effect of
vectorization in this paper. In practice, we would follow the
following simple algorithm for converging on the vector
width:

(1) Create a design variant with the maximum allowable
vector width (currently 16 words)

Host code (OpenCL APT)
+
meta-data for RTL integration

AXI4 DDR write master

g
z
£
=]
<
g
<
a
a
:

FiGure 5: The hybrid OpenCL-HDL code-generation setup.
TyTra generated kernel pipeline design in Verilog HDL is in-
tegrated with the OpenCL-based SDAccel framework, using AXI
protocols.

(2) Estimate resource utilization

(3) If estimated resources are more than available on
target FPGA, step down to the next available vector
width

(4) Repeat 1-3 until design is predicted to fit by the cost
model (we aim to use less than 80% of target FPGA
resources, as in our experience, beyond this
threshold designs typically fail to synthesize)

The results of our experiments are shown in Figure 7.
Since this is a small example, the maximum available
vectorization factor of 16 was possible within the avail-
able resources, and that is the variant selected. Our results
show an almost 4.2x speedup over the scalar baseline
for the maximum vectorization. The speedup is sub-
linear and indicates a memory bottleneck. This bottleneck
could be mitigated by using multiple memory banks if
available.

The corresponding resource trade-off can be seen in
Figure 8. Other than DSP units, all resources show sublinear
scaling due to the almost uniform usage of logic in the shell
of the design across all variants.

https://github.com/waqarnabi/tybec
https://github.com/waqarnabi/tybec

International Journal of Reconfigurable Computing

i32 %locall = add i32 %ka_vinO, %ka_vinl
i32 %local2 = add i32 %ka_vinO, %ka_vinl'
i32 %local3 = sub i32 %locall, %local2
i32 %local4 = add i32 %locall, %local3
i32 $ka_vout = add i32 %locall, %locald}

i32 %$kb_vout = add i32 %kb_vin, %kb_vin}

define void @kernel C (i32 %kc_vin, i32 $kc_vout) pipe
i32 %kc_vout = mul i32 %kc_vin, %kc_vin }

define void @kernel D (i32 %kd_vin, i32 %k, vout) pipe
i32 %kd_vout = add i32 %kd_vin, %kd vin }

define void @kernelTop

call QRkernel B (i32 %$vconn_A_to_B, i32 %vconn_B_ to_C)
call @kernel_C (i32 %vconn_B_to_C, i32 $vconn_C_to_D)
call @kernel D (i32 %vconn_C_to_D, i32 $kt_vout) }

define void @main () {)

%vin0 = alloca [NLinear x i32], addrspace (1)
%vinl = alloca [NLinear x i32], addrspace (1)
$vout = alloca [NLinear x i32], addrspace (1)
%$vin0O_stream = streamread i32, i32* $%vinO
%$vinl_stream = streamread i32, i32* %vinl
streamwrite i32 %$vout_stream, i32* %$vout

define void @kernel A (i32 %ka_vinO, i32 %ka_vinl, i32 $ka_vout) pipe ({

define void Rkernel B (i32 %$kb_vin, i32 %kb_vout) pipe ({

(i32 %kt_vinO, i32 %kt_vinl, i32 %$kt_vout) pipe {
call QRkernel A (i32 %kt_vinO, i32 %$kt_vinl, i32 %vconn_A_to_B)

call @kernelTop (i32 %vinO_stream, i32 %vinl_stream, i32 %vout_ stream) (0.1,7)

kernelTop
0, 1,9) (0,1,0)

kernelTop.%kt_vinl kernelTop.%kt_vin0

kt_vinl.1>kernel _A_0.1:i32, kt_vin0.1>kernel_A_0.2::i32

(1,1,0)

KernelTop.kernel_A_0

kernel _A_0.1>kernel_B_1.1::i32

kernelTop.kernel_B_1

kernel_B_1.1>kernel_C_2.1::32

kernelTop.kernel_C_2

kernel_C_2.1>kernel_D_3.1::i32

kernelTop.kernel_D_3

kernel_D_3.1>kt_vout.1:i32

(1,1,4)

H

(1,1,5)

B

(1,1,6)

H

kernelTop.%kt_vout

F1Gure 6: TIR code and DFG of the synthetic example. The TIR shows 4 kernels connected in a coarse-grained pipeline in a top kernel, which
is connected to global memory streams in the main function. The DFG is generated by the backend from the TIR, and only the top-level
kernel is shown here. The tuple of three integers with each node is the scheduling parameters (latency, firing-interval, and start-delay)
inferred from the code and used by the backend for scheduling and RTL code generation.

4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

Speedup compared with
scalar version

0 2 4 6 8 10 12 14 16 18
Vectorization width
(memory access and datapath)

FIGURE 7: Speedup achieved over nonvectorized OpenCL baseline
for various vector widths, for the first example. The TyTra solutions
are OpenCL-HDL hybrids, and the complete host API, shell, and
kernel code for all variants is generated automatically from TIR
description.

6.2. Simulating the Coriolis Force. This second example is
based on Fortran code for modelling the Coriolis force that
accompanies a text on ocean modelling [28]. The code
predicts the pathway of nonbuoyant fluid parcels in a
rotating fluid subject to the Coriolis force. The kernel is
computed over a two-dimensional grid for a certain
number of time steps. At each time step, the kernel reads
the velocities and positions of each grid point and updates
them. That is, at each time step, it reads 4 floating point
numbers and writes 4 floating point numbers. The Fortran
code is shown in Figure 9. The equivalent TyTra-IR code
and dataflow graph (top kernel only) as generated by
the TyTra backend are shown in Figures 10 and 11,
respectively.

18.0 ~
16.0 ~
14.0 ~
12.0 4
10.0 ~

®©
(=]
L

Normalized resource usage

Vectorization width
(memory access and datapath)

= Brams
= dsps

= Luts
= Regs

FIGURE 8: Resource usage for various OpenCL-HDL hybrid vec-
torized versions, normalized against resource usage for non-
vectorized OpenCL baseline for the first example.

The TyTra backend generates a baseline RTL (and
OpenCL wrappers) that is pipelined and without vectori-
zation. It then generates vectorized versions as well, as long
as the predicted cost fits in the target device. In this example
as well, like the previous one, all possible vectorization
factors up to 16 can be accommodated. The resource cost
prediction of one design variant takes in the order of 0.1
seconds. This makes the design-space exploration fairly
quick when we consider the vectorization optimization in
isolation as there are a limited number of possible variants.

10

'time loop
DO n = 1,ntot
!'space loop
DO i = 1, maxX*maxY
! velocity predictor
un(i) = (u(i)*(l-beta)+alpha*v(i))/ (l+beta)
(v(i)*(l-beta)—-alpha*u(i))/ (l+beta)

vn (1)

! predictor of new location
xn(i) = x(i) + dt*un(i)/10C
yn(i) = y(i) + dt*vn(i)/1000

! updates for next time step

u(i) = un(i)
v(i) = vn(i)
x (i) = xn(1i)
y (i) = yn(i)
END DO
END DO

FiGure 9: Fortran code of the Coriolis example.

ker0 (data_t %u, data_t %v, data_t %un, data_t %vn) pipe {
fmul data_t %u, ONE_MINUS_BETA

= fmul data_t %v,
= fadd data_t %mul,
- fdiv data_t %add,
%muld = fmul data_t %v, ONE_M
$muls = fmul data_t %u, ALPHA
ta_t sub6 = fsub data_t $muld, %muls

svn = fdiv data_t %sub6, ONE_PLUS_BETA

;--position update kernels

define void @coriolis _kerl subker0 (data_t %x, data_t %un, data_t %xn) pipe {
data_t %mul = fmul data_t %un, DT
data_t %div = £div data_t $mul, 1000.0
data_t %xn = fadd data_t %x, %div

id @coriolis kerl subkerl (data_t %y, data_t %vmn, data_t %yn) pipe {
%mull = fmul data_t %vn, DT

%div2 - fdiv data_t $mull, 1000.0
%yn = fadd data_t %y, %div2

rnel connecting the two sub-kernels
id @kernel top(data_t %u, data_
call @coriolis ker0 (data_t %u, data_t %v,
call @coriolis kerl subker0 (data_t %x, da
call @coriolis kerl subkerl (data_t %y, da
data_t %un - load data_t %un_local

data_t %vn = load data_t %vn_local

v, data_t %x, ...) pipe

un_local, data_t %xn)
vn_local, data_t %yn)

define void @main () {
%u = alloca [SIZE x data_t], addrspace(1)

... ;--other device memo rrays
%u_stream = streamread data_t, data_t* %u

;--call the top level kernel and pass it the streams and th
call @kernel top (data_t %u_stream, data_t %v_stream, ...)
ret void

FIGURE 10: TIR code of the Coriolis example. It shows 3 kernels
connected in a coarse-grained pipeline in a fop kernel, which is
connected to global memory streams in the main function (not
shown).

The actual performance for variants is shown in Fig-
ure 12. Note that there is an important difference between
this and the first example. The first example had 2 integer
inputs and 1 integer output. When the inputs, a total of
64 bits, were vectorized by the maximum factor of 16, it was
still within maximum data width allowed by SDAccel (which
is 1024 bits). This second example, however, had an input
(and output) total width of 128 (32 x 4) bits, so it can only be
vectorized up to a factor of 8, which is reflected in the results.
In the future, we plan to incorporate multiple memory

International Journal of Reconfigurable Computing

interfaces and banks into our design, which would allow us
to exploit this vectorization feature to its full potential.

An interesting observation here is that the performance
peaks at 2.7x baseline, at a vectorization factor of 4, with
vectorization to a factor of 8 showing virtually no im-
provement. This example has a wider total input width of
128 (32 x 4) bits, as opposed to 64 bits for the previous one.
Since the DDR memory bus for the target FPGA platform is
512 bits wide, it is saturated at a vectorization factor of 4
already. Using multiple concurrent memory interfaces and
banks should allow us to go beyond this saturation limit.

Another observation is that the performance profile is
virtually unchanged across different grid sizes and number
of time steps. This shows performance gains of vectorization
scaling well with the problem size.

The resource usage for all these variants is shown in
Figure 13, which shows the expected increase for increasing
the vectorization factor. Compared with the first example,
this is a larger kernel with resource heavy floating point
units, leading to the kernel having a proportionally larger
share of the resources versus the shell logic. This is the reason
vectorization scales up the resources much more than the
first example.

7. Conclusion

FPGAs are fast-becoming mainstream accelerator devices
for a variety of HPC applications. Writing optimized pro-
grams for FPGAs remains a challenge though, even with the
availability of HLS tools. We are developing an optimizing
compiler framework called TyTra, where we propose to use a
combination of transformations and optimizations to au-
tomatically generate FPGA implementations from serial,
legacy scientific codes. In this paper, we have presented two
key optimizations that are part of this framework, pipelining
and vectorization, the latter applied to both the external
(DDR) memory accesses as well as the kernel datapath. We
discussed briefly how we transform legacy serial Fortran
code to kernels with map patterns, suitable for pipeline
parallelism as well as vectorization. We highlighted our
custom IR language-based backend that can be used to
express the variants in our design space and which schedules
computations based on an extended KPN-based machine
model, finally emitting an OpenCL-HDL hybrid imple-
mentation. Evaluation of our approach on two examples
showed performance gains between 2.7x and 4.2x.
Extending our solution to exploit multiple memory banks
concurrently can be reasonably expected to achieve further
performance gains.

Exploiting such vectorization opportunities when ac-
celerating HPC code on FPGAs is essential; otherwise, we
may be operating far below optimal performance. Our flow,
because it is based on a sophisticated frontend analysis and a
cost model-based backend code-generation framework, can
give these performance gains automatically.

There are a number of complimentary lines of in-
vestigation that we are still pursuing. Further optimizations
at the frontend and backend of our framework in addition to
pipelining and vectorization could further improve

International Journal of Reconfigurable Computing

o 1

Kernel_topx >

x15x_coriols_kerl_bubker0_1_b.1:float32

@31

11

o1 1

kemnel_topy >

y.15y_coriols_kerl_
subker]_2_b.l:floats2

@y

e ——

i,
Wy

kernel_top.%xn

c‘ olis_ker0_0_un_b.1>un.1zoff 22:float32 <‘ folis_ker0_0_vn_b.1>vn.1z0ff 22:float32
wn

kernel_top %yn

F1GURre 11: The DFG of the Coriolis example generated from the TIR, showing only the top-level kernel. The tuple of integers with each node
is the scheduling parameters (latency and firing-interval) used by the backend for scheduling and RTL code generation. The red boxes (the
boxes with two small stubs) are inferred buffers for synchronization and deadlock avoidance.

poN
o Wn

by
=}

Speedup compared with baseline
(scalar) version
&

0 2 4 6 8 10
Vectorization factor
(memory access and datapath)

—o— 1024 x 1024 x 1000
—=— 2048 x 2048 x 1000
—— 1024 x 1024 x 10000

F1GURre 12: Speedup achieved over nonvectorized OpenCL baseline
plotted against vectorization factor, for the second example
(Coriolis). The TyTra solutions are OpenCL-HDL hybrids, and the
complete host API, shell, and kernel code for all variants is gen-
erated automatically from TIR description. The speedup is cal-
culated for 3 different grid sizes and time steps (legend shows
dimensionl x dimension2 x time steps).

o
o
)

2, 8.0 4

A A
o o o
N

Normalized resource usa;
o
[}

S = N Wy
o o o o
e

1 2 4 8
Vectorization factor
(memory access and datapath)

= Brams
u dsps

= Luts
u Regs

FIGURe 13: Resource usage for various OpenCL-HDL hybrid
vectorized versions, normalized against resource usage for non-
vectorized OpenCL baseline, for the second example (simulating
the Coriolis force).

performance. Until now, we have made models from do-
main of fluid dynamics the focus for our test cases, and such
models are innately amenable to finding mappable loops and
hence to streaming. We are investigating extending the
application domain to deep learning neural networks, which
too lends itself to a streaming architecture, but requires
closer integration of folds in addition to maps, which is an
on-going work. We are also in the process of integrating all
stages of the flow into a single framework, which we hope
will contribute to mainstreaming of FPGAs as HPC
accelerators.

Data Availability

The TytTra backend compiler has been deposited in a Github
repository at https://github.com/waqarnabi/tybec. This is an
on-going work, so the authors should be contacted if any
issues.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors acknowledge support of the EPSRC for this
work carried out as part of the TyTra project (no. EP/
L00058X/1).

References

[1] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and
S. Matsuoka, “Evaluating and optimizing opencl kernels for
high performance computing with FPGAs,” in Proceedings of
the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’16, pp. 409-420,
Piscataway, NJ, USA, November 2016.

[2] S. W. Nabi and W. Vanderbauwhede, “MP-STREAM: a

memory performance benchmark for design space explora-

tion on heterogeneous HPC devices,” in Proceedings of the

IEEE International Parallel and Distributed Processing Sym-

posium Workshops (IPDPSW), pp. 194-197, Vancouver,

British Columbia, Canada, May 2018.

F. A. Escobar, X. Chang, and C. Valderrama, “Suitability

analysis of FPGAs for heterogeneous platforms in HPC,” IEEE

[3

https://github.com/waqarnabi/tybec

12

Transactions on Parallel and Distributed Systems, vol. 27,
no. 2, pp. 600-612, 2016.

[4] D. Weller, F. Oboril, D. Lukarski, J. Becker, and M. Tahoori,
“Energy efficient scientific computing on FPGAs using
OpenCL,” in Proceedings of the 2017 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
FPGA ’17, pp. 247-256, New York, NY, USA, February 2017.

[5] O.Pelland V. Averbukh, “Maximum performance computing
with dataflow engines,” Computing in Science & Engineering,
vol. 14, no. 4, pp. 98-103, 2012.

[6] T. Czajkowski, U. Aydonat, D. Denisenko et al., “From
OpenCL to high-performance hardware on FPGAs,” in
Proceedings of the 22nd International Conference on Field
Programmable Logic and Applications (FPL), pp. 531-534,
Oslo, Norway, August 2012.

[7] Xilinx, The Xilinx SDAccel development environment, 2014
https://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html.

[8] M. Cole, “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming,” Parallel Com-
puting, vol. 30, no. 3, pp. 389-406, 2004.

[9] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala,
“SparkCL: a unified programming framework for accelerators
on heterogeneous clusters,” CoRR, abs/1505.01120, 2015.

[10] J. Agron, Domain-Specific Language for HW/SW Co-design for
FPGAs, pp. 262-284, Springer, Berlin, Heidelberg, Germany,
2009.

[11] C.Kulkarni, G. Brebner, and G. Schelle, “Mapping a domain
specific language to a platform FPGA,” in Proceedings of the
41st Annual Design Automation Conference, DAC 04,
pp- 924-927, New York, NY, USA, June 2004.

[12] D. B. Thomas, S. T. Fleming, G. A. Constantinides, and
D. R. Ghica, “Transparent linking of compiled software and
synthesized hardware,” in Proceedings of the Design, Auto-
mation Test in Europe Conference Exhibition (DATE),
pp- 1084-1089, Grenoble, France, March 2015.

[13] M. Weinhardt and W. Luk, “Memory access optimization and
ram inference for pipeline vectorization,” in Proceedings of the
International Workshop on Field Programmable Logic and
Applications, pp. 61-70, Glasgow, UK, August 1999.

[14] C. Liao, D. J. Quinlan, T. Panas, and B. R. De Supinski, “A
rose-based openmp 3.0 research compiler supporting mul-
tiple runtime libraries,” in Proceedings of the International
Workshop on OpenMP, pp. 15-28, Beijing, China, June 2010.

[15] D. Orchard and A. Rice, “Upgrading fortran source code
using automatic refactoring,” in Proceedings of the 2013 ACM
Workshop on Workshop on Refactoring Tools, WRT ’13,
pp- 29-32, New York, NY, USA, October 2013.

[16] J. Overbey, S. Xanthos, R. Johnson, and B. Foote, “Refac-
torings for fortran and high-performance computing,” in
Proceedings of the Second International Workshop on Software
Engineering for High Performance Computing System Appli-
cations, pp. 37-39, St. Louis, MO, USA, May 2005.

[17] W. Vanderbauwhede and G. Davidson, “Domain-specific
acceleration and auto-parallelization of legacy scientific code
in fortran 77 using source-to-source compilation,” Computers
& Fluids, vol. 173, pp. 1-5, 2018.

[18] F. De Dinechin and B. Pasca, “Designing custom arithmetic
data paths with FloPoCo,” IEEE Design ¢~ Test of Computers,
vol. 28, no. 4, pp. 18-27, 2011.

[19] SDAccel optimization recommendations, 2019, https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2017_
4/ug1207-sdaccel-optimization-guide.pdf.

International Journal of Reconfigurable Computing

[20] G. Kahn, “The semantics of a simple language for parallel
programming,” Information Processing, vol. 74, pp. 471-475,
1974.

[21] H. Nikolov, T. Stefanov, and E. Deprettere, “Modeling and

FPGA implementation of applications using parameterized

process networks with non-static parameters,” in Proceedings

of the 13th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM’05), pp. 255-263, Napa

Valley, CA, USA, April 2005.

S. Shukla, N. W. Bergmann, and J. Becker, “QUKU: a FPGA

based flexible coarse grain architecture design paradigm using

process networks,” in Proceedings of the IEEE International

Parallel and Distributed Processing Symposium, pp. 1-7, Long

Beach, CA, USA, March 2007.

[23] T. M. Parks, Bounded Scheduling of Process Networks,
Technical report, California University Berkeley Department
of Electrical Engineering and Computer Sciences, Berkeley,
CA, USA, 1995.

[24] S. W. Nabi and W. Vanderbauwhede, “FPGA design space
exploration for scientific HPC applications using a fast and
accurate cost model based on roofline analysis,” Journal of
Parallel and Distributed Computing, vol. 133, pp. 407-419,
2017.

[25] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee,
“Scheduling algorithms for automated synthesis of pipelined
designs on FPGAs for applications described in MATLAB,” in
Proceedings of the 2000 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems,
vol. 17, pp. 85-93, San Jose, CA, USA, 2000.

[26] Amazon EC2 FI instances, 2019, https://aws.amazon.com/
ec2/instance-types/fl/.

[27] AMBA, AXI and ACE Protocol Specification, 2011, https://static.
docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf.

[28] J. Kampf, Ocean Modelling for Beginners: Using Open-Source
Software, Springer Science & Business Media, Berlin, Ger-
many, 2009.

(22

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1207-sdaccel-optimization-guide.pdf
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

