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Radiation tolerance in FPGAs is an important field of research particularly for reliable computation in electronics used in
aerospace and satellite missions. *e motivation behind this research is the degradation of reliability in FPGA hardware due
to single-event effects caused by radiation particles. Redundancy is a commonly used technique to enhance the fault-
tolerance capability of radiation-sensitive applications. However, redundancy comes with an overhead in terms of excessive
area consumption, latency, and power dissipation. Moreover, the redundant circuit implementations vary in structure and
resource usage with the redundancy insertion algorithms as well as number of used redundant stages. *e radiation
environment varies during the operation time span of the mission depending on the orbit and space weather conditions.
*erefore, the overheads due to redundancy should also be optimized at run-time with respect to the current radiation level.
In this paper, we propose a technique called Dynamic Reliability Management (DRM) that utilizes the radiation data,
interprets it, selects a suitable redundancy level, and performs the run-time reconfiguration, thus varying the reliability
levels of the target computation modules. DRM is composed of two parts. *e design-time tool flow of DRM generates a
library of various redundant implementations of the circuit with different magnitudes of performance factors. *e run-time
tool flow, while utilizing the radiation/error-rate data, selects a required redundancy level and reconfigures the computation
module with the corresponding redundant implementation. Both parts of DRM have been verified by experimentation on
various benchmarks. *e most significant finding we have from this experimentation is that the performance can be scaled
multiple times by using partial reconfiguration feature of DRM, e.g., 7.7 and 3.7 times better performance results obtained
for our data sorter and matrix multiplier case studies compared with static reliability management techniques. *erefore,
DRM allows for maintaining a suitable trade-off between computation reliability and performance overhead during run-
time of an application.

1. Introduction

*e advancement of semiconductor technology to nano-
meter dimensions has made the design of digital circuits
challenging. Future shrinking of device parameters is in-
evitable due to the increasing need for high computing
power and more computational blocks on a single system-
on-chip. Besides the conventional performance, area, and
power constraints, today’s circuits have to conform to re-
liability requirements. *e reliability of the digital circuits
however degrades due to probabilistic nature of errors
appearing in nanodevices. *ese errors, being permanent or
transient in nature, are mainly caused by process variations,
thermal fluctuations, quantum effects, power supply noise,

and capacitive/inductive coupling, as few examples [1–4].
*ese errors are treated for fault tolerance at device, logic, or
network layers depending on the feasibility of mitigation at
each of these layers. However, when the nanodevice-based
circuits are used in high-radiation environments (consisting
alpha particles and cosmic rays), an additional source of
error emerges which is known as radiation-induced errors.
Although the reliability studies for electronics include well-
defined mitigation strategies for different sources of errors,
they propose redundancy as the most efficient way of
countering radiation-induced errors.

*e future of space computing is largely dominated by
Field Programmable Gate Arrays (FPGAs) due to their ca-
pability of run-timemodification of functional implementation
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on hardware. *e reconfiguration feature of FPGAs allows
them to perform various tasks during different phases of a
mission [5]. Moreover, increase in on-board processing re-
quirements on space missions for various image-processing
applications goes well with the highly parallel architecture of
FPGAs [6]. Most importantly, the space, weight, and power for
a satellite payload design can be minimized with the usage of
FPGAs due to their ability to perform multiple tasks without
having a dedicated hardware for each of these tasks.

*e advantages of using FPGAs in space computing
brought the attention of researchers and FPGA companies to
ensure the fault-tolerant operation of FPGAs in high-ra-
diation space environments. When FPGAs are exposed to
high solar or cosmic radiation (involving high-energy
electrons, alpha particles, and heavy ions), errors in the form
of logic reversals appear in the digital circuit elements which
could be as disastrous as causing a system-level failure or as
moderate as internally masked errors. For long-term space
missions, the accumulation of ionizing dose, measured as
Total Ionizing Dose (TID), is an important design parameter
which indicates how long the FPGA can withstand the ra-
diation before its transistors begin to degrade [7]. For rather
short-term space missions, Single-Event Effects (SEEs) cause
temporary errors to appear in the circuit whose mitigation
strategies vary from internal masking (using redundancy) to
system-reset requirement. Generally, SEEs, which are
measureable changes in the state of a microelectronic device
[8], are classified into four domains. Single-Event Transient
(SET) is a voltage spike causing a glitch in a combinational
element; Single-Event Upset (SEU) is a soft error caused by
the radiation particle in memory contents, particularly
SRAM cells; Single-Event Latchup (SEL) is the high-current
state in a device caused by the passage of a single energetic
particle through sensitive regions of the device structure or
Single-Event Functional Interrupt (SEFI) that cause the
component to reset, lockup, or otherwise malfunction in a
detectable way. SETs are typically short-term and ineffective
unless they are latched into a sequential element, thus be-
having as an SEU. SELs can be corrected by power cycling,
while SEFIs require resetting the component [7–9]. *e
remaining category, i.e., SEU, is the major concern for the
reliable FPGA operation due to its higher appearance rate
compared with other SEEs as well as its accumulation effects.
SRAM-based FPGAs are highly susceptible to SEUs
appearing in their configuration and application memory
elements.

*e alternative to SRAM-based FPGAs are radiation-
hardened FPGAs which include the foremost Actel (cur-
rently known as Microsemi) RTAX antifuse FPGAs [10].
*ese devices are one-time programmable, and the devel-
opment of permanent interconnections after configuration
makes them immune to SEUs. However, being non-
reprogrammable, they lose their charm for utilization in
multiple design modification scenarios. *e second popular
category consists of flash-based FPGAs [11], which offer full
reconfiguration though lack partial reconfiguration [6].
Moreover, these devices have typically lower TID rating than
SRAM or antifuse FPGAs [12]. However, an additional
category of radiation-tolerant FPGAs consists of space-grade

versions which utilize the performance of SRAM FPGAs
while having built-in radiation-tolerance features, e.g.,
Xilinx Virtex-5QV [13].

In contrast to inherent radiation-tolerant capabilities of
FPGAs, fault-tolerant computation approaches in hardware
and software are utilized as well. Redundancy [14, 15] and
scrubbing [16, 17] are two most popular techniques for
tolerating SEUs and avoiding their accumulation. A classical
and widely used form of redundancy is triple modular re-
dundancy (TMR). In principle, TMR instantiates three
identical copies of a circuit and places a voter module at the
end to take a majority decision for each output. Hence, TMR
does not depend on error detection but mitigates the error
by passage through the voter. In contrast, scrubbing involves
continuously configuring configuration memory to prevent
accumulation of errors.*e combination of redundancy and
scrubbing is considered a widespread optimal fault-tolerant
solution in hardware. Additional approaches in the literature
include duplication with comparison (DWC) [18], error
checking and correcting codes (ECAC) [19], and algorithm-
based fault tolerance (ABFT) [20]. However, in this paper,
we focus solely on redundancy and its different variations in
hardware. Hardware redundancy techniques for FPGAs are
more involved than basic TMR with respect to partitioning a
circuit into submodules, deciding on how many voters to
insert, and where to place the voters in the FPGA design.
Tools for automating redundancy insertion in FPGA designs
are available, including the TMR tool of Xilinx [21], Pre-
cision Hi-Rel software [22], and the BYU-LANL TMR tool
[23]. Fault-tolerance mechanisms, particularly modular
redundancy, come with an overhead in terms of excessive
area consumption as well as latency and power dissipation.
*erefore, while providing fault tolerance, the design of a
mission critical system also has to limit these overheads to
given constraints.

*e radiation environment during the operation time of
the satellite is variant, especially the radiation particle strike
rate increases enormously above Earth’s magnetosphere
[6, 24]. *e fault-tolerance techniques, particularly redun-
dancy, have a constant overhead in performance factors of
area, latency, and power dissipation. However, in general,
higher stages of redundancy provide more reliability at the
cost of increasing overheads in performance factors.
*erefore, the realization of reliability-performance trade-
off is mandatory before designing a redundant system. In
order to avoid a constant degradation in system perfor-
mance due to a fixed overhead in performance factors, the
system should be self-adaptive in a way to optimize the
trade-off between reliability and performance factors, at run-
time, based on the radiation strength of the environment.
We implement this concept named as “Dynamic Reliability
Management (DRM).” DRM, based on the partial reconfi-
guration of FPGAs, is beneficial as it allows for the opti-
mization of the performance overheads and, thus, can save
cost and power or free hardware resources for other tasks
when feasible.

*e contribution of this paper lies around providing a
complete approach for using SRAM-based FPGAs in space
missions whereby using real-time radiation scenarios for our
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analysis and experimentation. Most importantly, we focus
on visualizing the trade-off of reliability with the three main
performance parameters, i.e., latency, area, and power
consumption. *is is in contrast to the research studies
which work on the same research line but fail to show the
complete picture of reliability versus three performance
factors and how to prefer one redundant structure over
another based on the performance constraints. *is paper
provides such solution where Pareto optimization can be
used to filter out the suitable redundant structure based on
one or more performance factors. Our developed tool flows
are unique and more extensive than previous research works
which are comprehensively verified in this paper as well. Last
but not the least, we also provide the possible extensions to
our experimentation platform, which can be used as future
research directions in this vast and emerging research area.
We have tried our best to be generic as well as having a
bigger scope for our research so that the maximum research
community in space computing can benefit from it.

*is paper is organized as follows. In the next section, we
provide the foundation for understanding the adaptive re-
liability management concept by describing implementation
strategies of redundancy in FPGAs, varying radiation en-
vironments, corresponding decision mechanisms, and
commonly used reliability theories. Afterwards, we discuss
and analyze major research works in self-adaptive reliability
management and contrast them to our approach of Dynamic
Reliability Management. Section 3 describes the two por-
tions of our DRM approach as design and run-time parts,
while verification of each of these parts has been provided
with detailed experimentation in Section 4. Section 5 con-
cludes the paper.

2. Background and Related Work

In this section, we describe the basic implementation
strategy of TMR in FPGAs followed by an insight into
different forms of TMR and its cascaded version. To un-
derstand the varying radiation environment of space, we
give real radiation scenarios as examples. *e reliability
computation of FPGA-based circuits can be done by con-
ventional and probabilistic theories, which will be briefly
described as well. Finally, we summarize and analyze the
major research works similar to our approach of Dynamic
Reliability Management.

2.1. Triple Modular Redundancy in FPGAs. *e concept of
triple modular redundancy (TMR) is straightforward as it
triplicates a logic design and takes the final output of the
design from a voter placed at the outputs of the redundant
modules [14]. *e function of the voter is to sample three
logic outputs and forward the majority result. *e limitation
of this architecture is the single point of failure, i.e., an error
occurring in the voter renders the TMR technique useless.
To avoid the single point of failure, we can create a more
reliable architecture involving triplicated voters in addition
to triplicated logic modules. *is architecture runs the three
branches in parallel unless they are to be interfaced with the
outside world of the FPGA, where they can be converged
using reducing voters or could be interfaced in the form of
three outputs.

*e TMR technique can be used in an FPGA by simply
triplicating the inputs, outputs, and logic modules,
inserting buffers, and connecting the outputs of logic
modules to the triplicated voter. *is straightforward
implementation is not suitable due to some practical
considerations. Firstly, TMR is able to counter one error
among the three redundant branches, and a larger length of
each branch increases its probability of being erroneous
more than once. To deal with this issue, there is a need to
break the logic of the branch at regular intervals and place
the triplicated voters in intermediate stages of the circuit as
shown in Figure 1.*us, an error occurring in one partition
of the logic will not be forwarded to the next partition due
to the error-mitigation effect of the triplicated voter.
However, the minimum size of the logic partition, or
granularity level, could be limited to a single component on
an FPGA, e.g., a lookup table and multiplexer. In addition,
there are certain locations on an FPGA called illegal-cut
locations which should not be triplicated due to the FPGA
architecture, e.g., dedicated route connections in a slice
[25]. Moreover, voters should not be placed on high-speed
carry chains in order to not deteriorate the timing per-
formance of the design. Most importantly, voters should
always be added in the feedback paths to avoid data cor-
ruption at the outputs of sequential elements being for-
warded into the feedback paths [14, 25]. *ese voters are
commonly denoted as synchronization voters.

*e process of automatic TMR insertion into a circuit
design can be done, for example, via the BYU-LANL TMR
(BANL) tool. *e BANL tool is able to triplicate the design,
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Figure 1: TMR implementation in FPGA.
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insert voters, and use built-in algorithms to take care of the
constraints explained above. It is up to the discretion of the
circuit designer to request the desired redundancy con-
figuration, e.g., TMR with only single voters or with a
mixture of single and triplicated voters. Moreover, there is
a choice of eight algorithms that decide the placement of
voters in the triplicated design. *ese algorithms are
termed voter-insertion algorithms. Depending on the type
of algorithm, the sets of nets are determined where the
voters should be inserted, e.g., using feedback edge set
(FES) algorithms or decomposition of strongly connected
components (SCCs) in the circuit graph [25]. *e details of
these algorithms can be found in [5]. *e algorithms used
in the BANL tool and in our experimentation are abbre-
viated as follows:

(1) CC: Connectivity cutset

(2) AFC: After flipflop cutset
(3) BFC: Before flipflop cutset
(4) BD: Basic decomposition
(5) HFC: Highest fanout cutset
(6) HFFC: Highest flipflop fanout cutset
(7) HFFIC: Highest flipflop fanin input cutset
(8) HFFOC: Highest flipflop fanin output cutset

2.2. Variation in Voting Structures of TMR and Cascaded
TMR. Besides the conventional single and triplicated voter
configurations, there are configurations proposed in [26]
with single/double voters in the alternate stages as shown in
Figure 2. Using Monte Carlo simulations, the authors
proved that these alternate configurations are slightly less
reliable than triplicated voter configuration though they save
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the overhead of increased number of voters. Hence, in
situations where the radiation environment is not very
strong and area consumption is an important issue, the
alternate configurations are highly useful. In addition, there
is a concept of cascaded TMR which results in more reliable
configurations than TMR, though consuming more area
[27]. For our analysis, we use the level-1 CTMR shown in
Figure 3. It can be noted that the CTMR configuration has a
single point of failure as it is the extension of TMR with a
single voter. While CTMR can also be improved by using the
triplicated voter strategy, we assume that CTMR is always
superior to TMR for the time being. Overall and based on the
results presented in [14, 26, 27], we rate the reliability of the
discussed configurations in the following ascending order:

(1) SV: single voter [14]
(2) OAV: one alternate voter [26]
(3) TAV: two alternate voters [26]
(4) TV: triplicated voter [14]
(5) CTMR: cascaded TMR-Level 1 [27]

Originally, the BANL tool supported only SV and TV
configurations while we extended the tool to support the rest
of the three configurations, as will be explained in Section
3.1.2. It has to be noted that all configurations have to resort
to single voters for illegal-cut locations. In particular, also

the configuration TV, which is the default configuration of
the BANL tool, combines triplicated and single voter
structures.

2.3. Variation in Radiation Patterns. *e main motivation
for dynamic reliability management, implemented in a self-
adaptive reconfigurable system, is for space missions where
radiation strength is high and fluctuating. In this section,
based on the literature, we provide four distinct radiation
scenarios to strengthen the need for varying reliability levels.
*e first scenario is referenced with height, the second and
third with respect to time, and the fourth with solar con-
ditions. *e radiation strikes per minute and the soft error
rate are considered proportional measures of radiation
strength; however, not all the radiation particles might
appear as errors in the hardware due to the their low ionizing
energy or masking effects.

2.3.1. Borealis Flight. In a hot air balloon testing conducted
at the University of Montana [28], i.e., Borealis Flight, a
Geiger sensor tube was sent to a high altitude of around
100,000 feet. *e corresponding Geiger counter logged the
radiation strikes per minute capturing most of the low- and
high-energy particles. Figure 4 shows the variation of the
recorded radiation strike rate with altitude. By analyzing
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such a radiation profile, we can safely assume that the more
redundancy levels we have at hand, the better a systemwould
be able to exploit the trade-off between reliability and
performance. Moreover, it is also worth noting that the
sensor captured two radiation data points at approximately
30,000 feet, which are uncorrelated to the trend. *is em-
phasizes the need for a system that is able to adapt the
reliability level in order to respond to unexpected deviations
from an observed trend.

2.3.2. Low-Earth-Orbit Case Study. In the research work
presented in [6], a fault-rate model is presented and used to
simulate the expected error rate for a path in low earth orbit
(LEO). *e error rate is presented in the unit of faults per
device-day, which is useful to represent the cumulative error
rate when a number of devices/FPGAs are monitored in
parallel. *e orbital track of LEO case study has a mean
travel time of 98 minutes due to which we see the repetition
of fault pattern. We do not experience huge fault rate due to
an altitude of only 700 km which is below the Van Allen
radiation belts and completely within Earth’s magneto-
sphere. It can be observed in Figure 5 that there are ap-
proximately three discrete radiation/fault-rate levels; hence,
three reconfigurable reliability levels would be sufficient.

2.3.3. Highly Elliptical Orbit Case Study. Referring to the
research work in [6], an additional case study for expected
fault rate was conducted for an elliptical orbit of perigee

1100 km and apogee 39,000 kmwith a mean travel time of 12
hours. *e path is called Molniya orbit and used for the
communication satellites in particular. As can be seen in the
radiation plot of Figure 6, the fault rate gets high at the end of
the time period when it passes the Van Allen radiation belts.
Most of the orbit duration has negligible fault rate as
compared with a short duration of excessive fault rate at the
end of the time period. For such a fault-rate profile, we can
expect two reliability levels to be sufficient where the higher
reliability level is required only for a very short duration.

2.3.4. Anticipated Error Rate for Different Solar Conditions.
In the research work conducted in [29], an expected error
rate for another LEOwas anticipated for seven different solar
conditions, as shown in Figure 7. Although the names of the
solar conditions are replaced with numeric numbers in the
figure for simplicity, their details can be found in [29]. *e
graph shows the minimum fault rate of 0.5 SEUs per device-
day in solar condition No. 2 and maximum fault rate of 26
SEUs per device-day for solar condition No. 3. For sim-
plicity, the graph can be divided into two regions based on
the SEU rate. *e first region, i.e., with solar conditions 1, 2,
5, 6, and 7 can be used with the low redundancy, while the
other region (solar conditions 3 and 4) can be used with the
high-redundancy circuit structures.

2.4. Reliability Evaluation of FPGA-Based Redundant
Structures. *e traditional way of modeling reliability of
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electronic systems is to describe the time until the system
fails by a random variable. Using an exponential distribution
for the time between failures, assuming independent failures,
and a constant fault rate λ, we can determine a system’s time-
dependent reliability R(t) as defined by the following
equation:

R(t) � e
− λt

. (1)

Assuming a constant fault rate is reasonable if we ex-
clude the burn-in and wear-out phases of systems. *us,
based on an estimated or measured fault rate, R(t) can be
calculated, and it expresses the probability that a system
survives, i.e., is without fault, from its start at time 0 until
time t. *e reciprocal of λ is denoted as mean time to failure
(MTTF) or mean time between failures (MTBF) in case of
systems that can be repaired. MTTF and MTBF are widely
used as reliability metrics. *ough many research works
follow this generic reliability equation, they differ in how
they determine the fault rate λ. In the following two sub-
sections, we describe major approaches that focus on de-
termining fault rates of FPGA designs with redundant
structures followed by a review on probabilistic computa-
tional reliability models.

2.4.1. CREME96-Based Reliability Computation.
Vaderbilt University’s online tool CREME96 [30] is spe-
cifically used to compute the fault rate of devices used in
aerospace missions. *e tool takes as input the device SEU
cross section, the solar condition, and specific parameters of
space orbit and computes the SEU rate due to heavy ions and
protons [31]. *e basic fault-rate model of this tool, whether
used in its original form or modified for a specific system
design, can be found in research works of [6, 24, 32], where
FPGAs are used for space computing. *e impact of re-
dundancy can be modelled by the Markov fault model [6] or
the classical TMR equation [32].

2.4.2. Fault Injection and Testing-Based Reliability Models.
A typical way of experimentally checking FPGA reliability is
via fault injection into the FPGA bitstream [33]. Since the
SEUs can be modelled as bit flips in storage elements, we can
revert the bit at the register output and see its effect on the
behavior or functionality of the circuit. *e bitstream for-
mats of FPGAs are proprietary, which turns the identifi-
cation of the exact bit locations in the bitstream, that need to
be flipped to execute a specific fault in the desired circuit
element, into a tedious re-engineering job. *erefore, ran-
dom fault injection is normally exercised using Monte Carlo
techniques [26]. Since an FPGA bitstream contains only a
small fraction of critical bits, i.e., the bits that cause an error
when affected by an SEU, most of the SEUs do not affect the
circuit’s functionality. Together with the restricted time for
simulation, this leads to a limited coverage.

*e FPGAmanufacturers, e.g., Xilinx, have their custom
testing methods and models that provide reliability mea-
sures. *ey typically report reliability in the FIT (failures-in-
time) metric, which defines the number of errors in one

billion operation hours of a device [34]. *e failure rates of
Xilinx FPGAs, for example, can be found for various process
technology nodes in [34, 35]. In addition, radiation effects
are characterized by the SEU device rates measured by
accelerated beam testing and real-time atmospheric testing,
particularly for configuration memory and BRAM. More-
over, various other failure rate measurements are conducted
by Xilinx and reported in their device reliability reports,
though not only radiation-induced errors but also high
temperature, humidity, and stress tests.

2.4.3. Probabilistic Computational Reliability Models.
Another category of reliability computation is via proba-
bilistic computational models that take as input error
probabilities of individual components and compute the
output error probability εout of the overall system by
propagating error probabilities from inputs to outputs. A
number of publications relate the output error probability to
the system’s reliability according to R� (1− εout), the most
popular works being [36–38]. It is important to note that this
notion of reliability and the underlying notion of a system’s
output error probability are timeless. An apparent inter-
pretation of this reliability measure is that we take a snapshot
of the system and make a statement about the probability
that it is working error-free. *at way, the component error
probabilities we use in this model indicate the cumulative
effect of all sources of errors. Related work does not detail
how to determine the exact component error probabilities
and uses arbitrarily set values. *e probabilistic computa-
tional models are in contrast to the time-dependent reli-
ability measure of equation (1), and the fault-rate method in
CREME96 that simulates real device and orbit features and
targets mainly radiation-induced errors.

2.5. ComparativeWorks in Adaptive ReliabilityManagement.
In this section, we briefly discuss and analyze research works
on self-adaptive reconfiguration mechanism for reliability,
with focus on radiation-induced errors.

*e authors in [39] present a very detailed approach for
an adaptive system denoted as reconfiguration for reliability
(R4R). *e R4R framework proposes an initial circuit
analysis to estimate the cost of different versions of a circuit
implementation including the default design and more re-
liable, i.e., hardened solutions. In the next step, design space
exploration is performed including floorplanning to opti-
mize the placement of hardened solutions on the FPGA.*e
hardened solutions are based on TMR at the system and
component levels including the design obtained by the
commercial Xilinx TMR tool. *e solutions are then Pareto-
optimized based on area utilization and reconfiguration
time. Although this research work describes the initial
analysis and design space exploration steps in detail, it stays
abstract due to following reasons. R4R is seen as a broad
framework for having an intelligent system exploring dif-
ferent redundant hardware designs though no imple-
mentation of such a system is proposed with run-time
support. Moreover, the cost parameters do not consider
other important factors, e.g., maximum clock frequency of
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the circuit and power dissipation of different hardened
designs. In addition, the authors do not discuss concepts for
decision mechanisms for the online reconfiguration.

*e concept of reconfigurable fault tolerance (RFT) is
provided in [6]. *is work targets space applications and
simulates processing components’ availability based on
DWC, TMR, ABFT, and high-performance (HP) fault-tol-
erance mechanisms. *e switching among different fault-
tolerance approaches is supported by architecture-level
changes through varying partially reconfigurable fault-tol-
erance regions. *e authors use two case studies about low
and high earth orbits to represent the radiation strength
variation in atmosphere, which is useful for taking appro-
priate reconfiguration decisions. It has been successfully
concluded from the experiments that different fault-toler-
ance approaches can be useful in different radiation envi-
ronments. Moreover, it has been clarified how high
scrubbing rates can improve system performance. However,
the authors neither compare the overheads due to area,
latency, and power for different fault-tolerance approaches
nor do they consider a design space exploration of different
redundant designs. In addition, RFT focuses on the classical,
system-level TMR approach, while more efficient compo-
nent-based redundancy approaches are available.

A custom radiation sensor measuring radiation strikes
has been built and proposed for adaptive fault tolerance in
[24]. *is research employs a radiation sensor whose
measured radiation strikes are considered proportionate to
the errors appearing in the system.*is system is also able to
figure out the particular error-hit area and uses partial
reconfiguration to mitigate this error. In addition to the
TMR and scrubbing, this system even utilizes spare re-
dundant blocks in the event of error detection. *e idea is
inspired by the fact that handing over computation to a spare
computation block is less time-intensive than reconfiguring
the partially reconfigurable area to higher redundancy or
scrubbing it. When all the spare computation blocks are
exhausted, the computation starts from the initial block
while reconfiguring all the blocks. *e authors verify their
approach and show that the combination of redundancy
plus scrubbing plus spare resource technique improves the
MTBF. However, this technique comes with the increased
cost of holding extra resources for a single computation task.
In satellite missions where cost is dominated by weight,
latency, and power of resources, such a system is indeed fault
tolerant but probably not cost-effective.

*e authors in [32] utilize the integrated block RAMs on
the FPGA to monitor the error rate, which is considered
proportionate to the radiation strength to which an FPGA is
exposed at run-time. *e detected errors are counted and
used to derive the probability of failures per hour (PFH).
According to the PFH level, a processing module can be
switched among three modes: no redundancy, DMR (dual
modular redundancy), and TMR. *e integrated BRAM
Fault Detectors (BFD) implement radiation sensors at vir-
tually no cost because the memory is still available for ap-
plications. However, the paper does not consider that the
BRAM radiation sensor might detect not only SEEs due to
radiation but also faults introduced by other effects like

supply voltage instabilities and aging/permanent faults. In
addition, the error counter registers are not protected. If an
SEU hits an error counter, this might lead to a wrong error
count. *e reliability of the voter is not considered as well.

In contrast to the abovemetioned major adaptive fault-
tolerance approaches, our technique, Dynamic Reliability
Management (DRM), has a broader scope and can be
customized for different reliability computation mecha-
nisms as well as application software support. We not only
justify our selected experimentation conditions but also
propose the alternatives one can choose to have more ex-
tensive simulations, which can be observed in Section 4.

3. Dynamic Reliability Management

*e dynamic reliability management (DRM) approach is
divided into two parts, i.e., design-time and run-time.

3.1. DRMDesign-Time Tool Flow. In this section, we list the
stages of our design-time tool flow. *e tool flow, illustrated
in Figure 8, converts an HDL design into a set of 4-di-
mensional Pareto-filtered implementations rated by the
reliability magnitude, area consumption, latency, and dy-
namic power consumption. *is overall tool flow is con-
structed by utilizing, extending, and creating various tools as
described below:

(i) Tools utilized: Xilinx ISE (Mapping, Placement and
Routing, Power Analyzer) and MATLAB Pareto
filter

(ii) Tool extended: BANL TMR Tool
(iii) Tool created: MATLAB BDEC Tool

*e extended subtools of BANL TMR tool, i.e., JEdifN-
MRSelection and JEdifVoterSelection, and the newly created
tool, i.e., the revised BDEC tool, are marked as dark-shaded
blocks in Figure 8 to highlight our contribution areas in the
tool chain. *e steps used in tool flow are discussed as
follows.

3.1.1. Xilinx ISE Synthesis. In the first stage, we synthesize
the benchmark HDL design with Xilinx ISE and output an
EDIF netlist to be processed by the BANL TMR tool.

3.1.2. Replication via the BANL TMR Tool. *e original
BANL TMR tool (based on the Java programming language)
was extended to support additional features which we ex-
plain as follows:

(i) Original BANL Tool Flow. *e tool performs logic
replication in four major stages:

(1) *e first stage comprising JEdifBuild and JEdi-
fAnalyze performs the technical steps of design
flattening, circuit and IOB analysis, etc., and
saves the information in intermediate files to be
used by the following tools.

(2) *e second stage comprising JEdifNMRSelection
and JEdifVoterSelection determines the type of
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configuration and replication to be used, repli-
cates the instances, determines the voter-inser-
tion locations by the specific algorithm used, and
makes the necessary wire connections.

(3) *e third stage can be run, if desired, for adding
more voters and error detectors. For our re-
search, we are excluding this stage as an optional
one.

(4) *e final stage does the actual replication by
reading the intermediate file formats written by
the previous tools and by generating the repli-
cated netlist.

(ii) Extension of BANL Tool. We have made two ex-
tensions to the original BANL tool in order to
support the additional redundancy configurations.
By default, the tool supported only TMR configu-
ration which we extended to three more configu-
rations, namely, one alternate voter (OAV) [26], two
alternate voters (TAV) [26], and cascaded TMR
(CTMR) [27]. In addition, we have changed the
command-line interface of the JEdifNMRSelection
tool from replication type to configuration type
because there is more than one configuration that
uses triplication. As a result, we now can decide on a
configuration instead of a particular replication type.

3.1.3. Performing Replication. After running the first stage of
the tool, we need to choose one of the four redundancy
configurations via the JEdifNMRSelection tool and one of the
eight voter-insertion algorithms via the JEdifVoterSelection
tool. *e final stage of JEdifNMR reads the intermediate file
formats of previously run tools and writes the final replicated
EDIF netlist. Overall, we run the extended BANL TMR tool
for 32 possible combinations of redundancy configurations
and voter-insertion algorithms, which sums up the design
implementation set.

3.1.4. Xilinx ISE Mapping, Placement/Routing, and Power
Analysis. All of the 32 generated implementations of the

design are passed through Xilinx ISE mapping, placement/
routing, and XPower analyzer tools to obtain slice utilization
(for area consumption), pad-pad delay/max. clock frequency
(for latency), and dynamic power consumption, respectively.
We resort to the dynamic power consumption since the
static power almost remains the same throughout the
analysis of a single benchmark.

3.1.5. Reliability Evaluation. In Section 2.4, we described
three domains for reliability evaluation of redundant circuits
on FPGAs. *e choice of a specific reliability model depends
on the need of the circuit/system designer. For a practical
aerospace application, the CREME96 software should be
employed to gain realistic reliability values. Testing and
simulation-based methods are mostly useful to provide a
level of confidence in commercial products. *e probabi-
listic techniques, whether used with actual or arbitrary input
error probability values, excel at comparing different re-
dundant circuit configurations. *e goal of our work is to
analyze, evaluate, and compare fault-tolerant circuit
schemes on FPGAs. We have decided to base our work on
probabilistic computational reliability schemes due to fol-
lowing reasons:

(i) *e mathematical models of these schemes are
mature and have been analyzed in the literature
[40, 41]

(ii) *e probabilistic schemes are able to comprehend
very small differences in reliability among slightly
different redundant structures

Among the probabilistic computational reliability
schemes, we decided to use the Boolean Difference Error
Calculator (BDEC) method based on the analysis and
merits/demerits of various computation schemes explained
in our previous work [40–42]. *e basic BDEC model was,
however, limited as it did not cover sequential circuits and
could not deal with redundant circuit structures. Moreover,
no automated tool was available employing the BDECmodel
to calculate the reliability of circuits. *erefore, we first
revised the original BDEC model to perform analysis of

32

BYU-LANL TMR tool

Benchmark HDL 
design

Original 
EDIF netlist

Replicated
EDIF netlist

32

K-Pareto-filtered
configurations

32

Voter-insertion 
algorithms

32 k k 32

8

Redundancy
configurations

4 32

MATLAB
Pareto filtering

Xilinx ISE
Xpower
analyzer

Revised
BDEC tool

Xilinx ISE
synthesis

JEdifNMRSelection, 
JEdifVoterSelection 
(select partitions for 
replication and voter 

locations)

Xilinx ISE
placement &

routing

Xilinx ISE
mapping

JEdifMore Frequent Voting,
JEdifDetection Selection,

JEdifPersistance Detection
(Select extra-voter, detector

and extra-detector
locations)

JEdifNMR
(perform replication)

JEdifBuild, JEdifAnalyze 
(netlist conversion, 

merging, circuit analysis)
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redundant as well as sequential circuits. Afterwards, we
automated the revised model in the form of a MATLAB tool
that takes FPGA-based synthesized Verilog netlist of the
HDL design and computes the output reliability based on the
provided component and wire error probabilities. *is tool
is hence utilized to compute the reliability magnitudes of the
original nonredundant design and its 32 redundant
implementations based on the reference input parameters.

3.1.6. Pareto Filtering of Implementation Points via
MATLAB. Using the Pareto Front function of MATLAB
[43], we reduce the set of implementation points to non-
dominated ones to make the selection of trade-off points
easier. Each implementation is characterized on the basis of
area, latency, power, and measured reliability. *e resulting
nondominated implementation points can be utilized by the
system designer on the basis of one or more constraints of
area, latency, power, and reliability.

3.2. DRM Run-Time Tool Flow. *e final outcome of the
design-time tool flow is the set of nondominated redundant
configurations in addition to the original hardware design of
the application module. *e run-time system, on the other
hand, stores and utilizes these configurations for balancing
the reliability-performance trade-off using an operating
system support. Another component of the run-time system
is the decision module, which can be implemented in
software or hardware. First, we briefly describe our proposed
decision mechanisms followed by an insight into our run-
time tool flow.

3.2.1. Decision Mechanisms for Changing Reliability Levels.
In this section, we summarize four possible decision
mechanisms which decide on changing reliability levels of
hardware at run-time. *e mechanisms are denoted as (i)
external, (ii) time, (iii) cooperative, and (iv) radiation/error-
rate-based mechanisms. Table 1 lists the four decision
mechanisms and shows whether the system, e.g., the satellite,
needs a radiation sensor and a so-called decision module
that decides on changing the provided level of reliability.

(1) External. With an external decision mechanism, a
remote user has the control over reconfiguring the
reliability configurations. For example, a ground
control center transmits a signal to reconfigure the
reliability levels of the satellite application based on
available information about space weather. In this
way, the radiation data is recorded by a source ex-
ternal to the satellite and the decision is made by the
control station. Hence, both the components of the
decision mechanism are external to the satellite.

(2) Time. *e decision mechanism based on time can be
used for missions where the radiation pattern is
already known. For example, in Figure 5, the pattern
of radiation can be used to plan the reliability
reconfiguration after fixed time intervals calculated
on the basis of the travel time of the satellite. With

this mechanism, the time-based decision module
stays within the application system though there is
no sensor involved.

(3) Cooperative. Since the decision module is the most
critical part of decisionmechanism, either we protect
it by excessive hardening or we can decide to keep it
out of the application system. In this way, the de-
cision is taken out of the system but the radiation
data or proportional information, e.g., online error-
rate measurement, is taken from the system which
can be cross-verified before taking the decision for a
reconfiguration. Hence, the term cooperative refers
to the cooperation between the application system
and the control station.

(4) Radiation/Error. With this technique, the sensor and
the decision module both lie within the application
system. Moreover, this only self-adaptive decision
mechanism is responsible for collecting radiation
data, its interpretation, and the reliability reconfi-
guration. In comparison with a time-based recon-
figuration, which would be sufficient in cases when
the radiation plot is known in advance, the radiation/
error-based approach can also handle unexpected
situations or uncertainty of the radiation plot as, for
example, shown in the radiation sensor data plotted
in Figure 4. If one wants to maximize system reli-
ability, a self-adaptive decision mechanism is to be
adopted even if the probability of such unexpected
radiation changes is very low.

3.2.2. Run-Time Tool Flow with ReconOS. *e operating
system used for DRM on a platform FPGA is ReconOS
[44–46]. ReconOS is an operating system for reconfigurable
system-on-chip that extends the multithreaded program-
ming model from software to reconfigurable logic cores.
ReconOS leverages available host operating systems such as
Linux and Xilkernel and allows for managing hardware and
software threads. Both thread types can call operating system
functions to interact with other threads and the operating
system kernel using well-known programming objects such
as semaphores, message boxes, and shared memory. An
exemplary ReconOS system architecture is shown in
Figure 9. *e architecture comprises a main CPU, a number
of reconfigurable hardware slots, a memory controller, and
peripherals. Each hardware slot has two interfaces, an op-
erating system interface (OSIF) for calling operating system
functions and a memory interface (MEMIF) enabling direct
access to the shared system memory. *e main CPU runs an
operating system kernel, ReconOS-specific extensions, and
the software threads; hardware slots accommodate custom

Table 1: Decision mechanisms.

Decision mechanism Sensor Decision module
External No No
Time No Yes
Cooperative Yes No
Radiation/error Yes Yes

10 International Journal of Reconfigurable Computing



hardware threads. Hardware threads communicate with the
operating system kernel by means of delegate threads. *ese
delegates call operating system functions on behalf of their
corresponding hardware thread. Since ReconOS supports
partial reconfiguration, both hardware and software threads
can be instantiated, loaded, and started at run-time.

*e DRM concept requires two additional components
over a standard ReconOS system, the decision module
running as a software thread on the main processor, and the
database containing all the implementation variants for the
hardware designs. Figure 9 depicts these additional com-
ponents as dark-shaded blocks. *e implementation of
decision module in hardware and alternate storage possi-
bilities of redundant configurations apart from DRAM are
also possible although investigating the difference in per-
formance due to these alternate strategies correspond to our
future work.

*e decision mechanisms for reliability can be used with
ReconOS as follows. When an application starts and instan-
tiates a hardware design, it creates the corresponding hardware
thread and requests ReconOS to load the hardware thread into
one of the hardware slots. Subsequently, ReconOS calls the
DRM decision module to decide for an actual implementation
variant for that thread. Depending on the used approach, the
decision module is driven by user commands, time events, or
measurements of the radiation level or actual error rates.
Afterwards, ReconOS retrieves the selected implementation
variant from the database, i.e., external DRAM in our case, and
configures it into a hardware slot. Any time during operation,
the decision module may request ReconOS to reconfigure a
hardware thread with an alternative implementation variant.
In this paper, we focus on reliability of hardware designs,
which are mapped to ReconOS hardware threads. Eventually,
the reliability of the overall ReconOS system will have to be
considered including the main CPU, the threads’ operating
system andmemory interfaces (OSIF andMEMIF), buses, and
memory controllers. *e simplest way is to configure the
ReconOS system to highest reliability implementation to
ensure reliable operation of the switching mechanism, which

adds a fixed cost of redundancy of the base system. *e da-
tabase of implementation variants is stored in external DRAM
to allow for a fast reconfiguration. Reliability for external
DRAM can be provided through error correction codes.

4. Experimentation

*e design-time and run-time parts of the DRM are vali-
dated with extensive experimentation using a number of
benchmarks. For design-time part, we use a 32-point
implementation set to observe how the performance factors
scale with the circuit size and architecture. In contrast, the
run-time part is verified with a 3-point implementation set
to make the reconfiguration process easy for the reader to
comprehend. *e target device used is a Virtex 5 FPGA,
XCVTX150T, with package FF1156. Although our selected
FPGA is not amongst the latest Xilinx FPGAs, we are limited
by the BANL TMR tool, which does not support the FPGA
models above series 5. On the other hand, our technique is
generic and equally applicable to all FPGAs; therefore, we do
not anticipate a different analysis with the latest FPGA series.

4.1. Validating Design-Time Tool Flow. In order to analyze
the variation in performance factors, i.e., area consumption,
latency, dynamic power consumption, and reliability with
respect to changes in the redundancy configuration and
voter-insertion algorithm, we analyzed six benchmark HDL
designs from three classes of benchmarks with different
circuit architectures [47]: c17 and c3540 from ISCAS’85,
s713 and s838 from ISCAS’89, and b8 and b12 from
ISCAS’99 benchmark suites. *e complete design-time
analysis is provided in our research work [48]. In this paper,
we will reproduce the results of only two benchmarks, i.e.,
s713 and s838 so that the paper will not be overwhelmed by
extensive design-time experiments.

*e experiments use overall four redundancy configu-
rations including OAV (one alternate voter), TAV (two
alternate voters), TV (triplicated voters), and CTMR (cas-
caded TMR-level 1) from Section 2.2, as well as NR, a
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Figure 9: Exemplary ReconOS architecture.
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nonredundant design for comparison. We have set the
optimization method for design mapping to balanced to
ensure the best combination of area and speed efficiency. For
latency comparison, we use the maximum pad-pad delay
and maximum clock frequency for combinational and se-
quential circuits, respectively. To determine dynamic power
consumption, we have applied random testbench signals to
each benchmark while trying to maximize the signal activity
among the circuit intermediate nodes. Because of lack of
standard testbenches available for these benchmarks, our
randomly applied testbenches do not necessarily account for
the maximum possible power consumption. However, for
the sake of comparison among redundant configurations,
they serve the purpose.

*e reliability results in this experimentation are
interpreted as the average reliability of the outputs of the
circuit. *e output reliabilities are based on the error
probabilites of input, component (i.e., LUT, MUX, RAM,
and so on), and voter taken as 1%. *e overall output error
probability is an indicative of each component and input to
be probabilistically affected by a radiation particle at a rate of
1%. In reality, this is an extremely high overestimate of
component uncertainty which can be verified from device
reliability reports, having error rates in the range of 1–10
errors in one billion hours [32, 34]. Using such low error
rates, the reliability is normally represented in MTBF units
in conventional time-dependent reliability theories. How-
ever, the probabilistic reliability models including BDEC are
timeless and there is no notion of failure rate and hence
MTBF in these approaches. *erefore, without having the
feasibility to use failure rate units when low error proba-
bilities are used in the BDECmodel, the reliability results get
complicated to understand by the user, i.e., the reliabilities
among different implementations vary at smaller decimal
places. Since our experimentation depends on relative re-
liability computation among circuit implementations, we
resort to a component error of 1% to make the results
comprehensible by the reader. It is worth mentioning here
that the size of the benchmarks chosen are moderate in this
experimentation (max. 800 slices) since the current version
of our BDEC-reliability tool is very time-intensive due to the
sequential flow of probability in this model. Although we are
making efforts to improve the performance of this tool by
parallel programming and multicore processing in the fu-
ture, the reader can still observe the analysis on performance
parameters (excluding reliability) for large benchmarks in
our previous work [48, 49].

4.1.1. s713 and s838 (ISCAS’89). *is series of HDL
benchmarks consist of combinational as well as sequential
elements due to which the voter placement algorithms result
in large variations of the performance factors. Table 2 lists
the results for the two benchmarks and highlights the
nondominated, i.e., Pareto-optimal, implementations of the
HDL design. *ose implementation points having similar
parameter values are highlighted only once. *e benefit of
Pareto filtering is obvious as the 32-point set is reduced to 12
and 7 points for s713 and s838, respectively. It can be

observed from the table that the span of parameters for
OAV, TAV, and TV is not high since they only differ in
number of voters as compared with NR and CTMR, which
vary in number of modules as well. Moreover, we can ob-
serve that different voter-insertion algorithms can greatly
vary the trade-off points.

While one would assume that the area utilization always
increases in ascending order from NR to CTMR, the ex-
periments prove this assumption wrong. As can be observed
for the HFC algorithm and the s713 benchmark, the con-
figuration TV consumes less slices than the configuration
TAV, albeit the number of voters for TV is higher than for
TAV. *e explanation for such anomalies lies again in the
automatic mapping, placement, and routing tools. Some-
times, resources such as flip-flops remain unused in slices to
balance the timing constraints and, more generally, the op-
timization possibilities vary from one design to another.
Furthermore, the choice of voter-insertion algorithm within
each configuration has a high impact on the area con-
sumption, e.g., for the s838 benchmark, the slice utilization
varies from 113 to 124 (9.7% variation) for OAV configu-
rations in contrast to 133 to 276 slices (107.5% variation) for
CTMR configurations. Similarly, because of different opti-
mization possibilities, the maximum clock frequency also
does not always decrease with configurations using higher
degrees of replication. For example, the maximum clock
frequency increased for the s713 benchmark design and the
CC algorithm when going from TAV to TV. However,
switching from the nonredundant to redundant configura-
tions drastically impacts the maximum clock frequency. For
example, when going from NR to CTMR, we observe a 45%
decrease for s713. *e maximum clock frequency also varies
considerably with variation of the voter-insertion algorithm,
e.g., 29% variation for s713 and the TAV configuration. *e
dynamic power consumption varies minimally for these
benchmarks, with a maximum variation of 9.8% observed for
s838 and the CTMR configuration. Generally, the reliability
always increases from NR to CTMR for a single voter-in-
sertion algorithm; although when comparison is made among
different algorithms, it can be easily observable that lower
redundancy configuration of one algorithm may be more
reliable than higher redundancy version of another algorithm.
For example, for s713 benchmark, the TV configuration with
the BFC algorithm achieves less reliability than TAV con-
figuration with the BD algorithm. *e reliability of CTMR
versions is always higher than other configurations even when
using different voter-insertion algorithms. However, their
variation is very small using different algorithms. A very
noticeable advantage we gained from this design space ex-
ploration is the implementation point obtained with CTMR
and the HFFOC algorithm for s838 benchmark, where the
performance parameters are very comparable to the tripli-
cated configuration though having higher reliability. Hence,
the placement and routing of the design based on different
voter-insertion algorithms can make highly redundant de-
signs cost-effective.

Based on this experiment, we conclude that the per-
formance factors do not follow fixed patterns based on the
redundancy structures and voter algorithms. *ere is a
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different optimization potential for different circuit struc-
tures on FPGAs. *erefore, the Pareto-optimization and
such design space exploration are very helpful in selecting
the right redundant structure that follows one’s specific
performance constraints.

4.2. Validating Run-time Tool Flow. *e Pareto-filtered
implementations generated from the design-time tool flow
need to be utilized and reconfigured at run-time using the
run-time tool flow discussed in Section 3.2. For experi-
mentation, instead of a 32-point implementation set, we use
only a 3-point set using configurations NR, TMR, and CTMR
while using the voter algorithm CC. *e reason for using this
small set is to analyze and demonstrate the reconfiguration
process effectively instead of presenting numerous reconfi-
gurations required in a larger implementation set. Moreover,
the process of reconfiguration holds similar for all sizes of

implementation sets. *e design-time analysis of these
hardware designs would be similar to benchmarks used in the
previous section; it is also skipped here since we use only three
implementation points for demonstration purposes instead of
using a fully Pareto-optimized implementation set. To analyze
the trade-off between reliability and performance given by
different implementation variants of a design, we used two
case studies of hardware designs, namely, data sorter and
matrix multiplier [50].

*e DRM implementation on a reconfigurable SoC
platform is faced with the challenge of area efficiency. *e
problem we observed before implementing the DRM con-
cept was that the area of a reconfigurable slot has to be
limited to a fixed size, which refers to the maximum area of a
redundant implementation we use in the reconfigurable
partition, i.e., CTMR. Hence, when the reconfigurable
partition is utilized with relatively smaller redundant

Table 2: Design space exploration results for the benchmarks s713 and s838 from the ISCAS’89 benchmark suite.

CC AC BFC BD HFC HFFC HFFIC HFFOC

s713

NR

#Slice 42
Max Freq (MHz) 336
Dynamic PD (W) 1.476

Reliability 0.9568

OAV

#Slice 93 78 86 93 81 85 85 85
Max Freq (MHz) 233 262 249 233 263 273 255 273
Dynamic PD (W) 1.997 1.988 1.986 1.997 1.993 1.993 1.988 1.993

Reliability 0.9767 0.9673 0.9763 0.9767 0.9765 0.9763 0.9763 0.9763

TAV

#Slice 101 97 97 101 98 106 93 106
Max Freq (MHz) 205 265 218 205 220 231 246 231
Dynamic PD (W) 1.933 1.993 2.006 1.993 1.990 1.999 1.986 1.999

Reliability 0.9772 0.9767 0.9767 0.9772 0.9769 0.9767 0.9766 0.9767

TV

#Slice 102 117 94 102 86 117 92 117
Max Freq (MHz) 227 207 222 227 240 207 233 207
Dynamic PD (W) 2.002 1.996 2.001 2.002 1.998 1.996 1.998 1.996

Reliability 0.9774 0.9769 0.9767 0.9774 0.9771 0.9769 0.9766 0.9769

CTMR

#Slice 211 214 223 211 173 214 223 214
Max Freq (MHz) 219 232 228 219 219 232 228 232
Dynamic PD (W) 2.083 2.073 2.079 2.083 2.050 2.073 2.079 2.073

Reliability 0.9790 0.9789 0.9789 0.9790 0.9789 0.9789 0.9789 0.9789

s838

NR

#Slice 33
Max Freq (MHz) 260
Dynamic PD (W) 0.287

Reliability 0.9384

OAV

#Slice 113 117 124 113 117 117 124 117
Max Freq (MHz) 222 205 228 214 205 205 228 205
Dynamic PD (W) 0.317 0.305 0.316 0.317 0.305 0.305 0.316 0.305

Reliability 0.9735 0.9736 0.9732 0.9735 0.9736 0.9735 0.9732 0.9736

TAV

#Slice 147 131 133 147 131 131 133 131
Max Freq (MHz) 217 212 205 217 212 212 205 212
Dynamic PD (W) 0.317 0.320 0.322 0.317 0.320 0.320 0.322 0.320

Reliability 0.9746 0.9746 0.9740 0.9746 0.9746 0.9746 0.9740 0.9746

TV

#Slice 166 173 140 166 173 173 140 173
Max Freq (MHz) 203 227 208 203 227 227 208 227
Dynamic PD (W) 0.328 0.327 0.325 0.328 0.327 0.327 0.325 0.327

Reliability 0.9752 0.9752 0.9745 0.9752 0.9752 0.9752 0.9745 0.9752

CTMR

#Slice 276 133 212 276 133 133 212 133
Max Freq (MHz) 203 219 203 203 219 219 203 219
Dynamic PD (W) 0.336 0.306 0.321 0.336 0.306 0.306 0.321 0.306

Reliability 0.9793 0.9793 0.9793 0.9793 0.9793 0.9793 0.9793 0.9793
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structures such as TMR, we do not obtain an area efficiency
since the unused portion of the partition cannot be utilized for
other logic.*erefore, we use the concept of parallelism to fully
utilize the reconfigurable partition for each of the redundant
implementations smaller than CTMR, i.e., the NR and TMR
structures will be implemented as parallelized versions. Hence,
the reconfigurable slot is fully utilized while providing a higher
throughput due to parallel application engines.

4.2.1. Data Sorter. *e data-sorting hardware thread uses a
bubble sorting algorithm to sort data in an ascending order.
*e sorting thread operates on 8KB blocks of 32-bit integer
data, and its performance is measured by the sorting rate, in
blocks/minute. *e sorting application has been chosen due
to its block-based processing usage which is considered
typical for signal/multimedia processing, data compression,
and encryption tasks [51, 52].

In our experiments, we allocate a certain hardware area for
implementing the sorting function. *e area is chosen such to
fit the sorter implementationwith the highest level of reliability,
i.e., CTMR. *e same area can also be used for an internally
parallel instance of the hardware sorter in the TMR version and
for a sorter in theNR version that employs eight parallel sorting
engines. We have developed these parallel versions of a data
sorter for TMR and NR, as well as the CTMR version as
ReconOS hardware threads that are designed to operate at
100MHz. We denote the resulting reliability versions as
CTMR, TMR∗2, and NR∗8.

We experiment with a ReconOS system, as shown in
Figure 9, employing three hardware slots and compare three
different configurations for the data sorter application, re-
spectively, for utilizing them.*e configurations are denoted
as static-maximum-reliability, static-varying-reliability, and
reconfigurable. In the static-maximum-reliability configu-
ration, we strive for maximum reliability and employ the
CTMR sorter in each of the three slots in a static way, i.e.,
without partial reconfiguration.*e so-called static-varying-
reliability configuration is also static but uses all three re-
dundancy versions of the sorter, i.e., NR∗8, TMR∗2, and
CTMR at the same time, each one in a separate hardware
slot. During run-time, we can switch the hardware threads
on and off based on the reliability requirements. Finally, in
the reconfigurable configuration, we utilize partial reconfi-
guration to reconfigure the hardware slots with sorter
threads matching the reliability requirements. *at is, at a
particular instant, all the three threads are configured either
NR∗8 or TMR∗2 or CTMR. *e organization of these
configurations is illustrated in Table 3.

*e entire ReconOS base system was designed using
Xilinx EDK. *e run-time reconfiguration and performance
measurements were performed via software developed with
Xilinx SDK and downloaded to a Microblaze processor
implemented on FPGA. *e partial bitstreams for the dy-
namically reconfigurable regions, i.e., the hardware slots, are
generated by the Xilinx Partial Reconfiguration tool flow
[53]. *ere are nine partial bitstreams representing NR∗8,
TMR∗2, and CTMR versions for each of the three hardware
slots. *e full bitstream is always generated with the NR
versions of the hardware threads.

*e decision mechanism we envision for our experiments
is radiation-based, utilizing the radiation profile obtained from
the Borealis flight (duration 103minutes) shown in Section 2.3
(though the radiation strike rate in Figure 4 is shown with
respect to altitude, the time-dependent variation, as used in this
experimentation, has a similar trend). Since we have three
reliability versions for the data sorter, i.e., NR, TMR, and
CTMR, we divide the radiation levels into the following three
ranges corresponding to three reliability levels:

(i) Reliability level 1: 0–300 counts/min

(ii) Reliability level 2: 300–600 counts/min

(iii) Reliability level 3: 600–900 counts/min

*e radiation data are stored on the Microblaze, and
each radiation sample is read and interpreted after a time
interval of one minute, according to the data frequency of
the Borealis flight. *e NR∗8, TMR∗2, and CTMR imple-
mentations, as partial bitstreams, are loaded into the
SDRAM associated with the Microblaze and used for
reconfiguration via the ICAP interface of the FPGA. *e
evaluation platform used is Xilinx ML605 Board, which is
equipped with a Virtex 6 XC6VLX240T FPGA. *e data to
be sorted are continuously provided to the hardware threads
until the completion of experiment or Borealis flight du-
ration. Each block of data is comprised of 2048 32-bit words.

*e sorting performance for the three configurations is
compared in Figure 10. For reliability level 1, i.e.,
0–44minutes, we can observe that the sorting rate of
reconfigurable configuration is more than double and
around eight times higher than static-varying-reliability and
static-maximum-reliability configurations, respectively.
From 44–46minutes, the sudden increase in radiation rate,
as recorded by the sensor, makes the three threads recon-
figure to TMR∗2 equivalents in the reconfigurable config-
uration. Similarly, for the static-varying-reliability
configuration, the NR∗8 thread is switched off while
dropping the sorting rate by 3.7 times since the total sorting

Table 3: Hardware slot combinations.
Application Configuration Hardware slot #1 Hardware slot #2 Hardware slot #3
Static-maximum-reliability CTMR CTMR CTMR

Static-varying-reliability CT
MR

TM
R∗2 NR∗8

Reconfigurable CTMR|TMR∗2|
NR∗8

CTMR|TMR∗2|
NR∗8

CTMR|TMR∗2|
NR∗8

14 International Journal of Reconfigurable Computing



units decreased by the same magnitude as well. *e similar
transition occurs for the 46–50min range corresponding to
reliability level 1. For the 50–60min range, the reliability
level shifts to the second category. In this region, the total
working units for the reconfigurable configuration are six,
compared with three units for each of static-varying-reli-
ability and static-maximum-reliability configurations.
However, the sorting rate of static-varying-reliability con-
figuration is slightly lower than static-maximum-reliability
configuration due to extra complexity of the software code
used for continuous radiation monitoring in the static-
varying-reliability case. Similarly, the last reliability level,
with range 60–103min, has three sorting units working in
reconfigurable and static-maximum-reliability configura-
tions, while only a single unit is utilized for the static-
varying-reliability case. *e slight difference for the sorting
rate for reconfigurable case compared with static-maximum-
reliability one is due to the same code-complexity reason
described above. However, the static-varying-reliability
configuration is ineffective even compared with static-
maximum-reliability configuration in highest reliability
requirement.

Overall, the reconfigurable configuration, upon which
the DRM technique is based, outperforms both the other
configurations. In lowest reliability requirements, the per-
formance is 2.1 and 7.7 times higher compared with static-
varying-reliability and static-maximum-reliability configu-
rations, respectively. For highest reliability requirement, the
reconfigurable configuration has a performance comparable
with static-maximum-reliability and 2.8 times higher than
static-varying-reliability configuration. *e static-varying-
reliability configuration, on the other hand, is 3.6 times faster
and three times slower than the static-maximum-reliability
configuration in highest and lowest reliability requirements,
respectively. *e data throughput of the three configurations
can also be compared by the total data sorted at the end of the
experiment, i.e., 7.43e5, 3.40e5, and 1.76e5 blocks for
reconfigurable, static-varying-reliability, and static-

maximum-reliability configurations, respectively. *e time
spent during each reconfiguration stage is 228ms (76ms for
each thread). Since our radiation sampling rate is one minute,
the reconfiguration time is negligible and hence, not suitable
to be represented on the graph, having time scale in minutes.
Moreover, the reconfiguration time can be further decreased
by using different FPGA architectures [54] or utilizing pro-
cessor-independent partial reconfiguration [55].

4.2.2. Matrix Multiplier. Matrix multiplication is a heart of
many image-processing algorithms [56, 57]. *e matrix
multiplication application we use as our case study multiplies
integer matrices of 128 columns and 128 rows. It works by
reading in Matrix B completely and Matrix A row-wise,
thereby performing a row-wise multiplication and then
writing back the result row-wise until the whole matrix
multiplication is completed.*e hardware thread is part of an
application that uses the Strassen algorithm [58] to split the
multiplication of a 512 columns by 512 rows matrix into 49
multiplications of smaller (128×128) matrices. *is way, the
matrix multiplication is parallelizable and the workload can
be distributed among many hardware threads.

*e experimentation platform for this application, in-
cluding hardware generation and experimental duration is the
same as for the data sorter. However, because of different size
of this hardware application, the parallelization is different,
i.e., the CTMR version of matrix multiplier accommodates
two instances of TMR and five instances of NR, denoted as
CTMR, TMR∗2, and NR∗5 respectively, in contrast to eight
NR versions for the data sorter application. Moreover, the
reconfiguration time for each slot is double compared to data
sorter due to double the size of hardware utilized, i.e., two
clock regions compared with one for the data sorter.

*e performance results of the matrix multiplier are
shown in Figure 11. For reliability level 1, i.e., 0–44 minutes,
we can observe that the multiplication rate of reconfigurable
configuration is 1.7 and 3.7 times higher than static-varying-
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reliability and static-maximum-reliability configurations, re-
spectively, whereas the number of working units are higher by
a factor of almost double and five times, respectively. *e
performance does not exactly scale with the number of
working units and depends on the architecture and how
efficiently a hardware design is parallelized. Overall, the
reconfigurable configuration again outperforms both of the
other configurations. In lowest reliability requirements, as
mentioned before, the performance is 1.7 and 3.7 times higher
compared with static-varying-reliability and static-maxi-
mum-reliability configurations, respectively. For highest re-
liability requirement, the reconfigurable configuration has
comparable performance to static-maximum-reliability and
2.86 times higher than static-varying-reliability configuration.
*e static-varying-reliability configuration, on the other hand,
is 2.2 times faster and 2.86 times slower than the static-
maximum-reliability configuration in lowest and highest re-
liability requirements, respectively. *e data throughput of the
three configurations can also be compared by the total matrices
multiplied at the end of the experiment, i.e., 3.85e5, 2.11e5, and
1.64e5 matrices for reconfigurable, static-varying-reliability,
and static-maximum-reliability configurations, respectively.

4.3. Possible Extensions to the Experimentation Platform.
During the course of validation of DRM, we developed an
experimentation platform that could be extended in multiple
ways. It is practically hard to enlarge the scope of our ex-
perimentation to cover all the possible system architectures in
our experimentation. However, our future work will address
some or all of these improvements as discussed below:

(i) Our focus was studying the reliability-performance
trade-off for the application module only. However,
the overall operating system and its interface should
be accounted for similar reliability requirements.
*e simplest approach of ensuring the reliability of
the base system is to implement it to the highest

reliability/redundancy level, as also proposed in
[6, 32], thereby adding a constant overhead in the
performance of the system including application
modules. Our future work will involve making the
base system redundant including the processor
Microblaze and then observing the performance
benefit of DRM.

(ii) *e performance of the system has been studied
only while utilizing redundancy in this work,
whereas the reliable systems employ scrubbing as an
additional reliability-enhancement technique. In
the presence of scrubbing, the reliability of the
system will be computed according to a more
complex mathematical model [59]. Moreover, since
scrubbing is performed via ICAP interface of the
FPGA and so is the partial reconfiguration for our
DRM approach, it may cause performance degra-
dation while the reconfiguration process is blocked
by the scrubbing cycle. *is effect will be investi-
gated in our future work. Moreover, the power
consumption due to the reconfiguration process will
also be documented in the run-time experiments.

(iii) *e implementation of decision mechanism in DRM
can be studied for different approaches based on the
error rate or radiation-level measurements. In our
work, we utilized a basic approach of dividing radiation
data into different domains and taking the reconfigu-
ration decision based on crossing the domain thresh-
olds. However, we can also use the real-time error-rate
measurements while taking the reconfiguration deci-
sions with more accuracy, using, for example, an ex-
tended BRAM sensor [32] implementing our proposed
extensions in Section 2.5.Moreover, the performance of
decisionmechanism can be improved by implementing
it in hardware in contrast to a software approach. It is
also worth mentioning that utilizing a nonredundant
(NR) implementation for lowest reliability requirement
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is just for the sake of understanding the reconfiguration
concept; it does not guarantee that the system will be
reliable being nonredundant.

(iv) *e storage mechanism of partial bitstreams has to
ensure the integrity of bitstream since we cannot
afford the corruption of these bitstreams repre-
senting the whole functionality of hardware design.
In our work, we stored them in DRAM while
proposing ECC to protect them against corruption.
*e storagemechanism can bemademore robust by
additional reliability techniques, which correspond
to our future work.

(v) In our work, the reliability of different redundant
implementations was calculated offline using a
known analytic reliability model. *is approach can
be made more compact by characterizing reliability
at run-time using mathematical approaches. *e
decision algorithm can be made more compact
which takes into account the parameters based on
the hardware design, environmental conditions, and
system constraints.

(vi) *e real space applications involve extensive sim-
ulations considering space weather and solar con-
ditions. In this work, we demonstrated the approach
in a broader picture without stressing that our
approximate reliability computation method is
comparable with the real-time simulations for space
environments. In our future work, we will utilize the
real aerospace environment and use the CREME96
tool to observe the difference in performance of a
DRM-based application.

5. Conclusion

In this paper, we describe the need for building an
adaptive system for optimizing reliability-performance
trade-off for redundant FPGA hardware, at run-time,
based on the radiation strength of the environment. We
provide a survey of all the major approaches proposing
such an adaptive system concept and contrast them with
our new approach of Dynamic Reliability Management
(DRM). Furthermore, we discussed some real radiation
profiles and the possible approaches to build decision
mechanisms for adaptive reconfiguration in radiation-
sensitive applications. *e design-time and run-time tool
flow of DRM have been described in detail including tools
utilized, extended, and developed. *e design-time tool
flow has been verified with various circuit benchmarks
that show how the performance factors vary due to
placement and routing decisions of the FPGA design
software. *is performance optimization has been made
easy using our design space exploration technique, which
analyses various redundant implementations of a hard-
ware design. *e run-time tool flow has been tested for
data sorting and matrix multiplication case studies under
the radiation data profile of Borealis flight experiment. To
investigate the benefits obtained by the partial reconfi-
guration approach, we developed a system-on-chip

experimentation platform which provides the perfor-
mance comparison for different application configura-
tions, i.e., static-maximum-reliability, static-varying-
reliability, and reconfigurable. Our results prove that the
dynamic partial reconfiguration, on which the DRM
technique is based, provides the best performance results,
up to 7.7 and 3.7 times higher throughput for our data
sorting and matrix multiplication case studies, respec-
tively, as compared with static reliability management
techniques. *e usage of radiation data in our experi-
mentation is one possible way of implementing decision
mechanism. However, its implementation in hardware or
usage of different decision mechanisms is up to the
implementation preferences of the system designer. In the
future, we intend to experiment with different decision
mechanisms and their implementation using different
storage mechanisms in hardware and software.
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