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Te cyber-physical power system (CPPS) is a modern infrastructure utilising information and communication technology that has
become more vulnerable to cyberattacks in recent years. Te attack magnitude injected by the adversary is stealthier and it cannot
be detected using conventional bad data detection techniques. Protecting sensitive data from data integrity attacks (DIA) is
essential for ensuring system security and reliability. A tragic event will occur if the attack goes unreported. Terefore, DIA
detection is highly vital for the operator in the control centre to make important decisions. Tis paper addresses the attack impact
on WAC applications and attack detection using the model-based method and data-driven-based methods. On the basis of the
validation of performance indicators, various detection approaches are simulated and compared to determine the best detection
strategy. Simulation results show that in the model-based anomaly detection method, the recursive polynomial model estimator
(RPME) has better detection performance than the recursive least square estimator (RLSE). Te convolutional neural network-
(CNN-) based data-driven anomaly detection technique outperforms other machine learning (ML) techniques such as support
vector machine (SVM), K-nearest neighbour (KNN), and random forest (RF). On theWSCC 3machine 9-bus system, the efcacy
of the suggested methods is evaluated.

1. Introduction

Cyber-attacks on CPPS have the potential to cause envi-
ronmental problems by interfering with the monitoring and
management of electricity generation and distribution [1, 2].
For instance, a cyberattack on a nuclear power facility would
pose safety risks. Utility corporations, governmental orga-
nisations, and customers may sufer large fnancial losses as
a result of cyberattacks. Repairing infrastructure, looking
into occurrences, and compensating parties who were
harmed can be expensive. Professional hackers, antagonistic
insiders, and organised criminal gangs are all potential
starters of cyberattacks. Energy theft, blackouts, and damage
to crucial equipment are just a few of the ways that
cyberattacks can have a signifcant negative impact on the
grid. A recently identifed virus called Industroyer has the
power to control switches and breakers in substations. IEC
60870-5-101, IEC 60870-5-104, and IEC 61850 are only a few

of the communication protocols that it might target. To keep
the grid stable and keep supply and demand balanced, CPPS
relies on real-time data and communication networks.Tese
communications may be interfered with by cyberattacks,
which may further jeopardise the grid’s dependability and
cause voltage instability or cascading failures. For example,
cyber-attack events occurred in the western Ukraine power
grid in December 2015, a malware attack in the Saudi Arabia
oil refnery in 2017, a German power utility was afected by
a DOS attack in 2012, on October 2019, a malware attack
targeted the Kudankulam nuclear power station. On 12th
October 2020, Mumbai was without electricity for more than
12 hours as a result of a cyber attacker inserting malware into
the ventilation system. Due to the power outage during the
COVID-19 situation, the circumstances grew worse. As
a result, rapid and accurate attack detection is crucial for
CPPS. One of the most signifcant cyber disturbances against
CPPS wide-area control is a data integrity attack on
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communication infrastructure. In this study, it is assumed
that the adversary interferes with the grid by sending ma-
nipulated data through the damping controller’s wide-area
communication signal. Te communication network with
a wide-area damping controller is located far away from the
control centre and less secured due to weak network pro-
tection. So, attackers can simply modify the signal and
disrupt the grid.

Farraj et al. [3] proposed an adaptive cyber-enabled
parametric feedback linearization control scheme to stabi-
lize power systems during cyber and physical disturbances.
Sridhar and Manimaran [4] highlighted the attack impact
targeted at voltage control devices (FACTS) using a sensi-
tivity analysis technique. Te author does not describe the
impact of the data integrity attack on other system pa-
rameters such as tie-line power, generator speed deviation,
and the active power output of the generator. Sargolzaei et al.
[5] proposed a hybrid method of FDI detection using
a neural network and a model-based method in a network
control system.Te developed anomaly detection algorithm,
which consists of a NN observer and a Kalman flter-based
observer, can simultaneously identify and mitigate the
negative efects of system uncertainties and FDI attacks in
real-time. In most cases, neural networks do not directly
quantify the degree of uncertainty in the prediction. When
precise uncertainty quantifcation is necessary for state es-
timation activities, this may be a restriction. Chen et al. [6]
discussed the fndings of experiments on the efects of
cyberattacks on two voltage support devices, SVC and
STATCOM, in an 8-bus test system, on transient angle and
transient voltage stability. Te author does not describe
attack detection or mitigation techniques. Rawat and Baj-
racharya [7] described two detectionmethods for FDI attack,
namely, the cosine similarity matching approach and chi-
square detector simulated in IEEE 9-bus system. Chi-square
detectors might not pick up on minor discrepancies or
anomalies in the data, especially if the sample size is small.
When identifying greater deviations, it typically performs
better. Cosine similarity might not function efectively in
high-dimensional spaces with sparse data, where the ma-
jority of the dimensions have zero values. Te similarity
measure may lose some of its signifcance if the vectors
become less useful. Manandhar et al. [8] investigated that the
statistically derived FDI attack cannot be detected using the
chi-square detector; therefore, proposed an Euclidean de-
tector for such a sophisticated attack. Te drawback of the
Euclidean detector is that the linear relationship between
characteristics is assumed by the Euclidean distance, but this
may not always be the case. It is possible that nonlinear
relationships are not fully understood, which results in
inadequate similarity measures. Basumalli et al. [9] proposed
data-driven method of convolutional neural network for
packet-data anomaly detection in a PMU-based state esti-
mator with two scenarios namely without and with PMU
measurement redundancy. Ashok et al. [10] explained an
end-to-end attack-resilient cyber-physical security frame-
work for WAMPAC applications that covers the entire
security life cycle, including risk assessment, attack pre-
vention, attack detection, attack mitigation, and attack

resilience. Yu et al. [11] proposed the detection of FDI at-
tacks in IEEE 118 and 300 bus systems using deep neural
network and wavelet transform technique. Although the
wavelet transform can record changes in signal qualities over
a range of scales, it might not be the best option for ex-
tremely nonstationary data because the underlying statistical
values change quickly. Boundary efects from the wavelet
transform may appear, especially close to the boundaries of
the signal being analysed. Tese edge efects may make it
difcult to spot anomalies close to the signal boundaries.
Deng et al. [12] addressed the theoretical foundation for
developing preventative countermeasures and an analysis of
attack behaviours in distribution systems. Konstantinou and
Maniatakos [13] investigated a data-driven algorithm for
anomaly detection to address the vulnerability of state es-
timators to false data injection attacks. Te suggested
method employs dimensionality reduction on grid mea-
surements, density-based local outlier factor (LOF) analysis,
and a feature bagging framework that combines predictions
from several LOF outlier detection outputs. Local anomalies
are anomalies that are isolated in nearby neighbourhoods,
and LOF is specifcally made for spotting them. It may not be
well suited for detecting global anomalies or anomalies that
are distributed across the entire dataset. Within a certain
neighbourhood, LOF anticipates that data points should
have comparable density. When the density is not constant
or when several densities exist within the same dataset, LOF
may yield less-than-ideal results. Tan et al. [14] demon-
strated crucial insight into the physical impact of false data
injections on power grids and provided a framework for
analysis in the protection of sensor data linkages tested on
a physical 16-bus system testbed and a 37-bus systemmodel.
Te drawback of state estimate algorithms is that it is based
on mathematical models of power system which do not
incorporate specifc cyber-attack scenarios. Terefore, it is
difcult for the state estimate approach to identify novel
types of attacks. Li et al. [15] explained the design of a re-
liable, computationally efective, and high-performance
detector by implementing a sequential detector based on
the generalised likelihood ratio. Regarding average detection
time and robustness to diferent attack techniques, it per-
forms noticeably better than the current frst-order cumu-
lative sum detector. When using online anomaly detection,
GLR-based detectors frequently need to store and update
sufcient statistics, which can result in signifcant memory
needs. Furthermore, it can cost a lot of computer time to
calculate likelihood ratios for high-dimensional data. Liu
et al. [16] described integrated cyber-power modelling and
simulation testbed, the efects of diferent cyber events on the
physical power system. Te author does not describe any
detection and countermeasure technique against cyber
events. Yin et al. [17] investigated deep learning techniques
for modelling intrusion detection systems and developed
a DL strategy for intrusion detection utilising RNN in binary
class and multiclass classifcation. Long-term dependencies
in data sequences may be challenging for RNNs to detect.
Te gradients in this situation, which is sometimes referred
to as the “vanishing gradient” problem, get progressively
smaller over time. Te detection of abnormalities that
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depend on long-term patterns may therefore be challenging
for RNNs. Particularly when working with lengthy data
sequences, CNNs often demand less memory than RNNs.
When resources are scarce, this memory efciency can be
crucial. Shone et al. [18] proposed a novel method of
nonsymmetric deep autoencoder- (NDAE-) based deep
learning classifcation model. Te benchmark datasets KDD
Cup’99 and NSL-KDD were used to test the performance of
the proposed classifer, which has been implemented in
TensorFlow with GPU support. In contrast to encoding,
asymmetric decoding or reconstruction functions are fre-
quently used by nonsymmetric autoencoders. Tis asym-
metry may induce bias during the feature extraction process
and may not accurately represent the entire data distribu-
tion. He et al. [19] utilised historical measurement data and
deep learning techniques to identify the behavioural char-
acteristics of FDI attacks and used the collected character-
istics to detect FDI attacks in real time. Te performance of
the proposed method is validated in IEEE 118 and 300 bus
test systems. Since CDBNs are primarily intended for static
data, they might not be able to accurately capture temporal
dependencies or sequential patterns in time-series data.
When dealing with imbalanced datasets, anomaly detection
frequently fnds that the normal instances much outweigh
the anomalies. As a result of CDBNs’ potential bias towards
the majority class and poor handling of class imbalance,
there may be more false negatives for anomalies. Amin et al.
[20] proposed a novel method for assessing how a power
system will behave dynamically during a cyberattack. Dif-
ferent types of cyber-attacks are reviewed, and the dynamic
efects of those attacks are simulated on the Western System
Coordinating Council system. Te article does not address
the impact of the attack on other power system parameters
like tie-line power fow and generator speed deviation. To
create quick, scalable bad data/event identifcation for PMU
data, the author [21] uses an unsupervised ensemble learning
approach. Tey demonstrated that the ensemble model can
be more efectively trained and achieve high accuracy in
detecting a variety of errors/events than utilising a single
independent detection approach using both simulated and
real-world PMU data. Due to restrictions in memory,
computing power, and storage, deploying ensemble models
may not be possible in resource-constrained environments.
When using complicated base models or big datasets, en-
semble techniques sometimes involve training many base
models, which can be resource and computationally in-
tensive. Bhushan et al. [22] proposed a multilabel classif-
cation method based on deep learning techniques to identify
coordinated attacks and tested it in IEEE 123-node and 240-
node real distribution systems. Jin et al. [23] investigated the
economic impact of FDI attacks using dynamics and system
topology information on microgrid systems. According to
the study [24], robust event-triggered LFC for CPPSs is
recommended, along with an additional control loop to
defend against DoS attacks. Te author discussed a robust
event-triggered communication architecture to reduce the
additional control loop’s reliance on communication re-
sources during denial-of-service attacks. Te study then
develops a novel switching LFC system model that, unlike

current event-triggered LFC systems, incorporates the re-
silient event generator into an additional control loop when
susceptible to DoS attacks. To show the efectiveness of the
suggested approach, one-area and two multiarea CPPSs are
used. By taking into account potential dynamic behaviours
[25], the study suggests a novel three-stage dynamic false
data injection attack (DFDIA) model in CPPS. In order to
locate the attack and improve the attack vector in order to
cooperatively change the metre readings, two variations of
restricted diferential evolution are described. Ten,
a countermeasure based on interval state forecasting is
suggested to fnd the established DFDIA. With this detector,
the ensemble deep learning-based state forecasting approach
is used to establish the variation boundaries of state values.

Te CIA trinity, or the three pillars of information se-
curity, is data integrity, data confdentiality, and data
availability. Specifc forms of cyberattacks can target any one
of these aspects:

(i) Attacks on data integrity attempts to undermine the
accuracy, dependability, and reliability of data. An
attacker may change, remove, or inject misleading
information into a system, causing inaccurate de-
cisions or actions based on the modifed data.

(ii) Attacks on data confdentiality are attempts to get
unauthorised access to private or sensitive data.
Attackers try to access data they are not supposed to
read or obtain, which could result in data breaches.

(iii) An attack on data availability aims to stop or
prevent access to data or information. Attackers
want to prevent authorised individuals from
accessing data, which could have an impact on
operations, fnances, or safety.

Attacks on data integrity in CPPS are a severe problem
since theymay result in system downtime, equipment damage,
and fnancial losses. Encryption, intrusion detection systems,
and secure communication protocols are all crucial compo-
nents of efective cybersecurity measures to protect against
these attacks. Increasing the efciency and security of the
power grid through real-time monitoring, control, and
decision-making is a primary goal of the CPPS. Te CPPS
needs to be able to autonomously recognise faults, respond to
them, reorganise itself, and restart power distribution in the
case of disruptions or outages in order to fulfl its goal of self-
healing. Terefore, detecting anomalies is a crucial step in
making judgements about how to restore the system. Te
strengths of both model-based and learning-based methods
are combined in a hybrid approach to anomaly detection in the
grid, which increases the efectiveness overall. Te advantages
of statistical modelling, domain knowledge, machine learning,
and deep learning methods are all utilised in this strategy. Past
research work involves the detection of the cyber-attack using
the Kalman flter, cosine similarity approach, chi-square de-
tector and machine learning techniques. Te novelty of this
paper is the recursive polynomial model estimator for online
detection of diferent types of data integrity attacks, and its
performance is validated based on estimation error. Utilising
mathematical and statistical methods, a recursive estimator is
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used to continuously monitor system behaviour, spot ab-
normalities, and adjust to shifting attack patterns. On the
basis of new data, statistical models are updated and im-
proved using recursive estimators. Its capacity to adjust to
changing attack methodologies is one of its main benefts.
Te estimator integrates fresh knowledge about what de-
fnes “normal” behaviour when new data are gathered and
the model is updated, making it more successful at spotting
new attack patterns. Tus, the recursive estimators are
appropriate for real-time applications. In control systems,
where accurate and timely information is critical, this
capability is essential. Terefore, two types of recursive
estimators, namely, RLSE and RPME, are used in model-
based attack detection in CPPS. Te majority of attack
detection research is conducted on AGC and LFC appli-
cations [26] but lacks analysis of DIA in FACTS-based
WAC applications [27]. Attackers can implement the DIA
on any application [28] in CPPS such as economic dispatch,
state estimation, SCADA measurements, PMU, voltage
control devices, control input, and inertia control. In this
article, it is considered that the attacker implements an
integrity attack for signal manipulation on the FACTS-
based damping controller. Terefore, the research work
focuses on the analysis of DIA on STATCOM-based wide-
area damping controller and its detection. Te outline of
the research work is shown in Figure 1 and the schematic
representation of DIA is shown in Figure 2.

Te contribution of this paper is summarized as follows:

(i) TeWSCC system is modelled as CPPS with hybrid
simulation using Simulink and SimEvents.

(ii) Te system is simulated with diferent types of false
data injection attacks, namely, step, ramp, impulse,
random attack, and its wide-area attack impact are
addressed.

(iii) In the model-based method, diferent data integrity
attacks (step, random, impulse, and ramp) are de-
tected using RPME and RLSE and their prediction
accuracy is validated based on estimation error. In
addition, the attacks are detected in the frequency
domain by estimating power spectral density esti-
mation using the Welch method.

(iv) In the learning-based approach, the efectiveness of
several attack detection strategies including CNN,
KNN, SVM, and RF are assessed through com-
parison of performance metrics (precision, accu-
racy, and F1 score).

Simulation results using MATLAB/Simulink are com-
pared which shows that RPME performs better in detection
than RLSE in the model-based method. In the learning-
based method, CNN (deep learning technique) outperform
the machine learning technique.

2. Mathematical Modelling of CPPS

Consider the WSCC system as CPPS with a STATCOM
device. Te wide-area control signal (speed deviation)
is obtained through a communication channel and

modulated by a FACTS device for control action to
take place.

Te mathematical equation of the physical system
(power system) can be represented as

y � h(x, u), _x ∈ FP(x, u),

(x, u) ∈ CP ⊂ Z
nP × Z

mP ,
(1)

where ZnP is the Euclidean space for state space. u ∈ ZmP is
the input signal for the physical system and y ∈ ZrP is the
output of the physical system. h is the output function. x is
the state of the physical system.

Te mathematical equation of the cyber system (com-
munication network) can be represented as

ζ � K(η, c), η+ ∈ GC(η, c),

(η, c) ∈ DC ⊂ Υ × c,
(2)

η ∈ Υ is the state of the cyber system. ZnC is the Euclidean
space for the state space, c ∈ Ѵ ⊂ ZmC is the input signal
for the cyber system, ζ ∈ ZrC is the cyber system output
defned by the function Κ. Κ is the function of input c and
the state η.

Te information transferred over the communication
network at time instant, τi􏼈 􏼉

p∗

i�1, p∗ ∈ N∪ ∞{ } satisfying

T
∗min
n ≤ τi+1 − τi ≤T

∗max
n ∀ i 1, 2, . . . p∗ − 1􏼈 􏼉, (3)

T∗min
n and T∗max

n are constants satisfying the following
constraints:

T
∗min
n , T

∗max
n ∈ [0,∞],

T
∗min
n ≤T

∗max
n ,

(4)

where p∗ is the no. of. transmission events. T∗min
n and T∗max

n

is the minimum and maximum time between the trans-
mission events.

Te mathematical model of the communication network
is

_τn � 1,

_mn � 0when τn ∈ 0, T
∗max
n􏼂 􏼃,

τ+
n ∈ T

∗min
n , T

∗max
n􏽨 􏽩,

m
+
n � vnwhen τn ≤ 0,

_λ ∈ FI(λ, q)when (λ, q) ∈ CI,

λ+ ∈ GI(λ, q)when (λ, q) ∈ DI,

β � φ(λ),

(5)

where λ is the state, q is the input signal, β is the output
signal, FI is thecontinuous dynamics on CI, and GI is the
discrete dynamics on DI.

3. Communication Network Modeling
Using SimEvents

SimEvents blocks [29] are added to the Simulink model to
create communication network between the sensor and the
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controller. Tus, the hybrid model is used to convert con-
tinuous signal to discrete event signal and also uses packet
communication using entities.Terefore, it involves both time-
based and discrete event-based modelling. From Figure 3, it is
inferred that the rotor speed deviation signal from generator 1
and 2 (RSD1 and RSD2) are time domain signals which are
converted to discrete event signal using a time-to-event signal
block. To generate random packets or entities, time-based
entity generator is used with exponential distribution of
mean� 100. Te attributes are attached to the packets using
a set attribute block. FIFO queues are set to fx capacity of 25
each. Entities from diferent paths are merged using a path
combiner, and out switch block enables routing of entities to
fnal destination. Te server serves the entities for a period of
time, where it is converted again to a time domain signal in
order to feed into the damping controller. Figures 4(a) and 4(b)
represent received entities at the destination of communication
network and time-stamped entities, respectively.

4. Model-Based Anomaly Detection

Consider the CPPS with following dynamics:

_x(t) � Ax(t) + Bu(t) + w(t), (6)

y(t) � Cx(t), (7)

where x(t) ∈ Zn is the state vector variable, u(t) ∈ Zm is the
control input, w(t) ∈ Zp is the disturbance vector. A, B, and
C are the system matrix, input matrix and output matrix of
appropriate dimensions. Control centre collects the mea-
surement from PMU across various location of system to
compute estimate of unknown state variable x.Te obtained
measurements be M � (m1, m2 . . . mk)T and the state var-
iables are x � (x1 + x2 . . . xl)

T. Measurement errors with
gaussian noise is ε � (ε1 + ε2 . . . εk)T.

Te measurement model is given by

M � Hx + ε. (8)

H denotes the Jacobian matrix of dimension k × l which
shows the relationship between measurement set and the
state vector.

Te estimated state vector is given by

􏽢x � MRHT
(H

TRH􏼑
− 1

. (9)

R is the diagonal matrix which is the reciprocal of
variance σ.

Adding an attack vector to the measurement entails
inserting malicious data.

Te compromised measurement of damping controller
signal is

Mcomp � M + a, (10)

a � Hc, (11)
where a is the attack vector a � (a1 + a2 . . . aq)T, c is the
sparse matrix, and Mcomp is the compromised measurement.
Te attack vector is added to compromised measurement as
follows:

􏽢M � H(x + c) + ε, (12)

vi �
0, (no attack),

1, (compromisedmeasurement),
􏼨 (13)

vi is the label set of measurements to diferentiate normal
and attacked samples.

Te STATCOM device represented by a discrete-time
auto regressive polynomial model with the following form as

A q
− 1

􏼐 􏼑y(t) � 􏽘
mu

i�1
Biq

−1
ui t − mki( 􏼁 + e(t), (14)

where

A q
− 1

􏼐 􏼑 � 1 + a1q
− 1

+ a2q
− 2

+ a3q
− 3

. . . + ana
q

− na
, (15)

B q
− 1

􏼐 􏼑 � b0 + b1q
− 1

+ b2q
− 2

+ b3q
− 3

. . . + bnb
q

− nb
. (16)

Te generic version of the recursive identifcation al-
gorithm is provided by

􏽢θ(t) � 􏽢θ(t − 1) + K(t)[y(t) − 􏽢y(t)]. (17)

Estimated parameter 􏽢θ(t) recursively computed by

􏽢θ(t) � 􏽢θ(t − 1) + K(t) y(t) − 􏽢θ
T
(t − 1)ψ(t)􏼔 􏼕, (18)

where ψ(t) can be computed as

ψ(t) � [y(t−1). . . y(t − n)u(t−1). . . u(t − n)]
T
. (19)

Online estimation is the best method for estimating
minor variations in system’s parameter values at a pre-
determined operating point. Te recursive technique is
generally used to accomplish online parameter estimation
which employ the current estimation and measurements to
estimate the parameter values for a given time step. It is
efective in terms of memory utilisation and requires less
computation. Recursive estimators continuously update
their estimates as new data become available. As a result, the
estimations are always based on the most recent and relevant
data. Tis reactivity to incoming data may lead to more
accurate estimations, particularly in dynamic environments
where conditions change over time. Tey are suitable for
embedded and online applications because of their ef-
ciency. Two recursive estimators are used for DIA detection,
namely, RPME and RLSE. Te recursive least squares esti-
mator (RLSE) [30] recursively determines the coefcients
that minimise a weighted linear least squares cost function
pertaining to the input signals. Te Simulink model of DIA
detection is shown in Figure 5. System identifcation tech-
nique and estimator are used to determine the parameters
used in this model. Based on estimation error, the perfor-
mance of both recursive estimators are discussed in results
and discussion section. Te block diagram for detection of
DIA using recursive estimators is shown in Figure 6. Te
fowchart for RPME and RLSE is shown in Figures 7 and 8,
respectively. Parameters used in RLSE and RPME are shown
in Table 1 (Algorithm 1) Algorithm 1 describes the detection
of DIA using model based method.
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4.1. RLSE. Te RLSE incrementally adjusts parameter esti-
mations in response to new data points. Between the output
that was expected and what was actually produced, the
method seeks to minimise the sum of squared errors. RLS
functions naturally as a noise flter by combining data from
numerous time steps, which helps lessen the impact of
measurement noise and enhances the accuracy of parameter
estimates. RLSE can be used in the context of anomaly
detection to adaptively update models of typical behaviour
and detect deviations from these models. An attack or other
abnormality in the system may be indicated by a notable

departure from the parameter estimations or by an increase
in the error variance.

Steps involved in RLSE for attack detection:

(1) Set up the settings for the RLSE algorithm’s ini-
tialization, such as h, W(0), p0(0) and the forgetting
factor λ� 0.001 (a number between 0 and 1 that
regulates the impact of past data).

(2) Calculate the model parameters of RLS technique. It
continually modifes the model’s parameters in re-
sponse to new data.

Data inputmatrixϕ(t) � [E(t − 1)E(t − 2)I(t)I(t − 1)I(t − 2)]
T
,

gainK �
p0(t)ϕ(t)

λ + ϕ(t)
T
p0(t)ϕ(t)

.
(20)

(3) Determine the diferences between the observed data
and the predicted values from the estimated model.
A signifcant deviation from the expected behaviour
indicates an anomaly. For each iteration update the
estimation parameter W(t)

ε(t) � u(t) − W(t − 1)
Tϕ(t),

W(t) � W(t − 1) + K(t)ε(t).
(21)

(4) Update covariancematrix and forgetting factor using
the below equation:
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Figure 4: (a) Number of entities received at the destination; (b) number of entities which are time stamped.

Figure 3: Discrete event based modelling of communication network.
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p0(t+1) �
1
λ

1 − K(t)ϕ(t)
T

􏽨 􏽩p(t),

λ(t) � λmin + 1 − λmin( 􏼁λe(t)
.

(22)

(5) Continually include new data to update the model’s
parameters. Tis constant learning process aids the
model’s adaptation to shifting attack patterns as well
as changing system behaviour.

4.2. RPME. A recursive estimator used to estimate the
coefcients of a polynomial model that describes a system
is known as a recursive polynomial model estimator. Te
estimator can modify the polynomial model to better
match the current system behaviour when new data are
gathered. Tis is very useful when working with dynamic
systems or nonstationary data. When compared to

completely reestimating the model whenever new data
are received, recursive polynomial model estimators
update parameters incrementally, which can be less
computationally challenging. Dealing with enormous
datasets or having few computational resources makes
this extremely helpful. An attack or a shift in the be-
haviour of the system could be indicated by a large de-
parture in the calculated coefcients from the predicted
polynomial behaviour.

Steps involved in RPME for attack detection:

(1) Set up the settings for a polynomial model with
forgetting factor λ� 0.01, h, W(0), p0(0), and poly-
nomial coefcients.

(2) For the polynomial model y � a0 + a1x + a2x
2 . . .

anxn + ε use a recursive technique to calculate the
parameters of polynomial coefcients as follows:

Figure 5: Simulink model of DIA detection using RPME and RLSE in the WSCC system.

Data integrity attack

Wide area signal error

(Rotor speed deviation)

STATCOM based
damping
controller

Recursive estimators
(RPME and RLSE)

Attack detection

+-

Prediction error

plant outputCPPS (WSCC system)

Figure 6: Block diagram of DIA detection using recursive estimators in CPPS.
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a(t) � a(t − 1) + K(t)e(t),

K �
p(t − 1)W(t)

λ + W(t)
T
p(t − 1)W(t)

.
(23)

(3) Update the model parameters to take the most recent
observations into account for each new data point.
Recursive updating aids in adjusting to evolving
behaviour over time.

(4) Determine the diferences between the calculated
polynomial model predictions and the observed data
and update the covariance matrix as follows. As it
shows a signifcant departure from the usual be-
haviour, a higher divergence could be an anomaly.

e(t) � y(t) − 􏽢y(t),

p(t) �
1
λ

p(t − 1) − K(t)W
T
(t)p(t − 1)􏽨 􏽩.

(24)

(5) Using past data, periodically update the model’s
inputs. Tis ongoing learning process guarantees
that the model will stay fexible to adapt to shifting
system behaviour.

5. Data-Driven-Based Anomaly Detection

All methods and algorithms that enable computers to au-
tomatically learn from massive datasets by using mathe-
matical models are collectively referred to as machine
learning (ML), a subset of artifcial intelligence. In recent
years, there has been a rise in trends and interest in using
machine learning and deep learning-based anomaly de-
tection to address cyber-attack issues. In order to increase
the capability of intrusion detection systems to identify
malicious attacks, numerous ML- and DL-based algorithms
have been published by researchers. For predicting and
controlling, AI approaches can provide swift and accurate

Start

Initialize forgetting factor λ=0.01, h, θ (0), p0 (0) and
polynomial coefficients

For polynomial model y = a0 + a1x + a2x2 …anxn + ε

Estimate the polynomial coefficients a (t) = a (t – 1) +
K (t) e (t)

Calculate predicted output using current polynomial
model

y (t) = a0 (t) + a1 (t) x + a2 (t) x2 …an (t) xn
̂

Calculate prediction error e (t) = y (t) – y (t) and̂

gain K =
λ+θ (t)T p (t–1) θ (t)

p (t–1) θ (t)

Update covariance matrix

p (t) = [p (t – 1)-K (t) θT (t) p (t – 1)]1
λ

YesNo

Estimation
over?

Estimated
parameter

-

End

epoch
t = t + 1

Figure 7: Flowchart for RPME.
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information-driven answers [19, 31–33]. Machine learning is
an information analysis technique that leverages learner
interaction to direct a computer to carry out certain tasks.
Let us discuss some of the ML- and DL-based methods.
Figure 9 represents detection of DIA using the data-driven
method.

5.1. SVM. In a S-dimensional subspace, SVM attempts to
defne a hyperplane that divides data points. A low-
dimensional input vector is frst mapped using the kernel
function into a high-dimensional feature space. Using the
support vectors, an ideal maximum marginal hyperplane is
produced that serves as a decision boundary [34]. Support

Start

Initialize forgetting factor λ=0.001, h, θ (0), p0 (0)

Data input matrix ϕ (t) = [E (t – 1) E (t – 2)I (t) I (t – 1)I (t – 2)]T

Calculate predicted output and error

E (t) = θ (t – 1)T ϕ (t), ε (t) = u (t) – θ (t – 1)T ϕ (t)

Calculate gain K =
λ+ϕ (t)Tp0 (t) ϕ (t)

p0 (t)ϕ (t)

Update forgetting factor λ (t) = λmin + (1 – λmin) λe(t)

Update estimation parameter θ (t) = θ (t – 1) + K (t)ε (t)

Calculate model parameters and update covariance matrix

p0 (t + 1) = [1-K (t)ϕ (t)T] p (t)1
λ

YesNo

Estimation
over?

Estimated
parameter

-

End

epoch
t = t + 1

Figure 8: Flowchart for RLSE.

Table 1: Parameters used in recursive estimators.

Parameters of RPME Parameters of RLSE
(i) Model structure: ARX (i) No of parameters� 2
(ii) No of parameters in A(q)� 3 (ii) Parameter covariance matrix� 1
(iii) No of parameters in B(q)� 3 (iii) Sample time� 0.5
(iv) Parameter covariance matrix� 1 (iv) Estimation method: forgetting factor
(v) Sample time� 0.5 (v) Forgetting factor: 0.001
(vi) Estimation method: forgetting factor
(vii) Forgetting factor: 0.01
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vector machines (SVMs) can improve anomaly detection
accuracy by efectively separating between normal and
anomalous cases using an optimal decision boundary. It is
crucial to choose the correct kernel function and hyper-
parameters in order to achieve the best performance. SVMs
seek to locate a hyperplane that maximises the margin
between various classes. Tere may be a larger diference
between average occurrences and anomalies because
anomalies are frequently observed in less populated areas.
Te kernel function and hyperparameters (such as the

regularisation parameter “C”) that are chosen with attention
can have a signifcant impact on SVM’s performance. By
adjusting these hyperparameters, the model’s ability to ac-
curately detect anomalies can be improved. Te SVM is
hence better equipped to distinguish between normal and
anomalous samples.

In this classifer the regularisation parameter is 1 with
degree of 2 is used.

Te mathematical formulation of the classifcation ap-
proach is

f(u, v) � 􏽘
S

i�1
vixi(u) + Ҝ, (25)

vi defnes the prediction parameters in S dimension space.
Te data distribution and classifcation variables together
determine Ҝ.

k(r, z) � exp −W||r − z||
2

􏼐 􏼑. (26)

In order to give identical data points in a dataset, this
function is used in conjunction with SVM.Te fowchart for
SVM is shown in Figure 10.

5.2. KNN. KNN, one of the most straightforward supervised
machine learning algorithms, uses the idea of “feature sim-
ilarity” to ascertain the class of a specifc data sample [35]. A
quick method of classifying new points is to categorise query
points according to how close they are to points in a training
dataset. By calculating how far away a sample is from its
neighbours, it can identify that sample’s identity. Te
sample case might not be correctly classifed if the k value is
chosen with a very wide range. Terefore, k value should be
chosen appropriately. Te selection of the “k” parameter
can have a signifcant impact on the accuracy of the KNN
method. Te best “k” parameter depends on the type of
dataset and the distribution of classes. When “k” is low (for
instance, 1 or 3), the prediction is impacted by the prox-
imate characteristics of the nearest neighbours. Because of
this, the decision boundary could become less steady and
more “jumpy,” making it more susceptible to noise or
outliers. Larger “k” values typically reduce the risk of
overftting but may result in poorer accuracy. Finding the

Data: A, B, C, D, are known
Begin: Initialize parameters 􏽢x(0), ε(0), A(q), B(q)

for t do
Calculate 􏽢x(t) using (6) and (7);
Compute M using (8);
Update 􏽢x(t) using (9);
Compute 􏽢M(t) using (12);
Compute A(q− 1), B(q− 1) using (15), (16);
Update y(t) using (14);
compute 􏽢θ(t),ψ(t) using (17) and (19);
Estimate the DIA attack using (18);
end;

ALGORITHM 1: For detection of DIA.

Wide area
communication network

Network interface module

Data storage
and statistical information

Data analysis using

detection parameters (V, I, P, Q)

attack normal

yes no

Terminateattack response
module

Figure 9: Illustration of DIA detection using learning-based
method.
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best “k” value that balances precision and generalisation for
particular problem frequently needs testing and validation.
Terefore, the diferent values for “k” are implemented to
fnd the optimal value. Ten, the KNN model is trained
using the optimal “k” value on the full training dataset once
it has been determined through analysis. Te fowchart for
KNN is shown in Figure 11.

An attack’s membership in the class with the most
members among its k nearest neighbours is determined by
the majority vote of its neighbours. In this classifer, a 5
number of neighbours with cosine metric are used. Te
classifcation technique calculates the distance between each
sample in a dataset and updates the data using Euclidean
distance. For n number of training dataset with m attributes
xi1, xi2, . . . xim􏼈 􏼉 and testing dataset y1, y2, . . . ym􏼈 􏼉 with
label li, where i ϵ [1, n]. Te Euclidean distance between the
training and testing dataset is computed as

d(x, y) �

�����������

􏽘

n

j�1
xj − yj􏼐 􏼑

2

􏽶
􏽴

. (27)

5.3. RF. In an efort to rectify the overftting of a single
decision tree, the random forests technique combines
several decision tree classifer models. Te random forest
method constructs a decision tree from a sample of data,
forecasts each one, and then votes on the best outcome. A
random forest R is composed of the k decision tree model.
Each decision tree makes a diferent prediction for the
input testing data before a simple majority vote is utilised
to determine the outcome. In order to categorise a new
object x, RF aggregates the votes from all of the decision
trees (k) in the forest (R). Te class that frequently ap-
pears in the random forest and receives the majority of
votes is the projected class of x determined by the tree.
According to the defnition of the simple majority voting
formula

R(X) � argmax􏽘
k

i�1
I ri(X) � Y( 􏼁, (28)

where X � (x1, x2, . . . xm)T, X is the dataset withm number
of samples. It is based on the idea of ensemble learning,
which is the act of integrating various classifers to solve

Start

Import PMU data set

Initialize regularization parameter and
choose kernal function

Feed training data to SVM algorithm

Train SVM model

Assess the performance

No Yes

Achieved
desired

accuracy?

Deploy Trained
SVM model

End

Hyper
parameter

tuning

Figure 10: Flowchart for SVM.
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a complex problem and enhance the performance of the
model [36, 37]. In contrast to individual tree predictions, the
prediction of RF is obtained by majority vote. By averaging
the results from numerous DT classifer fts on diferent
subsamples of the dataset, the prediction accuracy is in-
creased. When splitting a node, it looks for the best feature
from a random subset of features rather than the most
essential feature. In this classifer, a 20 number of trees with
maximum depth of 15 are considered. Te fowchart for RF
is shown in Figure 12.

5.4. CNN. CNN structure composed of input layer, a stack
of convolutional and pooling layers, and then a fully
connected layer and a SoftMax classifer in the classifcation
layer [38–40]. Time series have a strong 1-D locality that
can be retrieved by convolutions, making CNN an efective
tool for processing time series data. Depending on the
data’s input dimension and processing power, diferent
numbers of flters and convolution layers can be used. Te
1-D data are used by each neuron in the fully connected
layer to generate its own score as determined by the
subsequent equation:

yi � 􏽘
m

j�1
wi,jxj + bs, (29)

where yi is the fully-connected layer output in the i
th neuron,

m is the 1-D input data length (x), wi,j is the weight of
neuron between jth input value ith neuron, and bs is the
bias.After the computing the above value of yi, it will use an
activation function to send the value to the associated units
in the higher layer to see how much it afects the prediction
of the following step. Te activation function is provided as
follows:

oi � f yi( 􏼁

� max 0, yi( 􏼁.
(30)

Te output of activation function f(yi) is oi.Rectifed
Linear Unit (ReLU), which only activates positive values, is
used as the activation function which prevents overftting
problem. By linking each neuron to its neighbour neurons,
CNN overcomes the drawbacks of conventional neural
networks. After conversion of one-dimensional time series
data to two-dimensional data, the convolution process will
then be performed with the input 2-D data using a flter with
the same size receptive feld. Features are extracted from the
input by a 2-D convolution layer. Te greatest value of the
feld covered by the pooling flter will be selected by the
pooling layer.

End

Repeat the process for new data set

set the label class li to
the test data

Find k nearest neighbours to the
test data

Start

Read k value, Euclidean distance
d (x, y) and test data (y1. . ym)

Figure 11: Flowchart for KNN.

Start

Load data set X with m
number of samples

Random forest R on x with
feature set Si–1

Map x to X from R

Si=all features used in Ri

Si = Si–1

Si* , Ri*

i* = argmin ri

Yes

No

End

i = i +1

Figure 12: Flowchart for RF.
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b �

b1,1 · · · b1,n

⋮ ⋱ ⋮

bm,1 · · · bm,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (31)

After max pooling process, the feature map b becomes

􏽢b � max(b). (32)

Te choice of flter size depends on the dataset’s features
and the problem to be solved. Lower-level features can only
be captured by smaller flters, but larger flters can capture
higher-level temporal structures. Larger flter sizes are
preferred in deeper layers to capture longer-term de-
pendencies. Filter size is one aspect of the architecture that
afects how well the model performs. Additional factors like
network depth, pooling methods, and activation functions
have impact on how well CNN performs in terms of ac-
curacy. Tis combination of factors typically results in
a CNN design that is efective at handling high-dimensional
data. Terefore, experimenting with various flter sizes to
fnd which choice is appropriate for a specifc dataset is
important in a CNN classifer. In this classifer, a 10 number
of flters with kernel size of 2 are considered. Te ReLU
activation function is used and the learning rate is 0.0100.
Te fowchart for CNN is shown in Figure 13.

5.4.1. Evaluation Metrics. Te following metrics used to
assess the performance of classifer [31].

5.4.2. Precision. It measures the proportion of attacks that
were accurately predicted to all the samples that were
attacked.

Precision, P �
True positive(TP)

True positive(TP) + False positive(FP)
.

(33)

5.4.3. Accuracy. It is the proportion of occurrences that were
correctly categorised to all of the instances.

Accuracy �
number of correct predicted data

number of testing data
. (34)

5.4.4. Recall. In a dataset, recall quantifes the model’s ca-
pacity to accurately identify every pertinent event or true
positive. It measures how well the model is able to identify
and accurately collect positive cases.

R can be calculated as

R �
True positive(TP)

True positive(TP) + FalseNegative(FN)
. (35)

5.4.5. F1 Score. A statistic used to assess a binary classi-
fcation model’s accuracy is the F-score, sometimes re-
ferred to as the F1 score. To get a single score that strikes

a balance between recall and precision, it considers both.
Preciseness and recall are balanced by a single number
called the F1 score. Algorithm 2 describes the selection of
best detection strategy from various classifers based on F1
score.

Te following formula determines the F1 score:

F1 �
2PR

P + R
, (36)

where R represents recall and P represents precision

5.4.6. F0.5 Score. Another version of the F1 score that pri-
oritises precision over recall is the F0.5 score. It works best for
tasks when we wish to minimise false positives at the expense
of some false negatives, since it is especially helpful when we
want to place a higher value on precision. Te following
formula determines the F0.5 score:

F0.5 �
1.25PR

0.25P + R
. (37)

5.4.7. F2 Score. Recall is given more weight than precision in
the F2 score, which is an additional variation of F1. Tis
makes it more appropriate for situations where we wish to
minimise false negatives at the expense of some false pos-
itives. It is especially helpful when we want to assign more
weight to recall (Algorithm 2). Te following formula de-
termines the F2 score:

F2 �
5PR

4P + R
. (38)

6. Results and Discussion

Consider the system with a STATCOM-based damping
controller connected at midpoint of transmission line
near bus 5 to achieve equal compensation on both sides of
system. Diferent attack templates are considered, where
the attackers target the measurement signal of
STATCOM-based supplementary damping controller.
Figure 14 represents diferent DIA magnitude applied to
time domain simulation.

6.1. Ramp Attack. Attack signal is increased or decreased in
order to modify true signal. Slope of 0.05 is applied at
t� 25 sec for manipulation of signal. Te ramp attack vector
aramp is given by

aramp �
0, 0≥△t ≤ 24,

0.05, 25≥△t.
􏼨 (39)

6.2. Step Attack. Attack signal is given by adding positive or
negative value to the true signal. Terefore, ±0.5 step
magnitude is applied at t� 6 sec to t� 7 sec for manipulation
of signal. Te step attack vector astep is given by
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Figure 13: Flowchart for CNN.

Input: Te trained dataset (D1) and tested dataset (D2) with label yj ∈ ψ � 0, 1{ }

Output: For attack detection, the best classifer l∗ ∈ L

Initialize F1 � 0;
for i ∈ L do
train the classifer j with trained dataset D1;
test the classifer with tested dataset D2;
calculate F1 score F1j;
if F1j> F1 then
F1� F1j;
l∗ � j;

end if
end for

return l∗;

ALGORITHM 2: For choosing the best attack detection strategy from various classifers.
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astep �

0, 0≥△t ≤ 5,

±0.5 6≥△t ≤ 7,

0 8≥△t.

⎧⎪⎪⎨

⎪⎪⎩
(40)

6.3. Random Attack. Attack signal is injected by adding
a random value to true signal. A constant value of 2 is added
for manipulation of signal. Te random attack vector arandom
is given by

arandom � 2 for 0≥△t. (41)

6.4. Impulse Attack. Attack signal is injected by sudden
increase of signal at t� 10 sec for signal manipulation. Te
impulse attack vector aimpulse is given by

aimpulse �
0, 0≥△t ≤ 9,

1, 10≥△t.
􏼨 (42)

6.5. Model-Based Method. From Figure 15, all the 9 buses
of the WSCC system, ramp attack causes increase of
voltage magnitude whereas for random attack there is
a decrease of voltage magnitude from normal value
compare to step and impulse attack. Impulse attack has
very low impact on afecting bus voltage. In step attack bus
2, 3, 7, 8, and 9 have decreased voltage magnitude, and the
remaining bus voltage measurements have slight de-
viation from nominal value.

Due to limitation of space, simulation result of all the
generators and transmission line parameters are not shown.
Terefore, some important power system parameters like
tie-line power fow, voltage magnitude, speed deviation of
generator, and active power fow are analysed for attack
impact. In Figure 16, the active power fow of G2 is 0.93 pu
under normal condition, but for random attack, it is raised to
0.99 pu. Te attacked response for other DIA are within
0.94 pu which shows that the attack impact has very small
variation from nominal value and less distortion than
random attack.

In the above Figure 17, for all type of attack there is an
increase of overshoot of oscillation for rotor speed deviation
of generator 1. Te random attack has highest overshoot
than other attack types.

In Figure 18, it is shown that all attack types have impact
the system with varying magnitude of tie-line power fow.
Te random and ramp attack shows decreased magnitude of
tie-line power fow from nominal value.

In Figure 19, after the onset of ramp attack takes place at
25th second the voltage magnitude deviated from nominal
value of 1.03 pu to 1.08 pu. Whereas for random attack the
measured voltage magnitude of STATCOM is 1.09 pu
starting from initial condition.

If the integrity attack occurs on the wide-area com-
munication network of STATCOM-based damping con-
troller, the control signal of damping controller will be
varied, followed by change in voltage magnitude of trans-
mission line, change in the tie-line power fow, and then
change in rotor speed. Finally, it will afect the active power
output of generator. As time progresses, it eventually causes
grid collapse. From the above analysis of attack impact, it is
inferred that step and impulse attack has very little impact to
system. Ramp attack and random attacks have highest
impact on system because all the parameters are drastically
changed from nominal value. Tus, the random and ramp
attack have more chances to disrupt the grid than other
attack does.

From Figures 20(a), when the random attack occurs
there is distorted waveform from the initial condition,
where RPME slowly reaches the nominal value after
10 seconds. In Figure 20(b), the impulse attack causes the
amplitude of signal raises to value of 6 and reaches the
nominal point at t = 18th second in RPME. But the RLSE
shows less deviation response to impulse attack. In
Figure 21(a), for the 0.05 slope of ramp attack signal in
RPME, the amplitude varies between 1.9 and 0.4 and
settles at 30th second. Whereas in RLSE it takes long time
to settle to nominal point when it encounters ramp at-
tack. In Figure 21(b), for step attack, RPME and RLSE are
used to estimate the system parameters in online in order
to detect the anomaly. By monitoring system parameters
online, it is evident that RPME locates the attack accu-
rately. Te performance of RPME and RLSE are validated
based on estimation error is shown in Figure 22. RPME
has least estimation error than RLSE.

Te distribution of power into the various frequency
components that make up a signal is described by the time
series’ power spectrum. In order to estimate the spectral
density of a random signal from a series of time samples,
spectral density estimation is used.

Te average power (P) of N periodic signal is given by

P �
1
N

􏽘

N−1

n�0
|x(n)|

2
,

P �
1
ω

􏽚
ω/2

−ω/2
I(ω)dω,

(43)

where I(ω) � (1/N)|􏽐
N−1
n�0 x(n)e− jωnt|2

random attack (2) step attack (0.5) impulse attack (1) ramp attack (0.05)

t=25t=10t=6t=0 t=30

Figure 14: Diferent DIA applied to time domain simulation of the WSCC system.
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Sum of powers in various frequency components is
represented by above equation.

In Welch’s method, the data is divided into over-
lapping segments, a modifed periodogram is calculated
for each segment, and the periodograms are then averaged
in order to measure the power spectral density. Te
methodology is based on the notion of utilising

periodogram spectrum estimates, which are the outcome
of converting time domain signals to frequency domain
signals. Te frequency domain response for diferent data
integrity attack is shown in Figure 23. During normal
system operation the power per frequency is above -50 dB/
radians per sample, whereas in DIA scenario it is noted
that the power per frequency decreases for all types of
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Figure 15: Voltage magnitude (per unit) at all the buses.
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attack. It is clearly shown that analysing the signal in
frequency domain will efciently detect the change in
system operation during cyber-attack.

6.6. Data-Driven Method. Among 25000 of PMU mea-
surement data, 20000 data are used to train and 5000 data are
used for testing the classifer. Data samples collected during
each attack response are less compare to normal response.
Tis causes imbalanced dataset; therefore, by changing the
decimation in “To workspace” block of the Simulink model
the balanced dataset can be obtained. For data pre-
processing, normalisation and standardisation are not
needed because the trained data samples are in per unit
values which lies between 0 and 1. Consider the dataset D,
where it each data consist of PMU measurement
represented as di

j for m number of instances, i �

1, 2, 3. . . m{ }. Depending on bufer length and sampling rate
of PMU, each time series length di

j, j � 1, 2, 3. . . n{ } that
corresponds to time stamps 1, 2, 3. . . t{ }.

For a set of PMUmeasurementsD, datasets are classifed
into p diferent classes, namely,

C1 � D
1
C1

, D
2
C1

, D
3
C1

. . . .D
p1
C1

􏽮 􏽯,
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1
C2

, D
2
C2

, D
3
C2

. . . .D
p2
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􏽮 􏽯,
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1
C3

, D
2
C3

, D
3
C3

. . . .D
p3
C3

􏽮 􏽯,

C4 � D
1
C4

, D
2
C4

, D
3
4 . . . .D

p4
C4

􏽮 􏽯,

C5 � D
1
C5

, D
2
C5

, D
3
C5

. . . .D
p5
C5

􏽮 􏽯.

(44)

Te fve classes, namely, normal, step attack, random
attack, ramp attack, and impulse attack, respectively, cor-
relate to various events. Precision, accuracy, and recall of
diferent classifers are shown in Figures 24–26, respectively.
F1 score, F0.5 score, and F2 score are shown in Figures 27–29,
respectively.

From Table 2, high F1-score shows that the CNN model
is minimising false positives and false negatives while ef-
ciently recognising positive samples for all attack cases.
From Table 3, the results obtained indicate that the afore-
mentioned strategies appear promising for detecting in-
jection attacks.Te detection accuracy is based on the type of
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dataset, extracted features, and network design, and varies
amongst algorithms depending on these factors. Simulations
are done on MATLAB 2021 in Intel Core i5-1135G7 CPU
with 16GB of RAM DELL laptop. Te analysis shown above
demonstrates that CNN accurately studies PMU data to fnd
instances of DIA resulting from malicious measurements. It
is concluded that DL performs better than the ML technique
based on the examined performance metrics. Due to the fact
that the ML-based strategy mostly depends on feature en-
gineering to extract pertinent information. Without the

requirement for feature engineering, the deep structure of
the DL-based method enables them to automatically learn
complex features from the raw data. Moreover, the raw
datasets will be processed using DL methods to identify and
extract relevant patterns.Terefore, it is efcient in detecting
the attack due to its deep structure and handling of large
dataset.

When a random attack occurs, there is a decrease in
voltage magnitude at all the buses, a decrease in tie-line
power between G1 and G2, followed by an increase of
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Figure 23: Normal and attacked response in frequency domain.
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oscillation in generator speed response. Moreover, the
active power generation increases due to the above im-
pact as shown in Figure 16. Tis can mislead the entire
power system operation and lead to system collapse.
Ramp attacks also afect the system by increasing
the voltage magnitude followed by a change in tie-line
power too. But the impact of step attack and impulse
attack lasts for a few seconds and the system response
regains to nominal value. From the simulation results of
all power system parameters, it is inferred that the
random attack and ramp attack have most impacted the
system. Terefore, considering the random and ramp
attack severity the operator can give priority to mitigate
these two attacks before it leads to system instability or
collapse. Some of the mitigation steps for DIA are
discussed below.

7. Mitigation

Some of the mitigation methods for data integrity attack are
as follows:

(i) Network mapper is an open-source Linux
command utility that scans IP addresses in
networks and enables administrators to identify
network problems. Alerts can be delivered to the
control system operator to make situational
awareness.

(ii) Controlled islanding can be implemented to isolate
the attacked region.

(iii) System reconfgurations such as system restoration
may be made during a DOS and data integrity
attack.

(iv) Smart grid privacy can be preserved by imple-
menting secure communication with encryption in
vulnerable areas.

(v) To prevent the grid against cyber threats, encryp-
tion algorithms such as 3DES, DES, AES, sym-
metric cyphers, or cryptography are utilised.

(vi) IP fast hopping can be utilised to conceal user
communication times and important data to thwart
malware. It restricts access for online attackers,
allowing only authorised users to access
information.

(vii) Isolating the vulnerable PMU and increase the
observability of islands.

8. Conclusion

Using model- and data-driven-based methods in the
MATLAB/Simulink environment, various types of data
integrity attacks are addressed, and their impact and
detection are evaluated. Te impact analysis led to the
conclusion that random and ramp attacks had a greater
efect on the system than step and impulse attacks.
Simulation results demonstrated that RPME-based de-
tection methods had higher detection accuracy and re-
duced estimation error when compared to RLSE-based
detection methods. Due to impressive characterization
accuracy in detecting the attack, CNN-based anomaly
detection has a more promising performance in data-
driven methods than ML-based methods. In addition,
the DL method outperforms other ML-based methods in
terms of detection performance because to its automatic
understanding of inherent variance in data and automated
feature selection. Te physical principles of the grid are
best understood using model-based approaches, whereas
subtle, data-driven anomalies are best detected using
learning-based techniques.Tus, the hybrid technique can
improve the accuracy and reliability of anomaly detection
in CPPS while also giving it the fexibility to adapt to
changing circumstances by combining the capabilities of
model-based approach and learning-based methods,
which can capture complex and dynamic patterns. Tis
work can be utilised for other bus systems. Te identif-
cation and mitigation of data integrity attacks in large-
scale systems will be the focus of our upcoming study
in CPPS.

Table 2: F0.5 score, F1 score, and F2 score of diferent classifers.

Response
F0.5 score F1 score F2 score

KNN RF SVM CNN KNN RF SVM CNN KNN RF SVM CNN
Normal 81.75 85.33 88.98 95.7 70.36 89.72 82.46 96.41 61.75 94.5 76.82 97.12
Step attack 83.37 84.77 86.7 94.98 71.98 89.42 81.63 95.12 63.31 94.6 77.02 95.25
Random attack 83.83 97.07 96.99 95.74 73.24 97.30 95.62 95.95 65.01 97.5 94.28 96.15
Ramp attack 86.55 85.5 87.84 96.5 75.63 89.64 84.1 96.89 67.15 94.17 80.66 97.29
Impulse attack 84.75 97.62 86.94 95.55 74.56 98.2 85.2 96.04 66.55 98.5 76.28 96.52

Table 3: Accuracy, precision, and recall of diferent classifers.

Response
Accuracy Precision Recall

KNN RF SVM CNN KNN RF SVM CNN KNN RF SVM CNN
Normal 58.12 93.25 87.16 98.32 91.63 82.63 93.94 95.23 57.10 98.14 73.48 97.61
Step attack 59.36 95.63 88.01 97.96 93.21 81.93 90.65 94.89 58.62 98.41 74.24 95.35
Random attack 59.45 94.46 97.68 98.63 92.78 96.92 97.93 95.61 60.49 97.68 93.41 96.29
Ramp attack 61.23 96.96 89.66 98.21 95.78 82.97 90.53 96.21 62.48 97.47 78.52 97.57
Impulse attack 62.66 95.2 90.25 97.43 93.23 97.33 91.2 95.24 62.11 98.8 73.28 96.85
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