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The problem of potential flow of a second-order fluid around an ellipsoid is solved, and
the flow and stress fields are computed. The flow fields are determined by the harmonic
potential but the stress fields depend on viscosity and the parameters of the second-order
fluid. The stress fields on the surface of a tri-axial ellipsoid depend strongly on the ratios
of principal axes and are such as to suggest the formation of gas bubble with a round flat
nose and two-dimensional cusped trailing edge. A thin flat trailing edge gives rise to a
large stress which makes the thin trailing edge thinner.

1. Introduction

Wang and Joseph [15] studied the potential flow of a second-order fluid over a sphere or
an ellipse. The potential for the ellipse is a classical solution given as a complex function of
a complex variable. The stress for a second-order fluid was evaluated on this irrotational
flow. An important result of this study is that the normal stress at a point of stagnation
changes from compression to tension strongly under even mild conditions on the vis-
coelastic parameters.

Here, we extend the three dimensional study of Wang and Joseph [15] to the case
of flow over an ellipsoid whose three principal axes may be unequal. The solution of
Laplace’s equation (∇2φ= 0) bounded internally by an ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1, (1.1)

moving with constant velocity U in the direction x is given by Lamb [10, page 152] and
Milne-Thomson [12, pages 510–512]. Since a is arbitrary their solution is readily adapted
to the case of a translating ellipsoid in any of the three principal directions. To be definite
we adopt the convention that

a > b > c. (1.2)
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The motion of an ellipsoid in an arbitrary direction may be formed from superposing of
motions in three principal directions.

Here we compute solutions relative to a stationary ellipsoid in a uniform stream. Since
our goal is the calculation of irrotational viscous and non-Newtonian (second-order)
stresses we must compute working formulas, not in the literature, for velocities, pressure
and the derivatives of velocity required to calculate stresses. We first use these formulas to
compute the velocity field and pressure for the classical problem of irrotational flow of an
inviscid fluid. Then we apply these same formulas to the case of a viscous, second-order,
non-Newtonian fluid.

The main goal of our calculations for the second-order fluid model is to identify mech-
anisms which lead to “two-dimensional cusps” at the trailing edge of a gas bubble rising in
an unbounded liquid where axisymmetric solutions might be expected. We calculate the
effects of viscosity, second-order viscoelasticity and inertia. The effects of viscoelasticity
are opposite to the effects of inertia; under modest and realizable assumptions about the
values of the second-order fluid parameters, the normal stresses at points of stagnation
change from compression to tension. The effect of inertia and elasticity are essentially
symmetric in that they depend on squares of velocity and velocity gradients but the ef-
fects of viscosity are asymmetric.

For the rising gas bubbles, the effects of the second-order and viscous terms on the
normal stress are such as to extend and flatten the trailing edge. These calculations suggest
that “two-dimensional cusping” can be viewed as an instability in which a thin flat trailing
edge gives rise to a large stress which makes the thin trailing edge even thinner.

This paper is organized as follows: in Section 2, we review the physics at the trailing
edge of a rising gas bubble. In Section 3, we transform general expressions in the litera-
ture for flow around a triaxial ellipsoid into a form suitable for calculation. In Section 4,
we give expressions for the stresses in a second order fluid model evaluated on the ir-
rotational flow; the formulas for the flow field are given in Section 5. The normal stress
distribution on the ellipsoid is computed in Section 6.

2. Fluid mechanics of two-dimensional cusping at the trailing edge of
gas bubbles rising in viscoelastic liquids

An air bubble rising freely in a non-Newtonian liquid tends to be prolate and can develop
a cusp at the trailing edge as shown in Figure 2.1a. This cuspidal tale occurs only in gas
bubbles rising freely in non-Newtonian liquids. Joseph et al. [8] defined the cuspidal
tails as point singularities of curvature. They also stated that the build-up of extensional
stresses near stagnation points may favor the formation of cusps.

In its analysis of cusped interfaces, Joseph [5] suggests that the strong tendency for
cusping in non-Newtonian fluids is a mechanism for eliminating stagnation points for
the relaxation of elongational stresses.

Hassager [2] was the first to show that the cusp was not rotationally symmetric but
two-dimensional, with a broad shape in one view and so flat that exhibits a point cusp
when observed orthogonally. Liu et al. [11] presented new experimental evidence of the
two-dimensional characteristic of cusped bubbles (see Figure 2.1). They also reported the
different shapes of the broad edge observed in experiments.
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(a) (b)

Figure 2.1. Two orthogonal views showing the (a) cusped and (b) broad shape of the trailing edge
of an air bubble (2 cm3), rising in a viscoelastic liquid (S1). The two photographs are from Liu et al.
[11].

A comprehensive review of the literature concerning bubbles rising in non-Newtonian
fluids and the analysis of two-dimensional cusps at the trailing edge of the bubbles can
be found in Liu et al. [11]. From their experimental results for air bubbles of different
sizes rising in various viscoelastic liquids and in columns of different configurations, they
concluded that the formation of cusps is independent of the size and shape of the column.

Liu et al. [11] reported that the cusping tails occur at the trailing edge of a bubble
rising in a non-Newtonian liquid for capillary numbers (Ca) of 1 or higher.

Pillapakkam and Singh [13] developed a code to simulate the deformation of a gas
bubble rising in an Oldroyd-B liquid. They found that the shape of the bubble depends
on both the Capillary (Ca) and Deborah (De) numbers. They observed that in general,
the gas bubble assumes an elongated shape with the frontal part round and when both Ca
and De numbers are of the order of 1 a two-dimensional cusp is developed at the trailing
edge. They claim to show that the pull out effects of sufficiently large viscoelastic stresses
near the trailing edge of the bubble cause the formation of a cuspidal tail.

An interesting aspect of the rise of gas bubbles in a viscoelastic liquid is that the fluid
in the region behind the bubble moves in the opposite direction of the bubble. This phe-
nomenon was reported for the first time by Hassager [2] and was termed “negative wake.”

Pillapakkam and Singh [14] presented some numerical results that indicate a nega-
tive wake in the region behind gas bubbles rising in viscoelastic liquids. They associated
the presence of a negative wake with a certain range of two viscoelastic parameters, the
Deborah number and the polymer concentration. They found that for a polymer con-
centration of 2, the shape of the fore part of the bubble is round and no negative wake
is observed. For polymer concentrations higher than 2, they reported the existence of a
negative wake in the region behind the bubble.

Here we show that the normal stress distribution at the surface of the bubble may
cause the formation of a cusp at the trailing edge. We analyze the effect of the normal
stress on the shape of a gas bubble by computing the normal stress at the surface of a
tri-axial ellipsoid immersed in a uniform irrotational flow of a second-order fluid.
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3. Irrotational flow of an incompressible and inviscid fluid over a stationary ellipsoid

The flows for which the vorticity vector vanishes (ω = ∇× u) everywhere in the flow
field are said to be irrotational. Since for any scalar function φ it is satisfied that ∇×
∇φ = 0, the condition of irrotationality is redefined by choosing u =∇φ. In which case
the function φ is called the velocity potential. By using the continuity equation of an
incompressible fluid (∇·u= 0) gives the Laplace’s equation (∇2φ= 0).

In this section, we present the velocity potential for the flow induced by an ellipsoid
that translates along the x-axis given by Lamb [10] and Milne-Thomson [12]. In addition,
we compute the velocity components and the inviscid pressure for the irrotational flow
around a stationary ellipsoid.

The harmonic function presented by Lamb [10] represents the solution to the Laplace’s
equation expressed in terms of a special system of orthogonal curvilinear coordinates
known as ellipsoidal coordinates.

The equation

x2

a2 + θ
+

y2

b2 + θ
+

z2

c2 + θ
= 1 a > b > c, (3.1)

where a, b, c are fixed and θ is a parameter, represents for any constant value of θ a central
quadric of a confocal system. In particular, when θ = 0, we have the ellipsoid given by
(1.1).

Equation (3.1) leads to the expression

f (θ)= x2(b2 + θ
)(
c2 + θ

)
+ y2(c2 + θ

)(
a2 + θ

)
+ z2(a2 + θ

)(
b2 + θ

)− (a2 + θ
)(
b2 + θ

)(
c2 + θ

)= 0
(3.2)

which is a cubic equation in θ and has three roots, say λ, µ, and ν, that are distributed as
follows (see Kellogg [9]):

−a2 ≤ ν≤−b2 ≤ µ≤−c2 ≤ λ. (3.3)

The values of x, y, z can be expressed as functions of λ, µ, and ν by the following equa-
tions,

x2 =
(
a2 + λ

)(
a2 +µ

)(
a2 + ν

)
(
a2− b2

)(
a2− c2

) ,

y2 =
(
b2 + λ

)(
b2 +µ

)(
b2 + ν

)
(
b2− c2

)(
b2− a2

) ,

z2 =
(
c2 + λ

)(
c2 +µ

)(
c2 + ν

)
(
c2− a2

)(
c2− b2

) .

(3.4)
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It follows that

∂x

∂λ
= 1

2
x

a2 + λ
,

∂y

∂λ
= 1

2
y

b2 + λ
,

∂z

∂λ
= 1

2
z

c2 + λ
, (3.5)

and hence

h2
1 =

1
4

(
x2(

a2 + λ
)2 +

y2(
b2 + λ

)2 +
z2(

c2 + λ
)2

)
. (3.6)

The square of the scale factors h1, h2, h3 in ellipsoidal coordinates are given by

h2
1 =

1
4

(λ−µ)(λ− ν)(
a2 + λ

)(
b2 + λ

)(
c2 + λ

) ,

h2
2 =

1
4

(µ− ν)(µ− λ)(
a2 +µ

)(
b2 +µ

)(
c2 +µ

) ,

h2
3 =

1
4

(ν− λ)(ν−µ)(
a2 + ν

)(
b2 + ν

)(
c2 + ν

) .
(3.7)

The direction-cosines of the outward normal to the three surfaces which pass through
(x, y,z) will be

(
1
h1

∂x

∂λ
,

1
h1

∂y

∂λ
,

1
h1

∂z

∂λ

)
,

(
1
h2

∂x

∂µ
,

1
h2

∂y

∂µ
,

1
h2

∂z

∂µ

)
,

(
1
h3

∂x

∂ν
,

1
h3

∂y

∂ν
,

1
h3

∂z

∂ν

)
.

(3.8)

We may note that if λ, µ, ν be regarded as functions of x, y, z the direction-cosines of the
three line-elements above considered can also be expressed in the forms

(
h1

∂λ

∂x
,h1

∂λ

∂y
,h1

∂λ

∂z

)
,

(
h2

∂µ

∂x
,h2

∂µ

∂y
,h2

∂µ

∂z

)
,

(
h3

∂ν

∂x
,h3

∂ν

∂y
,h3

∂ν

∂z

)
, (3.9)

from which, and from (3.8), various interesting relations can be inferred. For our present
purpose the following relations would be useful,

∂λ

∂x
= 1

h2
1

∂x

∂λ
= x

2h2
1

(
a2 + λ

) ,

∂λ

∂y
= 1

h2
1

∂y

∂λ
= y

2h2
1

(
b2 + λ

) ,

∂λ

∂z
= 1

h2
1

∂z

∂λ
= z

2h2
1

(
c2 + λ

) .
(3.10)
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The Laplacian (∇2) of the scalar function φ in ellipsoidal coordinates can be written in
the form

∇2φ= 1
h1h2h3

{
∂

∂λ

(
h2h3

h1

∂φ

∂λ

)
+

∂

∂µ

(
h3h1

h2

∂φ

∂µ

)
+

∂

∂ν

(
h1h2

h3

∂φ

∂ν

)}
. (3.11)

Equating this to zero, we obtain the Laplace’s equation that is the general expression of
continuity given in ellipsoidal coordinates.

Solutions to this equation are called ellipsoidal harmonics. From Milne-Thomson [12]
and Lamb [10], the corresponding ellipsoidal harmonics are given by

φx = Cx
∫∞
λ

dλ(
a2 + λ

)√(
a2 + λ

)(
b2 + λ

)(
c2 + λ

) , (3.12)

φyz = Cyz
∫∞
λ

dλ(
b2 + λ

)(
c2 + λ

)√(
a2 + λ

)(
b2 + λ

)(
c2 + λ

) , (3.13)

where C is an arbitrary constant, and x, y, z are supposed expressed in terms of λ, µ, ν by
means of (3.4).

For a full account of the solution of Laplace’s equation in ellipsoidal coordinates we
must refer to Lamb [10] and Milne-Thomson [12].

For the ellipsoid given by (1.1), which corresponds to λ = 0, moving in the direction
of the x-axis with velocity U , the boundary condition is

−∂φ

∂n
=U cosθx or

∂φ

∂λ
=−U ∂x

∂λ
, λ= 0. (3.14)

Thus when λ = 0, φ = −Ux, and when λ→∞, φ→ 0. These conditions are satisfied by
the function φx of (3.12).

Applying the boundary conditions to (3.12) gives

C = abcU

2−α0
, (3.15)

where

α0 = abc
∫∞

0

dλ(
a2 + λ

)√(
a2 + λ

)(
b2 + λ

)(
c2 + λ

) . (3.16)
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The constant α0 depends solely on the semiaxes a, b, c of the ellipsoid. Its numerical
evaluation requires the use of elliptic integrals.

Thus, finally,

φ = abcUx

2−α0

∫∞
λ

dλ(
a2 + λ

)3/2(
b2 + λ

)1/2(
c2 + λ

)1/2 , (3.17)

and on the surface of the ellipsoid we have, from (3.12) with λ= 0,

φ = xα0U

2−α0
. (3.18)

Equation (3.17) represents the potential for the space external to the ellipsoid (1.1) that
moves with velocity U in a liquid at rest at infinity. This result corresponds to an origin
moving with the ellipsoid. By superposing a uniform flow with velocity U , in the positive
direction of the x-axis, giving

φ= xU

[
abc

2−α0

∫∞
λ

dλ(
a2 + λ

)√(
a2 + λ

)(
b2 + λ

)(
c2 + λ

) + 1

]
(3.19)

and defining

Γ=U

[
abc

2−α0

∫∞
λ

dλ(
a2 + λ

)√(
a2 + λ

)(
b2 + λ

)(
c2 + λ

) + 1

]
, (3.20)

it follows that

φ= xΓ, (3.21)

where Γ is a function of λ only.
Equation (3.21) represents the velocity potential for the flow around a stationary el-

lipsoid.
The function Γ given by (3.20) involves the elliptic integral,

I =
∫∞
λ

dλ(
a2 + λ

)√(
a2 + λ

)(
b2 + λ

)(
c2 + λ

) . (3.22)
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The solution to this integral, obtained from the handbook of elliptic integrals written by
Byrd and Friedman [1, page 5], is given by

I = 2
[
F(ϕ,k)−E(ϕ,k)

]
k2
(
a2− c2

)√
a2− c2

, (3.23)

where

ϕ= arcsin

√
a2− c2

λ+ a2
,

k =
√

a2− b2

a2− c2

(3.24)

and the functions F(ϕ,k) and E(ϕ,k) represent the incomplete elliptic integral of the first
kind and the Legendre’s incomplete elliptic integral of the second kind, respectively. The
values of the functions F(ϕ,k) and E(ϕ,k) are tabulated in Byrd and Friedman [1] for
given values of ϕ and k.

The differentiation of the elliptic functions F(ϕ,k) and E(ϕ,k) with respect to ϕ yields
(see Byrd and Friedman [1, page 284])

d

dϕ
F(ϕ,k)= 1√

1− k2 sin2ϕ
,

d

dϕ
E(ϕ,k)=

√
1− k2 sin2ϕ.

(3.25)

With the expression for the elliptic integral given by (3.23), (3.20) becomes

Γ=U

[
abc

2−α0

2
[
F(ϕ,k)−E(ϕ,k)

]
(
a2− b2

)√
a2− c2

+ 1

]
. (3.26)

For an irrotational flow the velocity components are given by

u=∇φ = ∂φ

∂xi
. (3.27)

Applying (3.27) to the scalar function given by (3.21) gives

u= ∂(xΓ)
∂x

= Γ+ x
∂Γ

∂λ

∂λ

∂x
= Γ+

x2

2h2
1

(
a2 + λ

) ∂Γ
∂λ

,

v = ∂(xΓ)
∂y

= x
∂Γ

∂λ

∂λ

∂y
= x y

2h2
1

(
b2 + λ

) ∂Γ
∂λ

,

w = ∂(xΓ)
∂z

= x
∂Γ

∂λ

∂λ

∂z
= xz

2h2
1

(
c2 + λ

) ∂Γ
∂λ

,

(3.28)
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Figure 3.1. Velocity field of an irrotational, inviscid flow around an ellipsoid with semiaxes a = 3,
b = 1.5, c = 0.75, and a Reynolds number of 0.05. Two-dimensional representation of the velocity
field at the centerline of the ellipsoid (z = 0).

which represent the velocity components of the irrotational flow of an inviscid fluid
around an ellipsoid.

It is pertinent to introduce at this point, the first, second, and third derivatives of Γ
that would be used in determining the velocity components and their derivatives:

∂Γ

∂λ
=− abcU(

2−α0
)(
a2 + λ

)3/2(
b2 + λ

)1/2(
c2 + λ

)1/2 ,

∂2Γ

∂λ2
=−∂Γ

∂λ

[
3

2
(
a2 + λ

) +
1

2
(
b2 + λ

) +
1

2
(
c2 + λ

)
]

,

∂3Γ

∂λ3
= ∂Γ

∂λ

[
3

2
(
a2 + λ

) +
1

2
(
b2 + λ

) +
1

2
(
c2 + λ

)
]2

+
∂Γ

∂λ

[
3

2
(
a2 + λ

)2 +
1

2
(
b2 + λ

)2 +
1

2
(
c2 + λ

)2

]
.

(3.29)

A two-dimensional representation of the flow field at the centerline of a tri-axial ellip-
soid is shown in Figure 3.1. This representation corresponds to a tri-axial ellipsoid with
semiaxes a/b = b/c = 2 and a Reynolds number of 0.05.

Integration of the Euler’s equation yields the Bernoulli equation. Thus, for an incom-
pressible, irrotational and steady flow the inviscid pressure equation can be written as

pI = ρ

2

(
U2−|∇φ|2)+ p∞, (3.30)

where U and p∞ are the velocity and the pressure far away from the flow field.
Introducing the expression for the magnitude of the velocity vector in (3.30) yields

pI = ρ

2

[
U2−Γ2− x2

h2
1

(
Γ(

a2 + λ
) +dΓλ

)
dΓλ

]
+ p∞. (3.31)
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Figure 3.2. Pressure coefficient distribution on the surface of an ellipsoid for two cross sections in the
(x, y)- and (x,z)-planes with z = 0 and y = 0, respectively.

At the surface of the ellipsoid (λ= 0) the pressure distribution can be obtained by evalu-
ating the following expression,

pIs = ρU2

2
(
2−α0

)2

[
α0
(
α0− 4

)
+

4x2b4c4(
x2b4c4 + y2a4c4 + z2a4b4

)
]

+ p∞. (3.32)

The nondimensional pressure on the surface of the ellipsoid is obtained by substituting
(3.32) into the pressure coefficient defined as

Cp ≡ p− p∞
(1/2)ρU2

. (3.33)

A plot of this function in the (x, y)- and (x,z)-planes is given in Figure 3.2. It shows a
symmetric pressure distribution over the ellipsoid. At the fore and rear stagnation points
the pressure force is maximum and Cp = 1. As we move around the ellipsoid, the fluid
accelerates and the pressure drops accordingly. At θ = π/2 the pressure has dropped to
Cp =−0.269. The pressure drops faster in the (x,z)-plane where the cross section is flatter
than in the (x, y)-plane due to the difference in curvature.

The velocity gradient can be decomposed into its symmetric and anti-symmetric parts.
The symmetric part is associated with the straining motions while the anti-symmetric
part indicates the rotational motion of a fluid element. Thus, the velocity gradient can be
written as

L=∇u=D +Ω, (3.34)

where D = (1/2)(∇u +∇uT) and Ω = (1/2)(∇u−∇uT), represent the strain or defor-
mation and the rotation tensors, respectively.
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Since the rotation tensor is directly proportional to the vorticity vector, for an irrota-
tional flow field, the anti-symmetric part of the velocity gradient is identically zero. Thus,
the strain tensor is equal to the velocity gradient tensor (D= L).

For the flow field given by (3.28) the components of the strain tensor are:

Dij = Li j =
∂uj

∂xi
,

L11 = ∂u

∂x
=
(

2
∂λ

∂x
+ x

∂2λ

∂x2

)
∂Γ

∂λ
+ x
(
∂λ

∂x

)2 ∂2Γ

∂λ2
,

L12 = ∂v

∂x
= ∂u

∂y
=
(
∂λ

∂y
+ x

∂2λ

∂x∂y

)
∂Γ

∂λ
+ x
(
∂λ

∂x

∂λ

∂y

)
∂2Γ

∂λ2
,

L13 = ∂w

∂x
= ∂u

∂z
=
(
∂λ

∂z
+ x

∂2λ

∂x∂z

)
∂Γ

∂λ
+ x
(
∂λ

∂x

∂λ

∂z

)
∂2Γ

∂λ2
,

L22 = ∂v

∂y
= x

∂2λ

∂y2

∂Γ

∂λ
+ x
(
∂λ

∂y

)2 ∂2Γ

∂λ2
,

L23 = ∂w

∂y
= ∂v

∂z
= x

∂2λ

∂y∂z

∂Γ

∂λ
+ x
(
∂λ

∂y

∂λ

∂z

)
∂2Γ

∂λ2
,

L33 = ∂w

∂z
= x

∂2λ

∂z2

∂Γ

∂λ
+ x
(
∂λ

∂z

)2 ∂2Γ

∂λ2
.

(3.35)

4. Second-order fluid model

For an incompressible fluid, the stress tensor can be written as

T=−pI + S, (4.1)

where p is pressure and S is the extra stress which is modeled by a constitutive equation.
There is not a single constitutive equation for all flow motions. For very slow flows, all
the models collapse into a single form, the second-order fluid.

A second-order fluid is an asymptotic approximation to the stress for nearly steady
and very slow flow. It is quadratic in the shear rate and represents the recent memory of
the fluid by a time derivative (Joseph [6]).

The approximation to S for a second-order fluid is given by (see Joseph [4])

S= ηA +α1B +α2A2, (4.2)

where A= L + LT , is twice the symmetric part of the velocity gradient L, and

B= ∂A
∂t

+ (u ·∇)A + AL + LTA. (4.3)

Thus, for a second-order fluid the stress tensor can be written as

T=−pI +ηA +α1B +α2A2, (4.4)
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where A and B are known as the first and second Rivlin-Ericksen tensors (see Joseph and
Feng [7]).

The parameter η is the zero-shear viscosity and the parameters α1 = −n1/2 and α2 =
n1 + n2, the quadratic constants, are related by β̂ = 3α1 + 2α2 ≥ 0; where n1 and n2 are
constants obtained from the first and second normal stress differences and β̂ is the climb-
ing constant.

After Joseph [4], the Bernoulli equation for potential flow of a second-order fluid and
in particular for steady flow can be written as

p = ρ

2

(
U2−|∇φ|2)+

β̂

4
trA2 + p∞. (4.5)

By introducing the scalar function for the pressure given by (4.5) and the steady form of
(4.3) into (4.4) and rearranging, we get

T=−
[
ρ

2

(
U2−|∇φ|2)+ β̂χ + p∞

]
I +ηA +α1(u ·∇)A +

(
α1 +α2

)
A2. (4.6)

In index notation we have

Aij = 2
∂2φ

∂xi∂xj
= 2

∂uj

∂xi
,

χ = 1
4

trA2 = ∂2φ

∂xi∂xk

∂2φ

∂xk∂xi
= ∂uk

∂xi

∂ui
∂xk

=
(
∂uk
∂xi

)2

,

Tij =−
[
ρ

2

(
U2−

∣∣∣∣ ∂φ∂xi
∣∣∣∣

2)
+ β̂χ + p∞

]
δi j +ηAij +α1

∂φ

∂xk

∂

∂xk
Ai j +

(
α1 +α2

)
AikAk j .

(4.7)

5. Irrotational flow of a second-order fluid over a stationary ellipsoid

The set of equations that fully define the irrotational and steady flow of a second-order
fluid around an ellipsoid is given next,

φ= xΓ(λ), u=∇φ, ∇·u= 0,

T=−pI +ηA +α1(u ·∇)A +
(
α1 +α2

)
A2,

ρ(u ·∇)u=−∇p+η∇2u +∇· [α1(u ·∇)A +
(
α1 +α2

)
A2],

p = ρ

2

(
U2−|∇φ|2)+

β̂

4
trA2 + p∞,

A= L + LT = 2
∂2φ

∂xi∂xj
,

1
4

trA2 = ∂2φ

∂xi∂xk

∂2φ

∂xk∂xi
, (u ·∇)A= ∂φ

∂xk

∂

∂xk
Ai j .

(5.1)

The normal component of the stress is computed as

Tnn = n ·T ·n, (5.2)
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where n is the unit vector normal to the surface of the ellipsoid (1.1) and is given by

n=
(
x

a2
i +

y

b2
j +

z

c2
k
)/√

x2

a4
+
y2

b4
+
z2

c4
. (5.3)

The normal component of the stress tensor in index notation, in terms of the velocity
components, is given by

Tnn = ninjTi j =−
[
ρ

2

(
U2−uiui

)
+ β̂χ + p∞

]
+ 2ηninj

∂uj

∂xi

+ 2α1ninjuk
∂2uj

∂xk∂xi
+ 4
(
α1 +α2

)
ninj

∂uk
∂xi

∂uj

∂xk
.

(5.4)

Expanding (5.4) yields

Tnn =−ρ

2

[
U2− (u2 + v2 +w2)]− p∞

− (3α1 + 2α2
)[(∂u

∂x

)2

+
(
∂v

∂y

)2

+
(
∂w

∂z

)2

+ 2
(
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)2

+ 2
(
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∂x

)2

+ 2
(
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∂x2
+ v

∂2v

∂x2
+w

∂2w

∂x2

)
+n2

y

(
u
∂2u
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+ v
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∂y2

)

+n2
z

(
u
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∂z2
+ v
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(5.5)
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where
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(5.6)

The higher order derivatives of the ellipsoidal parameter λ, are obtained from the first
derivatives given by (3.10) with λ= λ(x, y,z).

With u, v, and w given by (3.28), the resulting normal stress for a second-order fluid
around an ellipsoid is of the form Tnn = Tnn(x, y,z,λ). On the surface of the ellipsoid
λ = 0, so that the normal component of the stress on the surface of the ellipsoid is a
function of the Cartesian coordinates only. The dimensionless form of the normal stress
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Figure 6.1. Distribution of the normal stress at the surface of a tri-axial ellipsoid, immersed in a
uniform stream that moves from left to right. Two-dimensional representation in the (x, y)-plane
of an ellipsoid (with semiaxes a = 3, b = 1.5, c = 0.75 cm). The arrows represent the normal stress
(Tnnnx +Tnnny)/150 dyn/cm2 evaluated for different cross sections along the ellipsoid. The cross sec-
tions are located at (a) x =−2.9, (b)−2.6, (c)−2.0, (d)−1.0, (e) 0.0, (f) 1.0, (g) 2.0, (h) 2.6, and (i) 2.9
cm. A perpendicular view of the different cross sections is shown in Figures 6.2–6.10. There is com-
pression in the fore part of the ellipsoid and a strong tension in the rear, near the trailing stagnation
point.

at the surface is expressed as

T∗nn =
Tnn + p∞
ρU2/2

. (5.7)

6. Normal stress distribution on the ellipsoid

Here we present the results of the normal stress evaluated at the surface of an ellip-
soid, immersed in a uniform flow of a second-order fluid, for a Reynolds number (Re=
ρUa/η) of 0.05. Three different cases are shown to illustrate the effects of the semiaxes ra-
tios in the stress distribution. First, the normal stress is evaluated on a tri-axial ellipsoid
with a/b = b/c = 2. The second case corresponds to a flatter ellipsoid with a/b = 2 and
b/c = 5. Finally, we show the distribution of the stress at the surface of a prolate spher-
oid with a/b = 2 and b = c. As an example of second-order fluid we used the liquid M1
with the following properties (Hu et al. [3]): [ρ = 0.895 g/cm3, η = 30 P, α1 = −3, and
α2 = 5.34 g/cm].

The distribution and sign of the normal stress at the surface is depicted by arrows
around ellipses that represent cross sections of the ellipsoid (see Figures 6.1, 6.2, 6.3,
6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, and 6.12). If the normal stress is negative it gives
rise to compression and if positive, it induces tensions that may be responsible for the
deformation of gas bubbles in viscoelastic liquids. Inward arrows represent the negative
values and outward arrows represent the positive values of the normal stress. We also
present the results of the dimensionless normal stress T∗nn, as a function of the polar angle
θ (see Figures 6.13 and 6.14).
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Figure 6.2. Normal stress (Tnnny + Tnnnz)/600 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1− 2.92/a2 at
x =−2.9 cm in the (y,z)-plane. Perpendicular view of the cross section (a) in Figure 6.1. The normal
stress at the front of the ellipsoid gives rise to compression near the leading edge. This may explain
the flat top observed in gas bubbles rising in viscoelastic fluids (see Figure 2.1).
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Figure 6.3. Normal stress (Tnnny + Tnnnz)/300 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1− 2.62/a2 at
x = −2.6 cm in the (y,z)-plane. Perpendicular view of the cross section (b) in Figure 6.1. There is a
bigger compression (indicated by bigger inwards arrows) at the right and left poles of the ellipse. This
may cause that the cross section of the ellipsoid becomes more round and in consequence the ellipsoid
would tend to be prolate.

The normal stress distribution on the surface of a tri-axial ellipsoid with a= 3, b = 1.5,
and c = 0.75 cm, shown in Figures 6.1–6.10, suggest the formation of a gas bubble with a
prolate shape in the front and a flat two-dimensional shape in the back with an elongated
trailing edge.

We made the former ellipsoid even flatter by making c = 0.3 cm. The computed nor-
mal stress distribution is depicted in Figure 6.11. The results indicate that as the rear part



F. Viana et al. 357

21.510.50−0.5−1−1.5−2

y

−1.5

−1

−0.5

0

0.5

1

1.5

z

Figure 6.4. Normal stress (Tnnny + Tnnnz)/150 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1− 2.02/a2 at
x =−2.0 cm in the (y,z)-plane. Perpendicular view of the cross section (c) in Figure 6.1. Strong com-
pression at the right and left poles of the ellipse and mild compression towards the center.
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Figure 6.5. Normal stress (Tnnny + Tnnnz)/50 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1− 1.02/a2 at
x =−1.0 cm in the (y,z)-plane. Perpendicular view of the cross section (d) in Figure 6.1. Small com-
pression at the center and high compression at the right and left poles of the ellipse (indicated by
small and big inwards arrows). This suggests that the upper part of a gas bubble rising in a viscoelastic
fluid would tend to be prolate.

of the bubble gets flatter, the pulling out effect at the right and left poles increase giving
rise to a thinner tail.

Once the bubble acquires the prolate shape in the front, the stresses around the ellip-
soid become constant for each cross section. This is shown in Figure 6.12, that represent
the stresses around the ellipsoid with a= 3.0, b = 1.5, and c = 1.5 cm. The normal stress
for each cross section located at: x =−2.9, −2.6, −2.0, −1.0, 0.0, 1.0, 2.0, 2.6, and 2.9, is
constant and they are all compression in the front and tension in the back. For the three
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Figure 6.6. Normal stress (Tnnny +Tnnnz)/2.5 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1 at x = 0.0 cm
in the (y,z)-plane. Perpendicular view of the cross section (e) in Figure 6.1. There is still compression
right in the middle of the ellipsoid.
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Figure 6.7. Normal stress (Tnnny + Tnnnz)/50 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1− 1.02/a2 at
x = 1.0 cm in the (y,z)-plane. Perpendicular view of the cross section (f) in Figure 6.1. There is a
change of sign of the normal stress right after the front half of the ellipsoid. It changes from negative
(compression) to positive (tension). Strong tension near the right and left poles and mild tension
towards the center. This may induce the formation of a flat tail for a gas bubble. The same effect is
observed in the other cross sections of the rear part of the ellipsoid (see Figures 6.8–6.10).

semiaxes ratios covered in this study, there is a strong tension near the rear stagnation
point that could be responsible for the build up of a two-dimensional cusp at the trailing
edge of a bubble.

Figure 6.13 shows a maximum compression near the leading edge. The maximum ten-
sion, that is almost twice the maximum compression, is located very close to the trailing
edge (see Figure 6.14).
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Figure 6.8. Normal stress (Tnnny + Tnnnz)/150 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1− 2.02/a2 at
x = 2.0 cm in the (y,z)-plane. Perpendicular view of the cross section (g) in Figure 6.1. Strong tension
at the right and left poles causes the ellipsoid to get flatter.
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Figure 6.9. Normal stress (Tnnny + Tnnnz)/300 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1− 2.62/a2 at
x = 2.6 cm in the (y,z)-plane. Perpendicular view of the cross section (h) in Figure 6.1. Strong tension
at the right and left poles causes the ellipsoid to get flatter.

0.80.60.40.20−0.2−0.4−0.6−0.8

y

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

z

Figure 6.10. Normal stress (Tnnny +Tnnnz)/600 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1− 2.92/a2 at
x = 2.9 cm in the (y,z)-plane. Perpendicular view of the cross section (i) in Figure 6.1. The strong
tension observed near the trailing stagnation point may explain the formation of a two-dimensional
cusping tail in a gas bubble rising in viscoelastic fluids.
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Figure 6.11. Distribution of the normal stress Tnn on various cross sections on the (y,z)-planes of an
ellipsoid (with semiaxes a= 3, b = 1.5, c = 0.3 cm) immerse in a flow of fluid M1 (moving from left
to right) with a Reynolds number of 0.05. (a) (Tnnnx +Tnnny)/1200 dyn/cm2 for an ellipsoid x2/a2 +
y2/b2 = 1− z2/c2 with z = 0, in the (x, y)-plane. (b) (Tnnny + Tnnnz)/7500 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = −2.9 cm, in the (y,z)-plane. (c) (Tnnny + Tnnnz)/800 dyn/cm2

for an ellipsoid y2/b2 + z2/c2 = 1 − x2/a2 with x = −2.0 cm, in the (y,z)-plane. (d) (Tnnny +
Tnnnz)/10 dyn/cm2 for an ellipsoid y2/b2 + z2/c2 = 1− x2/a2 with x = 0.0 cm, in the (y,z)-plane. (e)
(Tnnny +Tnnnz)/800 dyn/cm2 for an ellipsoid y2/b2 + z2/c2 = 1− x2/a2 with x = 2.0 cm, in the (y,z)-
plane. (f) (Tnnny +Tnnnz)/7500 dyn/cm2 for an ellipsoid y2/b2 + z2/c2 = 1− x2/a2 with x = 2.9 cm, in
the (y,z)-plane.
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Figure 6.12. Distribution of the normal stress Tnn on various cross sections on the (y,z)-planes of
an ellipsoid (with semiaxes a= 3, b = 1.5, c = 1.5 cm) immerse in a flow of fluid M1 with a Reynolds
number of 0.05. (a) (Tnnnx +Tnnny)/100 dyn/cm2 for an ellipsoid x2/a2 + y2/b2 = 1− z2/c2 with z = 0,
in the (x, y)-plane. (b) (Tnnny +Tnnnz)/250 dyn/cm2 for an ellipsoid y2/b2 + z2/c2 = 1− x2/a2 with x =
−2.9 cm, in the (y,z)-plane. (c) (Tnnny +Tnnnz)/50 dyn/cm2 for an ellipsoid y2/b2 + z2/c2 = 1− x2/a2

with x = −2.0 cm, in the (y,z)-plane. (d) (Tnnny + Tnnnz) dyn/cm2 for an ellipsoid y2/b2 + z2/c2 =
1− x2/a2 with x = 0.0 cm, in the (y,z)-plane. (e) (Tnnny +Tnnnz)/50 dyn/cm2 for an ellipsoid y2/b2 +
z2/c2 = 1− x2/a2 with x = 2.0 cm, in the (y,z)-plane. (f) (Tnnny +Tnnnz)/250 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1− x2/a2 with x = 2.9 cm, in the (y,z)-plane.
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Figure 6.13. Dimensionless normal stress as a function of the polar angle θ for the different cross
sections of the frontal part of the ellipsoid shown in Figures 6.2–6.6 (x ≤ 0). The normal stress is
compression in the fore part of the ellipsoid. The maximum compression is observed near the leading
edge and decreases as we move towards the rear of the ellipsoid.
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Figure 6.14. Dimensionless normal stress as a function of the polar angle θ for the different cross
sections of the rear part of the ellipsoid shown in Figures 6.6–6.10 (x ≥ 0). The normal stress is tension
in the rear of the ellipsoid, with a strong tension near the trailing edge.
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7. Conclusions

We developed the analysis of viscoelastic potential flow of a second-order fluid around an
ellipsoid. To carry out these calculations we formed expressions for the velocity, the invis-
cid pressure, the velocity derivatives and the composition of these derivatives to compute
stresses. The calculations give rise to normal stress distribution compatible with experi-
mental observations of gas bubbles rising in viscoelastic liquids. In particular, the normal
stress at the top of a rising bubble is compression and the side stress tends to round the
elliptic shape. The trailing edge of the bubble is stretched into a cusp and the side of the
ellipse tends to flatten into the remarkable two-dimensional cusps observed in experi-
ments. Since the velocity is obtained from a harmonic potential, the velocity field does
not depend on viscous or viscoelastic parameters. This suggests that the cusping effect
is associated primarily with normal stresses rather than with secondary effects due to
changes in velocity not computed here.
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