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This paper discusses the existence and global uniform asymptotic stability of almost periodic solutions for cellular neural networks
(CNNS). By utilizing the theory of the almost periodic differential equation and the Lyapunov functionals method, some sufficient
conditions are obtained to ensure the existence and global uniform asymptotic stability. An example is given to illustrate the
effectiveness of the main results.

1. Introduction

Cellular neural networks (CNNS) are composed of a large
number of simple processing units (called neurons), widely
interconnected to form a complex network system. It reflects
many basic features of the human brain functions. It is a
highly complicated nonlinear dynamics system and has suc-
cessful applications in many fields such as associative, signal,
and image processing, pattern recognition, and optimization.

In 1984, Hopfield proposed that the dynamic behavior of
neurons should be described with a set of ordinary differen-
tial equations or functional differential equations. Since then,
a lot of research achievements have been published in the
world.

Recently, many scholars have paid much attention to the
research on the dynamics and applications of CNNS. Spe-
cially, some scholars have studied the existence and stability
of almost periodic solution for neural networks, which can be
seen from [1–10] and therein references.

In [4], without product systems, by utilizing the general-
ized Halanay inequality technique and combining the theory
of exponential dichotomy with fixed point method, Huang
et al. study the existence and global exponential stability of

almost periodic solutions for recurrent neural network with
continuously distributed delays as follows:
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−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠) ℎ
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(1)

where 𝑓
𝑗
, 𝑔
𝑗
, ℎ
𝑗
: 𝑅 → 𝑅, 𝑗 = 1, 2, . . . , 𝑛 are incentive

functions, which satisfy 𝑓
𝑗
(0) = 𝑔

𝑗
(0) = ℎ

𝑗
(0) = 0. 𝑎

𝑖
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𝑏
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(𝑡) are all almost periodic functions.

In [5], Xiang and Cao discuss the following system:
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(2)

Without product systems, by using the Lyapunov functionals
method and analytical skills, the results about the existence,
attractivity, and exponential stability of almost periodic solu-
tions for the system (2) are obtained.

However, amore general system than the systems above is
discussed in this paper. We consider the existence and global
uniform asymptotic stability of almost periodic solutions to
the CNNS with discrete and continuously distributed delays.
The system is as follows:
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𝑖
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(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 + 𝐼

𝑖
(𝑡) .

(3)

By using Lemmas 3 and 4 in the next section and under
the less restrictive conditions, some sufficient conditions
are obtained to ensure the existence and global uniform
asymptotic stability of almost periodic solutions to the system
(3). An example is given to illustrate the effectiveness of the
main results at last.

2. Preliminaries

In order to facilitate the following section description, we
introduce some marks and basic definitions in this section.

If 𝑓(𝑡, 𝜑) is an almost periodic in 𝑡 uniformly for 𝑥 ∈ Ω,
whereΩ ⊆ 𝑅

𝑛 is an open set, then the equation

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) (4)

is called lagging-type almost periodic differential equation.
The following system is defined as the product systems of (4):

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥
𝑡
(𝑡)) , 𝑦

󸀠

(𝑡) = 𝑓 (𝑡, 𝑦
𝑡
(𝑡)) . (5)

Definition 1 (see [11]). If there is a constant𝑀 = 𝑀(𝜎, 𝜑) for
(𝜎, 𝜑) ∈ Ω ⊆ 𝑅 × 𝐶 such that the solution 𝑥(𝑡, 𝜎, 𝜑) of (5)
through (𝜎, 𝜑) when 𝑡 ≥ 𝜎 − 𝑟 satisfies |𝑥(𝑡, 𝜎, 𝜑)| < 𝑀, then
the solution 𝑥(𝑡, 𝜎, 𝜑) is bound.

Definition 2 (see [11]). Lyapunov functionals 𝑉(𝑡, 𝜑) : 𝑅 ×
𝐶 → 𝑅,𝐶 = 𝐶([−𝑟, 0], 𝑅

𝑛
). Suppose that the solution of

(5) through (𝜎, 𝜑) is 𝑥(𝑡, 𝜎, 𝜑), 𝑥
𝑡
(𝜎, 𝜑) is defined as 𝑥(𝑡 +

𝜃, 𝜎, 𝜑), 𝜃 ∈ [−𝑟, 0]. The total derivative is defined as follows:

𝑉
󸀠
(𝑡, 𝜑) |

(5)
= lim
ℎ→0

+

1

ℎ

[𝑉 (𝑡 + ℎ, 𝑥
𝑡+ℎ
(𝑡, 𝜑)) − 𝑉 (𝑡, 𝜑)] . (6)

Then 𝑉󸀠
(5)
(𝑡, 𝜑) is the right derivative of functionals 𝑉(𝑡, 𝜑)

along (5).

Lemma 3 (see [11]). Lagging-type almost periodic differential
equation (5) has an asymptotically almost periodic solution
|𝑥(𝑡)|, which satisfies |𝑥(𝑡)| ≤ 𝑎 < 𝐻, 𝐻 ∈ 𝑅 or 𝐻 = +∞

for all 𝑡 ≥ 0 defined in 𝑅
+
; then (5) has an almost periodic

solution.

Lemma 4 (see [11]). There is a continuous 𝑉 functional of
𝑉(𝑡, 𝜑, 𝜓) for 𝑡 ≥ 0, 𝜑, 𝜓 ∈ 𝐶

𝐻
, 𝐶
𝐻
= {𝜑 : 𝜑 ∈ 𝐶, |𝜑| < 𝐻},

𝐶 = 𝐶[−𝑟, 0], |𝜑| = sup
𝜃∈[−𝑟,0]

|𝜑(𝜃)| = sup
𝜃∈[−𝑟,0]

∑
𝑛

𝑖=1
|𝜑
𝑖
(𝜃)|

such that
(Ha) 𝑢(|𝜑 − 𝜓|) ≤ 𝑉(𝑡, 𝜑, 𝜓) ≤ V(|𝜑 − 𝜓|),
(Hb) |𝑉(𝑡, 𝜑

1
, 𝜓
1
) − 𝑉(𝑡, 𝜑

2
, 𝜓
2
)| ≤ 𝑘(|𝜑

1
− 𝜑
2
| + |𝜓
1
− 𝜓
2
|),

(Hc) 𝑉󸀠
(5)
(𝑡, 𝜑, 𝜓) ≤ −𝑎𝑉(𝑡, 𝜑, 𝜓),

where 𝑎 is a positive constant, 𝑢(𝑠) and V(𝑠) are continuous and
non-decreasing, when 𝑠 → 0, 𝑢(𝑠) → 0, and 𝑘 is a positive
constant. At this time, if (5) has a bounded solution 𝑥(𝑡, 𝜎, 𝜑)
such that |𝑥(𝑡, 𝜎, 𝜑)| ≤ 𝐻

1
, where 𝑡 ≥ 𝜎 ≥ 0, 𝐻 > 𝐻

1
> 0,

then (5) in 𝐶
𝐻
has a unique almost periodic solution which is

global uniform asymptotic stability.

Throughout this paper, we make the following assump-
tions.
(H2.1) 𝑎

𝑖
(𝑡, 𝑥
𝑖
) is uniform almost periodic continuous func-

tion to 𝑥
𝑖
about 𝑡. 𝑎

𝑖
(𝑡, 𝑥
𝑖
) > 0 for all (𝑡, 𝑥

𝑖
), and we

denote min
1≤𝑖≤𝑛

{inf
(𝑡,𝑥
𝑖
)∈𝑅×𝑅

𝑎
𝑖
(𝑡, 𝑥
𝑖
)} = 2𝑎

0
> 0. In

addition, 𝑎
𝑖
(𝑡, 𝑥
𝑖
) also satisfies the Lipschitz condition

as follows:

󵄨
󵄨
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𝑖
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𝑖
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󵄨
󵄨
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, (7)

where 𝐿𝑎
𝑖
< 𝑎
0
.
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(𝑡), 𝑐
𝑖𝑗
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𝑖𝑗
(𝑡) and 𝐼

𝑖
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tinuous functions. we denote constants, respectively,
𝑏
𝑙
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, 𝑏
𝑚
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, 𝑐
𝑙
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𝑚
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𝑙

𝑖𝑗
, 𝑑
𝑚

𝑖𝑗
, 𝐼
𝑙

𝑖
, 𝐼
𝑚

𝑖
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) as fol-

lows:

inf
𝑡∈𝑅

𝑏
𝑖𝑗
(𝑡) = 𝑏

𝑙

𝑖𝑗
, sup

𝑡∈𝑅

𝑏
𝑖𝑗
(𝑡) = 𝑏

𝑚

𝑖𝑗
> 0,

inf
𝑡∈𝑅

𝑐
𝑖𝑗
(𝑡) = 𝑐

𝑙

𝑖𝑗
, sup

𝑡∈𝑅

𝑐
𝑖𝑗
(𝑡) = 𝑐

𝑚

𝑖𝑗
> 0,

inf
𝑡∈𝑅

𝑑
𝑖𝑗
(𝑡) = 𝑑

𝑙

𝑖𝑗
, sup

𝑡∈𝑅

𝑑
𝑖𝑗
(𝑡) = 𝑑

𝑚

𝑖𝑗
> 0,

inf
𝑡∈𝑅

𝐼
𝑖
(𝑡) = 𝐼

𝑙

𝑖
, sup

𝑡∈𝑅

𝐼
𝑖
(𝑡) = 𝐼

𝑚

𝑖
> 0.

(8)

(H2.3) Functions 𝑓
𝑗
(𝑥
𝑗
), 𝑔
𝑗
(𝑥
𝑗
), and ℎ

𝑗
(𝑥
𝑗
) are bounded

continuous functions, and they satisfy the following
Lipschitz conditions:

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑥
𝑗
) − 𝑓
𝑗
(𝑦
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐿
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
− 𝑦
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑥
𝑗
) − 𝑔
𝑗
(𝑦
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
− 𝑦
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑥
𝑗
) − ℎ
𝑗
(𝑦
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐿
ℎ

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
− 𝑦
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
.

(9)
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(H2.4) Delay kernel functions satisfying

∫

∞

0

𝑘
𝑖𝑗
(𝑠) 𝑑𝑠 = 1, ∫

∞

0

𝑠𝑘
𝑖𝑗
(𝑠) 𝑑𝑠 < +∞

(𝑖, 𝑗 = 1, 2, . . . , 𝑛) .

(10)

3. Main Results

Theorem 5. Assume that (H2.1)–(H2.4) hold; then all solu-
tions of system (3) are bounded.

Proof. Let |𝑓
𝑗
(𝑥
𝑗
)| ≤ 𝑃

𝑗
, |𝑔
𝑗
(𝑥
𝑗
)| ≤ 𝑄

𝑗
, |ℎ
𝑗
(𝑥
𝑗
)| ≤ 𝑅

𝑗
and set

𝑁 = ∑
𝑛

𝑗=1
𝑏
𝑚

𝑖𝑗
𝑃
𝑗
+ ∑
𝑛

𝑗=1
𝑐
𝑚

𝑖𝑗
𝑄
𝑗
+∑𝑛
𝑗=1
𝑑
𝑚

𝑖𝑗
𝑅
𝑗
+ 𝐼
𝑚

𝑖
. From system

(3) and the assumption (H2.3), we get

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 + 𝐼

𝑖
(𝑡)

≤ −𝑎
𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑚

𝑖𝑗
𝑃
𝑗

+

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝑄
𝑗
+

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝑅
𝑗
+ 𝐼
𝑚

𝑖

= −𝑎
𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) + 𝑁,

(11)

for 𝑖 = 1, 2, . . . , 𝑛. By (11), we obtain

𝑥
𝑖
(𝑡) ≤

𝑁

2𝑎
0

(1 − 𝑒
−2𝑎
0
𝑡
) + 𝑥
𝑖
(𝑡
0
) 𝑒
−2𝑎
0
𝑡
. (12)

This shows that
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
≤

𝑁

2𝑎
0

, 𝑖 = 1, 2, . . . , 𝑛. (13)

This completes the proof of the theorem.

FromTheorem 5, all solutions of system (3) are bounded.
In order to investigate the globally uniform asymptotic
stability of the almost periodic solutions, we assume that
∑
𝑛

𝑖=1
(𝑁/2𝑎

0
) 𝐿
𝑎

𝑖
≤ 𝑎
0
.

Theorem 6. Assume that (H2.1)–(H2.4) hold, and suppose
further that

𝜎 = min
1≤𝑖≤𝑛

{

{

{

𝑎
0
−

𝑛

∑

𝑗=1

𝑏
𝑚

𝑖𝑗
𝐿
𝑓

𝑖
−

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗
−

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗

}

}

}

> 0.

(14)

Then, in system (3), there exists an almost periodic solution,
which is global uniform asymptotic stable.

Proof. From the condition (H2.1), we rewrite system (3) as
follows:

𝑥
󸀠

𝑖
(𝑡) = − 𝑎

𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 + 𝐼

𝑖
(𝑡) .

(15)

The product system of the system (15) is the following form:

𝑥
󸀠

𝑖
(𝑡) = − 𝑎

𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 + 𝐼

𝑖
(𝑡) ,

𝑦
󸀠

𝑖
(𝑡) = − 𝑎

𝑖
(𝑡, 𝑦
𝑖
(𝑡)) 𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠 + 𝐼

𝑖
(𝑡) .

(16)

In order to apply Lemma 4, we construct the Lyapunov
functionals about the product system (16) as follows:

𝑉 (𝑡, 𝑥 (⋅) , 𝑦 (⋅)) =

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗
∫

𝑡

𝑡−𝜏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗

× ∫

+∞

0

𝑘
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑢) − 𝑦

𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢 𝑑𝑠.

(17)

For convenience sake, we denote

𝑉 (𝑡, 𝑥 (⋅) , 𝑦 (⋅)) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (18)
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where

𝑉
1
(𝑡) =

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
,

𝑉
2
(𝑡) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗
∫

𝑡

𝑡−𝜏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑠) − 𝑦

𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

𝑉
3
(𝑡) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝑘
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑢) − 𝑦

𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢 𝑑𝑠.

(19)

Using (H2.1) and ∑𝑛
𝑖=1
(𝑁/2𝑎

0
) 𝐿
𝑎

𝑖
≤ 𝑎
0
, by the triangle

inequality, we have

sgn
𝑛

∑

𝑖=1

(−𝑎
𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) + 𝑎

𝑖
(𝑡, 𝑦
𝑖
(𝑡)) 𝑦
𝑖
(𝑡))

= sgn
𝑛

∑

𝑖=1

{−𝑎
𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) + 𝑎

𝑖
(𝑡, 𝑦
𝑖
(𝑡)) 𝑥
𝑖
(𝑡)

− 𝑎
𝑖
(𝑡, 𝑦
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) + 𝑎

𝑖
(𝑡, 𝑦
𝑖
(𝑡)) 𝑦
𝑖
(𝑡)}

≤ sgn
𝑛

∑

𝑖=1

{(𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡))

𝑁

2𝑎
0

𝐿
𝑎

𝑖
− 2𝑎
0
(𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡))}

≤ −𝑎
0
sgn
𝑛

∑

𝑖=1

(𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)) .

(20)

Calculating the upright derivative of 𝑉
1
(𝑡) along system

(16) as follows:

𝐷
+
𝑉
1
(𝑡) |
(16)

≤ −𝑎
0

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑦
𝑗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
)) − 𝑔

𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑥
𝑗
(𝑠)) − ℎ

𝑗
(𝑦
𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠.

(21)

Similarly, we calculate the upright derivatives of𝑉
2
(𝑡) and

𝑉
3
(𝑡) along system (16), respectively, as follows:

𝐷
+
𝑉
2
(𝑡) |
(16)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
) − 𝑦
𝑗
(𝑡 − 𝜏
𝑖𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
;

𝐷
+
𝑉
3
(𝑡) |
(16)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝑘
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝑘
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝑠) − 𝑦

𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠.

(22)

Note that
𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
)) − 𝑔

𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
) − 𝑦
𝑗
(𝑡 − 𝜏
𝑖𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑥
𝑗
(𝑠)) − ℎ

𝑗
(𝑦
𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝑘
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠.

(23)

Combining with (21) and (22) and the assumptions of
Theorem 5, we get

𝐷
+
𝑉 (𝑡, 𝑥 (⋅) , 𝑦 (⋅)) |

(16)

≤ −𝑎
0

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑦
𝑗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
)) − 𝑔

𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠)

×

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
𝑗
(𝑥
𝑗
(𝑠)) − ℎ

𝑗
(𝑦
𝑗
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
) − 𝑦
𝑗
(𝑡 − 𝜏
𝑖𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝑘
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝑘
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡 − 𝑠) − 𝑦

𝑗
(𝑡 − 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠
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≤ −𝑎
0

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑥
𝑗
(𝑡)) − 𝑓

𝑗
(𝑦
𝑗
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗
∫

+∞

0

𝑘
𝑖𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ −𝑎
0

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑏
𝑚

𝑖𝑗
𝐿
𝑓

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗
(𝑡) − 𝑦

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ −𝑎
0

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑏
𝑚

𝑗𝑖
𝐿
𝑓

𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑐
𝑚

𝑗𝑖
𝐿
𝑔

𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑑
𝑚

𝑗𝑖
𝐿
ℎ

𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

=

𝑛

∑

𝑖=1

{

{

{

−𝑎
0
+

𝑛

∑

𝑗=1

𝑏
𝑚

𝑗𝑖
𝐿
𝑓

𝑖
+

𝑛

∑

𝑗=1

𝑐
𝑚

𝑗𝑖
𝐿
𝑔

𝑖
+

𝑛

∑

𝑗=1

𝑑
𝑚

𝑗𝑖
𝐿
ℎ

𝑖

}

}

}

×
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨

≤ −𝜎

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
.

(24)

By Theorem 5 and Lemmas 3 and 4, there exists an almost
periodic solution of system (3), which is global uniform
asymptotic stable. This completes the proof of Theorem 6.

4. An Example

Example 1. Consider the following cellular neural network
which consists of two neurons:

𝑥
󸀠

𝑖
(𝑡) = − 𝑎

𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑖𝑗
(𝑡 − 𝑠) ℎ

𝑗
(𝑥
𝑗
(𝑠)) 𝑑𝑠 + 𝐼

𝑖
(𝑡) ,

𝑖 = 1, 2,

(25)

where
(𝑎
𝑖
(𝑡, 𝑥
𝑖
(𝑡)) 𝑥
𝑖
(𝑡))
2×2

= (

11 − 𝑒
−|𝑥
1
(𝑡)|
+ sin𝜋𝑡

2 − sin𝑥
2
(𝑡)

𝑥
1
(𝑡) 0

0

11 − 𝑒
−|𝑥
2
(𝑡)|
− cos 𝑡

2 + sin 𝑥
1
(𝑡)

𝑥
2
(𝑡)

) ,

(𝑏
𝑖𝑗
(𝑡))
2×2

= (
0.2 sin𝜋𝑡 0.1 cos 𝑡
0.1 sin 𝑡 0.2 cos𝜋𝑡) ,

(𝑐
𝑖𝑗
(𝑡))
2×2

= (
0.2 sin 𝑡 0.1 sin 𝑡
0.2 sin 2𝑡 0.1 cos𝜋𝑡) ,

(𝑑
𝑖𝑗
(𝑡))
2×2

= (
0.3 sin 2𝑡 0.1 cos 𝑡
0.2 sin𝜋𝑡 0.1 cos𝜋𝑡) ,

(𝐼
𝑖
(𝑡))
1×2

= (
0.1 sin 2𝑡
0.1 cos 𝑡 ) .

(26)
We select the functions 𝑓

𝑗
(𝑥) = 𝑔

𝑗
(𝑥) = ℎ

𝑗
(𝑥) =

sh(𝑥)/ch(𝑥) and the kernel functions 𝑘
𝑖𝑗
(𝑠) = 𝑒

−𝑠. Then,
𝐿
𝑓

𝑗
= 𝐿
𝑔

𝑗
= 𝐿
ℎ

𝑗
= 1. Because the periods of sin 𝜋𝑡 and cos 𝑡 are

2 and 2𝜋, respectively. The quotient of 2𝜋 and 2 is irrational.
Then system (25) is an almost periodic system. In addition,
𝑎
0
= 1.5 and

2

∑

𝑗=1

𝑏
𝑚

𝑖𝑗
𝐿
𝑓

𝑖
+

2

∑

𝑗=1

𝑐
𝑚

𝑖𝑗
𝐿
𝑔

𝑗
+

2

∑

𝑗=1

𝑑
𝑚

𝑖𝑗
𝐿
ℎ

𝑗
≤ 1.2 < 1.5. (27)

From𝑃
𝑗
= 𝑄
𝑗
= 𝑅
𝑗
= 1, we have𝑁 = ∑

𝑛

𝑗=1
𝑏
𝑚

𝑖𝑗
𝑃
𝑗
+∑
𝑛

𝑗=1
𝑐
𝑚

𝑖𝑗
𝑄
𝑗
+

∑
𝑛

𝑗=1
𝑑
𝑚

𝑖𝑗
𝑅
𝑗
+ 𝐼
𝑚

𝑖
≤ 1.2 < 𝑎

0
; then we get ∑𝑛

𝑖=1
(𝑁/2𝑎

0
)𝐿
𝑎

𝑖
=

0.2 < 1.5.
It is easy for us to verify that the conditions (H2.1)–

(H2.4) inTheorem 5 hold.Therefore, in the system (25), there
exists an almost periodic solution, which is global uniform
asymptotic stable.
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