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We investigate a diffusive Leslie-Gower predator-preymodel with the additive Allee effect on prey subject to the zero-flux boundary
conditions. Some results of solutions to this model and its corresponding steady-state problem are shown. More precisely, we give
the stability of the positive constant steady-state solution, the refined a priori estimates of positive solution, and the nonexistence
and existence of the positive nonconstant solutions.We carry out the analytical study for two-dimensional system in detail and find
out the certain conditions for Turing instability. Furthermore, we perform numerical simulations and show that the model exhibits
a transition from stripe-spot mixtures growth to isolated spots and also to stripes. These results show that the impact of the Allee
effect essentially increases the model spatiotemporal complexity.

1. Introduction

The dynamics of a predator-prey model in a homogeneous
environment can be described by the following reaction-
diffusion equations:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑢𝐹 (𝑢) − 𝐺 (𝑢) V + 𝐷

1
Δ𝑢,

𝜕V (𝑥, 𝑡)
𝜕𝑡

= V𝑄 (𝑢, V) + 𝐷
2
ΔV,

(1)

where 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) are the densities of prey and predator
at time 𝑡 and position 𝑥 ∈ Ω ⊂ R𝑚, respectively. The
Laplace operatorΔ describes the spatial dispersal with passive
diffusion; 𝐷

1
> 0 and 𝐷

2
> 0 are the diffusion coefficients

corresponding to species 𝑢 and V. 𝐹(𝑢) describes the per-
capita growth rate of the prey;𝐺(𝑢) is the functional response
of the predator, which corresponds to the saturation of their
appetites and reproductive capacity; 𝑄(𝑢, V), the so-called
numerical response, is the per-capita growth rate of the
predator [1–4].

Functions 𝐹(𝑢), 𝐺(𝑢), and 𝑄(𝑢, V) can be formulated in
various specific situations. In general, 𝐹(𝑢) is of the standard
logistic growth:

𝐹 (𝑢) = 𝑟
1
(1 −

𝑢

𝐾
) , (2)

which was first created by Verhulst [5]. Here 𝐾 > 0 is the
prey carrying capacity and 𝑟

1
> 0 is the intrinsic growth rate

of prey.
Some conventional functional response functions 𝐺(𝑢)

include Holling types I, II, and III (see [6–10]). Among
many possible choices of𝐺(𝑢), the Holling type-II functional
response is most commonly used in the ecological literature,
which is defined by [11]:

𝐺 (𝑢) =
𝑐
1
𝑢

𝑢 + 𝐾
1

, (3)

where 𝑐
1
> 0 describes the maximum predation rate and

𝐾
1
≥ 0 measures the extent to which environment provides

protection to prey 𝑢. The Leslie-Gower type numerical
response 𝑄(𝑢, V) is given by

𝑄 (𝑢, V) = 𝑟
2
−
𝑐
2
V
𝛿𝑢
, (4)
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which was first proposed by Leslie [12], and has been dis-
cussed by Leslie and Gower [13] and Pielou [14]. A modified
version of Leslie-Gower functional response

𝑄 (𝑢, V) = 𝑟
2
−

𝑐
2
V

𝑢 + 𝐾
2

(5)

is given by Aziz-Alaoui et al. [15, 16]. Here, 𝑟
2
> 0 describes

the growth rate of the predator V; 𝑐
2
> 0 has a similarmeaning

to 𝑐
1
; 𝛿 > 0 takes on the role of the prey-dependent carrying

capacity for the predator; 𝐾
2
≥ 0 is the extent to which en-

vironment provides protection to predator V. Hence, we can
rewrite model (1) as follows:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑟

1
𝑢 (1 −

𝑢

𝐾
) −

𝑐
1
𝑢V

𝑢 + 𝐾
1

+ 𝐷
1
Δ𝑢,

𝜕V (𝑥, 𝑡)
𝜕𝑡

= V(𝑟
2
−

𝑐
2
V

𝑢 + 𝐾
2

) + 𝐷
2
ΔV.

(6)

The biological significance of all parameters inmodel (6) is as
above.

For model (6), in the case of 𝐾
1
= 𝐾

2
= 0, Du et al.

[17, 18] mainly focused attention on the steady-state problem
and observed some quite interesting phenomena of pattern
formation. In the case of 𝐾

1
> 0,𝐾

2
= 0, the so-called

Holling-Tanner model, Peng and Wang [19, 20] analyzed the
global stability of the unique positive constant steady-state
and established the results for the existence and nonexistence
of positive nonconstant steadystates; Shi and coworkers [21]
studied the global attractor and persistence property, local
and global asymptotic stability of the unique positive constant
equilibrium, and the existence and nonexistence of non-
constant positive steady-states; Li et al. [22] considered the
Turing and Hopf bifurcations of the equilibrium solutions;
Liu and Xue [23] found the model exhibits the spotted,
black-eye, and labyrinthine patterns. For model (6), that
is, 𝐾

1
̸= 𝐾

2
̸= 0, Camara and Aziz-Alaoui [24–26] paid more

attention to pattern formation in the spatial domain and
observed the labyrinth, chaos, and spiral wave patterns.

On the other hand, in population dynamics, any mech-
anism that can lead to a positive relationship between a
component of individual fitness and either the number or
density of conspecific can be termed an Allee effect [27–
30], starting with the pioneer work of ecologist Allee [31]. In
particular, theoretical investigations have shown that anAllee
effect can greatly increase the likelihood of local and global
extinction [32] and can lead to a rich variety of dynamical
effects. As a consequence, it is necessary to explore the
influence of Allee effect in the growth of a population.

The Allee effect has been modeled in different ways [33–
37]. From an ecological viewpoint, the Allee effect has been
modeled into strong and weak ones [33, 38–42]. In a recent
analytic approach by Wang and Kot [38], the Allee effect is
“strong” if the sign of the growth function 𝑢𝐹(𝑢) in the limit
of law density is negative; that is,

𝑑 (𝑢𝐹 (𝑢))

𝑑𝑡

𝑢=0
< 0. (7)

It is “weak” if the sign of the growth function 𝑢𝐹(𝑢) in the
limit of law density is positive; that is,

𝑑 (𝑢𝐹 (𝑢))

𝑑𝑡

𝑢=0
> 0. (8)

The strong Allee effect introduces a population threshold,
and the population must surpass this threshold to grow. In
contrast, the weak case has not any threshold [10, 35, 38, 42].

In particular, the growth function consideringAllee effect
is expressed by the equation:

𝑢𝐹 (𝑢) = 𝑟
1
𝑢(1 −

𝑢

𝐾
−
𝑚

1

𝑢 + 𝑏
1

) , (9)

having an additive Allee effect, which was first deduced in
[43] and applied in [34–36]. Where𝑚

1
/(𝑢 + 𝑏

1
) is the term of

additive Allee effect,𝑚
1
and 𝑏

1
are the Allee effect constants.

It should be noted that, if 𝑚
1
< 𝑏

1
, the Allee effect in (9) is

weak, while if𝑚
1
> 𝑏

1
, the Allee effect in (9) is strong.

Based on the above discussions, in this paper, we rigor-
ously consider the spatiotemporal dynamics of the following
modified Leslie-Gower predation model with the additive
Allee effect on prey:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝑟

1
𝑢(1 −

𝑢

𝐾
−
𝑚

1

𝑢 + 𝑏
1

) −
𝑐
1
𝑢V

𝑢 + 𝐾
1

+ 𝐷
1
Δ𝑢,

𝜕V (𝑥, 𝑡)
𝜕𝑡

= V(𝑟
2
−

𝑐
2
V

𝑢 + 𝐾
2

) + 𝐷
2
ΔV.

(10)

We make a change of variables:

(𝑢, V, 𝑡) = (𝐾�̃�, 𝐾Ṽ,
�̃�

𝑟
1

) . (11)

And for the sake of convenience, we still use variables 𝑢, V
instead of �̃�, Ṽ. Thus, the model to be studied is as follows:

𝜕𝑢

𝜕𝑡
= 𝑑

1
Δ𝑢 + 𝑢(1 − 𝑢 −

𝑚

𝑢 + 𝑏
−

𝑐V
𝑢 + 𝑘

1

) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕V
𝜕𝑡
= 𝑑

2
ΔV + 𝑠V(1 −

V
𝑢 + 𝑘

2

) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕]
=
𝜕V
𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0, V (𝑥, 0) = V

0
(𝑥) ≥ 0, 𝑥 ∈ Ω,

(12)

where

𝑚 =
𝑚

1

𝐾
, 𝑏 =

𝑏
1

𝐾
, 𝑐 =

𝑐
1

𝑟
1

,

𝑘
1
=
𝐾

1

𝐾
, 𝑠 =

𝑟
2

𝑟
1

, 𝑐
2
= 𝑟

2
,

𝑘
2
=
𝐾

2

𝐾
, 𝑑

1
=
𝐷

1

𝑟
1

, 𝑑
2
=
𝐷

2

𝑟
1

.

(13)
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Here, 𝑠 is the growth rate of the predator V. 𝑚𝑢/(𝑢 + 𝑏) is
the term of additive Allee effect, and 𝑚 and 𝑏 are the Allee
effect constants. Ω ⊂ R2 is a bounded domain with smooth
boundary 𝜕Ω, and ] is the outward unit normal vector on 𝜕Ω.
The initial data 𝑢

0
(𝑥) and V

0
(𝑥) are continuous functions on

Ω, and the zero-flux boundary conditions mean that model
(12) is self-contained and has no population flux across the
boundary 𝜕Ω [44, 45].

By the standard theory for semilinear parabolic systems
(see, [46]), we have model (12) that admits a unique classical
solution (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) for all time.

The stationary problem of model (12), which may display
the dynamical behavior of solutions tomodel (12) as time goes
to infinity, satisfies the following elliptic system:

−𝑑
1
Δ𝑢 = 𝑢(1 − 𝑢 −

𝑚

𝑢 + 𝑏
−

𝑐V
𝑢 + 𝑘

1

) , 𝑥 ∈ Ω,

−𝑑
2
ΔV = 𝑠V(1 −

V
𝑢 + 𝑘

2

) , 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
=
𝜕V
𝜕]
= 0, 𝑥 ∈ 𝜕Ω.

(14)

Unless otherwise specified, in this paper, we always assume
that 𝑚 < 𝑏; that is, we only focus on the case of weak Allee
effect.

The rest of the paper is organized as follows. In Section 2,
we investigate the stability of nonnegative constant steady-
state solutions. In Section 3, wemainly give a priori upper and
lower bounds for positive solutions ofmodel (14). In Section 4
we discuss existence and nonexistence of nonconstant posi-
tive solutions, which might give us some suggestions on the
conditions under which the patterns may or may not occur.
In Section 5 we first use the method of linearized stability
analysis to deduce the conditions under which the Turing
instability might occur, and next we perform a series of
numerical simulations to show the occurrence of different
patterns. Finally, in the last section we make a summary to
our results and give some concluding remarks.

2. Dynamics Analysis of Model (12)
2.1. The Existence of the Constant Steady-State Solution. It is
easy to verify that model (12) has the following nonnegative
constant steady-state solutions:

(i) the trivial constant solution 𝐸
0
= (0, 0) (extinction of

two species);
(ii) the semitrivial constant solution 𝐸

1
= (0, 𝑘

2
) (extinc-

tion of the prey);
(iii) the semitrivial constant solution 𝐸

2
= ((1 − 𝑏 +

√(1 − 𝑏)
2
− 4(𝑚 − 𝑏))/2, 0) (extinction of the preda-

tor);
(iv) the unique positive constant solution 𝐸

3
= (𝑢

∗
, V∗)

(coexistence of two species), where V∗ = 𝑢∗ + 𝑘
2
, and

𝑢
∗ is a real positive root of the cubic

𝜓 (𝑤) = 𝑤
3
+ 3𝜂

1
𝑤

2
+ 3𝜂

2
𝑤 + 𝜂

3
= 0, (15)

where 3𝜂
1
= 𝑏 + 𝑐 + 𝑘

1
− 1, 3𝜂

2
= 𝑏𝑐 + 𝑏𝑘

1
+ 𝑐𝑘

2
+𝑚−

𝑏 − 𝑘
1
, 𝜂

3
= 𝑏𝑐𝑘

2
+ 𝑘

1
(𝑚 − 𝑏).

By the transformation 𝑧 = 𝑤 + 𝜂
1
, (15) is reduced to

ℎ (𝑧) = 𝑧
3
+ 3𝑝𝑧 + 𝑞 = 0, (16)

where

𝑝 = 𝜂
2
− 𝜂

2

1
, (17)

𝑞 = 𝜂
3
− 3𝜂

1
𝜂
2
+ 2𝜂

3

1
. (18)

It is worthy to note that if 𝑞 = 𝜂
3
− 3𝜂

1
𝜂
2
+ 2𝜂

3

1
< 0 holds,

(16) has a real positive root. Considering (17) and (18), from
𝑞 = 0, one can determine𝑚 = 𝑚∗, where

𝑚
∗
≜

2𝑏 − 𝑐 − 𝑘
1
+ 1

9 (𝑏 + 𝑐 − 2𝑘
1
− 1)

× (𝑏
2
+ 𝑏 − 𝑏𝑐 − 𝑏𝑘

1
− 2𝑐

2

+4𝑐 − 4𝑐𝑘
1
− 2𝑘

2

1
− 5𝑘

1
+ 9𝑐𝑘

2
− 2) .

(19)

Hence, we have the following lemma regarding the exis-
tence of the positive constant steady-state solution of model
(12).

Lemma 1. If either of the following inequalities holds:

2𝑘
1
+ 1 − 𝑐 − 𝑏 > 0, 0 < 𝑚 < min {𝑏, 𝑚∗

} ;

2𝑘
1
+ 1 − 𝑐 − 𝑏 < 0, 0 < 𝑚

∗
< 𝑚 < 𝑏,

(20)

model (12) has a unique positive constant steady-state solution
𝐸
3
= (𝑢

∗
, V∗).

2.2. Stability of the Constant Steady-State Solution. In this
subsection, we will analyze the asymptotical stability of the
nonnegative constant solutions for the corresponding reac-
tion-diffusion dynamics (12).

For sake of simplicity, we rewrite model (12) in the vecto-
rial form:

w
𝑡
= 𝐷Δw + 𝐻 (w) 𝑥 ∈ Ω, 𝑡 > 0

𝜕w
𝜕]
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

w (𝑥, 0) = (𝑢
0
(𝑥) , V

0
(𝑥)

𝑇
) , 𝑥 ∈ Ω,

(21)

where w = (𝑢, V)𝑇,𝐷 = diag(𝑑
1
, 𝑑

2
), and

𝐻(w) = (
𝑢(1 − 𝑢 −

𝑚

𝑢 + 𝑏
−

𝑐V
𝑢 + 𝑘

1

)

𝑠V(1 −
V

𝑢 + 𝑘
2

)

) . (22)
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Let 0 = 𝜇
0
< 𝜇

1
< 𝜇

2
< ⋅ ⋅ ⋅ be the eigenvalues of

the operator-Δ onΩwith the zero-flux boundary conditions.
And set

X = {w ∈ [𝐻2
(Ω)]

2

| 𝜕]w = 0 on 𝜕Ω} ,

𝐸 (𝜇) = {𝜙 | −Δ𝜙 = 𝜇𝜙 inΩ, 𝜕]𝜙 = 0 on 𝜕Ω} ,

with 𝜇 ∈ R1
,

(23)

{𝜙
𝑖𝑗
| 𝑗 = 1, . . . , dim𝐸(𝜇

𝑖
)} being an orthonormal basis of

𝐸(𝜇
𝑖
), and X

𝑖𝑗
= {c𝜙

𝑖𝑗
| c ∈ R2

}; then

X =
∞

⨁

𝑖=1

X
𝑖
, (24)

where X
𝑖
= ⨁

dim𝐸(𝜇𝑖)

𝑗=1
X

𝑖𝑗
.

Let 𝐸 = (𝑢, V) be any arbitrary constant steady-state solu-
tion of model (12). And the linearization of model (12) at the
constant steady-state solution can be expressed by

w
𝑡
= £ (w) = 𝐷Δw + 𝐽

(𝑢,V)w, (25)

where 𝐽
(𝑢,V) = (

𝜉11 𝜉12

𝜉21 𝜉22
) and

𝜉
11
= 1 − 𝑢 −

𝑚

𝑢 + 𝑏
+ 𝑢(−1 +

𝑚

(𝑢 + 𝑏)
2
)

−
𝑐V

𝑘
1
+ 𝑢

+
𝑐𝑢V

(𝑘
1
+ 𝑢)

2
,

𝜉
12
= −

𝑐𝑢

𝑘
1
+ 𝑢
,

𝜉
21
=

𝑠V2

(𝑢 + 𝑘
2
)
2
,

𝜉
22
= 𝑠 (1 −

V
𝑢 + 𝑘

2

) −
𝑠V

𝑢 + 𝑘
2

.

(26)

From [46], it is known that if all the eigenvalues of the
operator £ have negative real parts, then 𝐸 = (𝑢, V) is
asymptotically stable; if there is an eigenvalue with positive
real part, then𝐸 = (𝑢, V) is unstable; if all the eigenvalues have
nonpositive real parts while some eigenvalues have zero real
parts, then the stability of 𝐸 = (𝑢, V) cannot be determined by
the linearization [10].

For each 𝑖 ≥ 0, X
𝑖
is invariant under the operator £, and

𝜆 is an eigenvalue of £ if and only if 𝜆 is an eigenvalue of the
matrix𝑀

𝑖
= −𝜇

𝑖
𝐷 + 𝐽

(𝑢,V) for some 𝑖 ≥ 0.
In the following, we denote 𝜉[𝑘]

𝑗𝑗
= 𝜉

𝑗𝑗
evaluated at 𝐸

𝑘
, 𝑗 =

1, 2 and 𝑘 = 0, 1, 2, 3. So, the local stability of the constant
steady-state solution can be analyzed as follows.

Theorem 2. For any positive parameters,

(a) the trivial constant solution 𝐸
0
= (0, 0) is unstable;

(b) the semitrivial constant solution 𝐸
1
= (0, 𝑘

2
) is

(b1) locally asymptotically stable if 𝑐 > (𝑘
1
/𝑘

2
) or

(𝑘
1
/𝑘

2
)(1 − 𝑚/𝑏) < 𝑐 ≤ (𝑘

1
/𝑘

2
) holds

(b2) unstable if 𝑐 < (𝑘
1
/𝑘

2
)(1 − 𝑚/𝑏) holds;

(c) the semitrivial constant solution 𝐸
2
= ((1 − 𝑏 +

√(1 − 𝑏)
2
− 4(𝑚 − 𝑏))/2, 0) is unstable.

Proof. The stability of the constant steady-state solution is
reduced to consider the characteristic equation:

det (𝜆𝐼 −𝑀
𝑖
) = 𝜆

2
− tr (𝑀

𝑖
) 𝜆 + det (𝑀

𝑖
) , (27)

with

tr (𝑀
𝑖
) = −𝜇

𝑖
(𝑑

1
+ 𝑑

2
) + 𝜉

11
+ 𝜉

22
,

det (𝑀
𝑖
) = 𝑑

1
𝑑
2
𝜇
2

𝑖
− (𝜉

11
𝑑
2
+ 𝜉

22
𝑑
1
) + det 𝐽

(𝑢,V).

(28)

(a) 𝐽
𝐸0
= (

1−(𝑏/𝑚) 0

0 𝑠
), for 𝑖 = 0; the eigenvalues are 1 −

(𝑏/𝑚) > 0 and 𝑠 > 0, so 𝐸
0
= (0, 0) is unstable.

(b) We can obtain 𝐽
𝐸1
= (

1−(𝑏/𝑚)−(𝑐𝑘2/𝑘1) 0

𝑠 −𝑠
).

(b1) If 𝑘
1
< 𝑐𝑘

2
or 𝑘

1
≥ 𝑐𝑘

2
and 𝑏 (1 − (𝑐𝑘

2
/𝑘

1
)) <

𝑚 < 𝑏 hold, then 1 − (𝑏/𝑚) − (𝑐𝑘
2
/𝑘

1
) < 0, so

for 𝑖 ≥ 0,

tr (𝑀
𝑖
) = −𝜇

𝑖
(𝑑

1
+ 𝑑

2
) + 1 −

𝑏

𝑚
−
𝑐𝑘

2

𝑘
1

− 𝑠 < 0,

det (𝑀
𝑖
) = 𝑑

1
𝑑
2
𝜇
2

𝑖
− (1 −

𝑏

𝑚
−
𝑐𝑘

2

𝑘
1

𝑑
2
− 𝑠𝑑

1
)

− 𝑠 (1 −
𝑏

𝑚
−
𝑐𝑘

2

𝑘
1

) > 0.

(29)

Hence, 𝐸
1
is locally asymptotically stable.

(b2) When 𝑘
1
≥ 𝑐𝑘

2
and 0 < 𝑚 < 𝑏(1 − (𝑐𝑘

2
/𝑘

1
)),

then 1 − (𝑏/𝑚) − (𝑐𝑘
2
/𝑘

1
) > 0. For 𝑖 ≥ 0,

det(𝑀
𝑖
) = −𝑠(1 − (𝑏/𝑚) − (𝑐𝑘

2
/𝑘

1
)) < 0,

which implies that (27) has at least one root
with positive real part. Hence, 𝐸

1
is an unstable

steady-state solution of model (12).

(c) Since 𝜉[2]
11
= −((2√(1 + 𝑏)

2
− 4𝑚(√(1 + 𝑏)

2
− 4𝑚+1+

𝑏−2𝑚))/(𝑏+1+√(1 + 𝑏)
2
− 4𝑚)

2
), 𝜉

[2]

22
= 𝑠, for 𝑖 = 0,

one of the eigenvalues is 𝑠 > 0, so 𝐸
2
is unstable.

The proof is complete.

Straightforward calculations show that

𝐽
𝐸3
= (

𝜉
[3]

11
−
𝑐𝑢

∗

𝑢∗ + 𝑘
1

𝑠 −𝑠

) , (30)

where 𝜉[3]
11
= ((𝑐𝑢

∗
(𝑢

∗
+ 𝑘

2
))/(𝑢

∗
+ 𝑘

1
)
2
) + (𝑚𝑢

∗
/(𝑢

∗
+ 𝑏)

2
) −

𝑢
∗.
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The determinant of 𝐽
𝐸3

is given by

det (𝐽
𝐸
∗)

=
𝑠𝑢

∗
((𝑢

∗
+ 𝑘

1
)
2

((𝑢
∗
+ 𝑏)

2

− 𝑚) + 𝑐(𝑢
∗
+ 𝑏)

2

(𝑘
1
− 𝑘

2
))

(𝑢∗ + 𝑘
1
)
2

(𝑢∗ + 𝑏)
2

;

(31)

then, the sign of det(𝐽
𝐸3
) depends on the factor 𝜙(𝑢∗):

𝜙 (𝑢
∗
) = (𝑢

∗
+ 𝑘

1
)
2

((𝑢
∗
+ 𝑏)

2

− 𝑚) + 𝑐(𝑢
∗
+ 𝑏)

2

(𝑘
1
− 𝑘

2
)

= (𝑢
∗
+ 𝑏 + 𝑘

1
+ 1 − 𝑐) 𝜓 (𝑢

∗
) + 𝜂

1
𝑢
∗2

+ 𝜂
2
𝑢
∗
+ 𝜂

3

= 𝜌
1
𝑢
∗2

+ 𝜌
2
𝑢
∗
+ 𝜌

3
,

(32)

where 𝜓(⋅) is the same definition as (15), and

𝜌
1
= 1 + 𝑏 + 𝑘

1
+ 𝑐

2
+ 𝑐𝑘

1
+ 𝑏𝑘

1
− 2𝑚 − 𝑐𝑏 − 2𝑐𝑘

2
− 2𝑐,

𝜌
2
= − 𝑐𝑘

2
+ 𝑏 − 𝑚 + 2𝑏𝑘

1
− 2𝑐𝑏 + 𝑏

2
− 𝑐𝑘

1
+ 𝑐

2
𝑘
2
+ 𝑐

2
𝑏,

+ 𝑚𝑐 − 𝑏𝑚 − 𝑐𝑏
2
− 4𝑚𝑘

1
+ 𝑘

2

1
− 4𝑐𝑏𝑘

2

− 𝑐𝑘
2
𝑘
1
+ 𝑏

2
𝑘
1
+ 𝑘

1
+ 𝑏𝑘

2

1
+ 2𝑏𝑘

1
𝑐,

𝜌
3
= 𝑏

2
𝑘
1

2
− 𝑏𝑘

1
𝑐 − 𝑚𝑏𝑘

1
+ 𝑚𝑐𝑘

1

+ 𝑏
2
𝑘
1
𝑐 + 𝑐

2
𝑘
2
𝑏 − 𝑏𝑘

1
𝑐𝑘

2

− 𝑐𝑏𝑘
2
+ 𝑏𝑘

1
− 𝑚𝑘

1
+ 𝑏

2
𝑘
1
+ 𝑏𝑘

2

1
− 2𝑚𝑘

2

1
− 2𝑐𝑘

2
𝑏
2
.

(33)

Therefore, we have the following.

Theorem 3. Assume that 𝜉[3]
11
< 𝑠, 𝜌

1
𝑢
∗2
+ 𝜌

2
𝑢
∗
+ 𝜌

3
> 0,

and the first eigenvalue 𝜇
1
subject to the zero-flux boundary

conditions satisfies

𝜇
1
> max{0,

𝜉
[3]

11

𝑑
1

−
𝑠

𝑑
2

} . (34)

Then the positive constant steady-state solution 𝐸
3
= (𝑢

∗
, 𝑢

∗
+

𝑘
2
) of model (15) is uniformly asymptotically stable.

Proof. When 𝜉[3]
11
< 𝑠, 𝜌

1
𝑢
∗2
+ 𝜌

2
𝑢
∗
+ 𝜌

3
> 0, then tr(𝐽

𝐸3
) < 0

and det(𝐽
𝐸3
) > 0. So, for 𝑖 ≥ 0,

tr (𝑀
𝑖
) = − (𝑑

1
+ 𝑑

2
) 𝜇

𝑖
+ 𝜉

[3]

11
− 𝑠

det (𝑀
𝑖
) = 𝜇

𝑖
(𝑑

1
𝑑
2
𝜇
𝑖
− 𝜉

[3]

11
𝑑
2
+ 𝑠𝑑

1
) + det (𝐽

𝐸3
) .

(35)

Note that for any 𝑖 ≥ 0, we have det(𝐴
𝑖
) > 0 > tr(𝐴

𝑖
).

Therefore, the eigenvalues of the matrix −𝜇
𝑖
𝐷 + 𝐽

𝐸3
have

negative real parts. It thus follows from the Routh-Hurwitz
criterion that, for each 𝑖 ≥ 0, the two roots 𝜆

𝑖1
and 𝜆

𝑖2
of

𝜑
𝑖
(𝜆) = 0 all have negative real parts.
In the following, we prove that there exists 𝛿 > 0 such that

Re {𝜆
𝑖1
} ≤ −𝛿, Re {𝜆

𝑖2
} ≤ −𝛿. (36)

Let 𝜆 = 𝜇
𝑖
𝜉; then

𝜑
𝑖
(𝜆) ≜ 𝜇

2

𝑖
𝜉
2
− tr (𝑀

𝑖
) 𝜇

𝑖
𝜉 + det (𝑀

𝑖
) . (37)

Since 𝜇
𝑖
→ ∞ as 𝑖 → ∞, it follows that

lim
𝑖→∞

𝜑
𝑖
(𝜆)

𝜇2
𝑖

= 𝜉
2
+ (𝑑

1
+ 𝑑

2
) 𝜉 + 𝑑

1
𝑑
2
. (38)

By the Routh-Hurwitz criterion, it follows that the two
roots 𝜉

1
, 𝜉

2
of𝜑

𝑖
(𝜆) = 0 all have negative real parts.Thus, there

exists a positive constant 𝑑, such that Re{𝜉
1
},Re{𝜉

2
} ≤ −𝑑. By

continuity, we see that there exists 𝑖
0
such that the two roots

𝜉
𝑖1
, 𝜉

𝑖2
of 𝜑

𝑖
(𝜆) = 0 satisfy Re{𝜉

𝑖1
} ≤ −𝑑/2,Re{𝜉

𝑖2
} ≤ −𝑑/2,

∀𝑖 ≥ 𝑖
0
. In turn, Re{𝜆

𝑖1
},Re{𝜆

𝑖2
} ≤ −𝜇

𝑖
𝑑/2 ≤ −𝑑/2, ∀𝑖 ≥ 𝑖

0
.

Let

−𝛿 = max
1≤𝑖≤𝑖0

{Re {𝜆
𝑖1
} ,Re {𝜆

𝑖2
}} . (39)

Then 𝛿 > 0 and (36) holds for 𝛿 = min{𝛿, (𝑑/2)}.
Consequently, the spectrum of £, which consists of

eigenvalues, lies in {Re 𝜆 ≤ −𝛿}. In the sense of [46], we
obtain that the positive constant steady-state solution 𝐸

3
=

(𝑢
∗
, 𝑢

∗
+𝑘

2
) of model (12) is uniformly asymptotically stable.

This ends the proof.

3. A Priori Estimates

In this section, we give a priori estimates for the steady-state
solutions of model (14). To prove that we recall the following
maximum principle [47].

Lemma4 (see [47,maximumprinciple]). LetΩ be a bounded
Lipschitz domain in R𝑛 and 𝑔 ∈ 𝐶(Ω ×R).

(a) Assume that 𝑤 ∈ 𝐶2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≥ 0 𝑖𝑛 Ω,
𝜕𝑤

𝜕]
≤ 0 𝑜𝑛 𝜕Ω.

(40)

If 𝑤(𝑥
0
) = max

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥

0
)) ≥ 0.

(b) Assume that 𝑤 ∈ 𝐶2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≤ 0 𝑖𝑛 Ω,
𝜕𝑤

𝜕]
≥ 0 𝑜𝑛 𝜕Ω.

(41)

If 𝑤(𝑥
0
) = min

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥

0
)) ≤ 0.

Theorem 5. Suppose that 𝑐(1 + 𝑘
2
) < 𝑘

1
(1 − (𝑚/𝑏)). Any pos-

itive solution (𝑢(𝑥), V(𝑥)) of model (14) satisfies

𝐵 < 𝑢 (𝑥) < 𝐴 𝑖𝑛 Ω,

(1 + 𝑘
2
) 𝐵 < V (𝑥) < (1 + 𝑘

2
) 𝐴 𝑖𝑛 Ω,

(42)
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where

𝐴 =
1

2
(1 −

𝑚

1 + 𝑏
− 𝑘1

+√(1 −
𝑚

1 + 𝑏
− 𝑘1)

2

− 4 (𝑐 (𝐵 + 𝑘2) − 𝑘1 (1 −
𝑚

1 + 𝑏
))) ,

𝐵 =
1

2
(1 −

𝑚

𝑏
− 𝑘1

+√(1 −
𝑚

𝑏
− 𝑘1)

2

− 4 (𝑐 (1 + 𝑘2) − 𝑘1 (1 −
𝑚

𝑏
))) .

(43)

Proof. Assume that (𝑢(𝑥), V(𝑥)) is a positive solution of (14).
Set

𝑢 (𝑥
0

1
) = max

Ω

𝑢 (𝑥) , V (𝑥0
2
) = max

Ω

V (𝑥) ,

𝑢 (𝑥
0

3
) = min

Ω

𝑢 (𝑥) , V (𝑥0
4
) = min

Ω

V (𝑥) .
(44)

Applying Lemma 4 to model (14), we obtain that

1 − 𝑢 (𝑥
0

1
) −

𝑚

𝑢 (𝑥0
1
) + 𝑏

−
𝑐V (𝑥0

1
)

𝑢 (𝑥0
1
) + 𝑘

1

≥ 0,

1 −
V (𝑥0

2
)

𝑢 (𝑥0
2
) + 𝑘

2

≥ 0,

1 − 𝑢 (𝑥
0

3
) −

𝑚

𝑢 (𝑥0
3
) + 𝑏

−
𝑐V (𝑥0

3
)

𝑢 (𝑥0
3
) + 𝑘

1

≤ 0,

1 −
V (𝑥0

4
)

𝑢 (𝑥0
4
) + 𝑘

2

≤ 0.

(45)

By virtue of the definitions of 𝑥0
𝑖
(𝑖 = 1, 2, 3, 4), it follows from

(45) that 𝑢(𝑥0
1
) < 1 and V(𝑥0

2
) < 1 + 𝑘

2
, and

1 − 𝑢 (𝑥
0

1
) −

𝑚

1 + 𝑏
−

𝑐V (𝑥0
1
)

𝑢 (𝑥0
1
) + 𝑘

1

≥ 0,

1 − 𝑢 (𝑥
0

3
) −

𝑚

𝑏
−

𝑐V (𝑥0
3
)

𝑢 (𝑥0
3
) + 𝑘

1

≤ 0,

V (𝑥0
4
) ≥ 𝑢 (𝑥

0

4
) + 𝑘

2
.

(46)

So, we have

𝑢
2
(𝑥

0

1
) − (1 −

𝑚

1 + 𝑏
− 𝑘

1
) 𝑢 (𝑥

0

1
) + 𝑐𝑢 (𝑥

0

3
)

+ 𝑐𝑘
2
− 𝑘

1
(1 −

𝑚

1 + 𝑏
) ≤ 0,

(47)

𝑢
2
(𝑥

0

3
) − (1 −

𝑚

𝑏
− 𝑘

1
) 𝑢 (𝑥

0

3
) + 𝑐 (1 + 𝑘

2
)

− 𝑘
1
(1 −

𝑚

𝑏
) ≥ 0.

(48)

If 𝑐(1 + 𝑘
2
) < 𝑘

1
(1 − (𝑚/𝑏)) or 𝑐(1 + 𝑘

2
) = 𝑘

1
(1 − (𝑚/𝑏)) and

𝑐(1 + 𝑘
2
) > 𝑘

2

2
hold, from (48), we get that 𝑢(𝑥0

3
) > 𝐵.

If 𝑐𝑘
2
< 𝑘

1
(1 − (𝑚/(1 + 𝑏))) or 𝑐𝑘

2
= 𝑘

1
(1 − (𝑚/(1 + 𝑏)))

and 𝑐𝑘
2
> 𝑘

2

2
hold, from (47), we get that

𝑢 (𝑥
0

1
)

≤
1

2
(1 −

𝑚

1 + 𝑏
− 𝑘1

+ √(1 −
𝑚

1 + 𝑏
− 𝑘1)

2

−4 (𝑐 (𝑢 (𝑥3) + 𝑘2)− 𝑘1 (1 −
𝑚

1 + 𝑏
)))

< 𝐴.

(49)

By simple computations, 𝑐(1 + 𝑘
2
) < 𝑘

1
(1 − (𝑚/𝑏)) indicates

that 𝑐𝑘
2
< 𝑘

1
(1 − (𝑚/(1 + 𝑏))). So, if 𝑐(1 + 𝑘

2
) < 𝑘

1
(1 − (𝑚/𝑏))

holds, we can obtain 𝐵 < 𝑢(𝑥) < 𝐴 and (1 + 𝑘
2
)𝐵 < V(𝑥) <

(1 + 𝑘
2
)𝐴. The proof is complete.

In order to obtain the desired bounds, we need to use the
following Harnack inequality due to [48].

Lemma 6 (see [48, Harnack inequality]). Let 𝑤 ∈ 𝐶
2
(Ω) ∩

𝐶
1
(Ω) be a positive solution to Δ𝑤(𝑥) + 𝑐(𝑥)𝑤(𝑥) = 0, where

𝑐 ∈ 𝐶(Ω), satisfying zero-flux boundary conditions.Then there
exists a positive constant 𝐶∗

= 𝐶
∗
(‖𝑐‖

∞
, Ω), such that

max
Ω

𝑤 ≤ 𝐶
∗min

Ω

𝑤. (50)

Theorem7. Let𝑑∗ be an arbitrary fixed positive number.Then
there exist positive 𝐶 = 𝐶(𝑚, 𝑏, 𝑐, 𝑘

1
, 𝑘

2
, Ω), such that if 𝑑

1
≥

𝑑
∗ and𝑑

2
> 0, any positive solution (𝑢, V) ofmodel (14) satisfies

𝐶 < 𝑢 (𝑥) < 1, 𝐶 < V (𝑥) < 1 + 𝑘
2
. (51)

Proof. ByTheorem 5, we note that 𝑢(𝑥) < 1 and V(𝑥) < 1+𝑘
2
.

And it suffices to verify the lower bounds of (𝑢, V). We will
verify the conclusion by a contradiction argument.

On the contrary, suppose that the conclusion is not true;
then there exist sequences {𝑑

1,𝑖
}
∞

𝑖=1
and {𝑑

2,𝑖
}
∞

𝑖=1
with 𝑑

1,𝑖
≥

𝑑, 𝑑
2,𝑖
> 0 and the positive solution (𝑢

𝑖
, V

𝑖
) of model (14)

corresponding to (𝑑
1
, 𝑑

2
) = (𝑑

1,𝑖
, 𝑑

2,𝑖
), such that

min
Ω

𝑢
𝑖
(𝑥) → 0 or min

Ω

V
𝑖
(𝑥) → 0 as 𝑖 → ∞, (52)

and (𝑢
𝑖
, V

𝑖
) satisfies

−𝑑
1,𝑖
Δ𝑢

𝑖
= 𝑢

𝑖
(1 − 𝑢

𝑖
−

𝑚

𝑢
𝑖
+ 𝑏

−
𝑐V

𝑢
𝑖
+ 𝑘

1

) , (𝑥, 𝑦) ∈ Ω,

−𝑑
2,𝑖
ΔV

𝑖
= 𝑠V

𝑖
(1 −

V
𝑖

𝑢
𝑖
+ 𝑘

2

) , (𝑥, 𝑦) ∈ Ω,

𝜕𝑢
𝑖

𝜕]
=
𝜕V

𝑖

𝜕]
= 0, (𝑥, 𝑦) ∈ 𝜕Ω.

(53)
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We observe that Lemma 4 guarantees

𝑘
2
min
Ω

𝑢
𝑖
(𝑥) ≤ min

Ω

V
𝑖
(𝑥) ≤ max

Ω

V
𝑖
(𝑥)

≤ 𝑘
2
+max

Ω

𝑢
𝑖
(𝑥)

(54)

for all 𝑖 ≥ 1 by use of the second equation of (53). On the
other hand, by the Harnack inequality (Lemma 6), we know
that there is a positive constant 𝐶 independent of 𝑖, such that
max

Ω
𝑢
𝑖
(𝑥) ≤ 𝐶min

Ω
𝑢
𝑖
(𝑥) for all 𝑖 ≥ 1. Consequently,

max
Ω

𝑢
𝑖
(𝑥) → 0 as 𝑖 → ∞, (55)

which contradicts Theorem 5. We finish the proof.

4. Nonexistence and Existence of
the Nonconstant Solutions

In this section, we apply the energy method and the top-
ological degree theory [49] to establish some results on
the nonexistence and existence of the positive nonconstant
solutions of model (14), respectively.

4.1. Nonexistence of the Nonconstant Solutions

4.1.1. Nonexistence of Nonconstant Semitrivial Steady-State
Solution. In the case that model (14) has the semitrivial
steady-state solutions (𝑢(𝑥), 0) and (0, V(𝑥)), such (𝑢(𝑥), 0)
and (0, V(𝑥)) should satisfy, respectively,

𝑑
1
Δ𝑢 + 𝑢(1 − 𝑢 −

𝑚

𝑢 + 𝑏
) = 0, 𝑥 ∈ Ω,

𝜕𝑢

𝜕]
= 0, 𝑥 ∈ 𝜕Ω,

(56)

𝑑
2
ΔV + 𝑠V(1 −

V
𝑘
2

) = 0, 𝑥 ∈ Ω,

𝜕V
𝜕]
= 0, 𝑥 ∈ 𝜕Ω.

(57)

Note that 𝜇
1
is the smallest positive eigenvalue of the

operator-Δ inΩ subject to the zero-flux boundary conditions.
Now, using the energy estimates, for the semitrivial solution,
we can claim the following.

Theorem 8. (i) If 𝑑
1
> 1/𝜇

1
, the only nonnegative solu-

tions of model (56) are 𝑢 = 0 and 𝑢 = ((1 − 𝑏 +

√(1 − 𝑏)
2
− 4(𝑚 − 𝑏))/2).

(ii) If 𝑑
2
> 𝑠/𝜇

1
, the only nonnegative solution of model

(57) is V = 𝑘
2
.

Proof. Let 𝑢(𝑥), V(𝑥) be a nonnegative solution ofmodels (56)
and (57), respectively. Denote 𝑢 = |Ω|

−1
∫
Ω
𝑢 𝑑𝑥 and V =

|Ω|
−1
∫
Ω
V 𝑑𝑥. Then ∫

Ω
(𝑢 − 𝑢)𝑑𝑥 = ∫

Ω
(V − V)𝑑𝑥 = 0.

Multiplying the equation in (56) by 𝑢 − 𝑢, we get

𝑑
1
∫
Ω

|∇ (𝑢 − 𝑢)|
2
𝑑𝑥

= ∫
Ω

(𝑢 − 𝑢) 𝑢 (1 − 𝑢 −
𝑚

𝑢 + 𝑏
) 𝑑𝑥

= ∫
Ω

(𝑢 − 𝑢)
2
(1 − (𝑢 + 𝑢) −

𝑚

(𝑢 + 𝑏) (𝑢 + 𝑏)
) 𝑑𝑥

≤ ∫
Ω

(𝑢 − 𝑢)
2
𝑑𝑥.

(58)

Then with the Poincaré inequality

∫
Ω

(𝑢 − 𝑢)
2
𝑑𝑥 ≤

1

𝜇
1

∫
Ω

|∇ (𝑢 − 𝑢)|
2
𝑑𝑥, (59)

we find that

𝑑
1
∫
Ω

|∇ (𝑢 − 𝑢)|
2
𝑑𝑥 ≤

1

𝜇
1

∫
Ω

|∇ (𝑢 − 𝑢)|
2
𝑑𝑥, (60)

which implies that 𝑑
1
< 1/𝜇

1
unless 𝑢 − 𝑢 ≡ 0, and 𝑢must be

a constant solution.
In a similar manner, we multiply the equation in (57) by

(V − V) to have

𝑑
2
∫
Ω

|∇ (V − V)|2𝑑𝑥 = ∫
Ω

𝑠 (1 −
V
𝑘
2

) V (V − V) 𝑑𝑥

= ∫
Ω

𝑠 (1 −
1

𝑘
2

(V + V)) (V − V)2𝑑𝑥

≤ 𝑠∫
Ω

(V − V)2𝑑𝑥

≤
𝑠

𝜇
1

∫
Ω

|∇ (V − V)|2𝑑𝑥.

(61)

In view of 𝑑
2
> 𝑠/𝜇

1
, we have V − V ≡ 0 and Vmust be a con-

stant solution. This ends the proof.

4.1.2. Nonexistence of the Positive Nonconstant Solutions. This
subsection is devoted to the consideration of the nonexistence
for the positive nonconstant solutions of model (12), and
in the below results, the diffusion coefficients do play a
significant role.

Theorem 9. There exists a positive constant 𝑑∗ = 𝑑∗(𝑏, 𝑚, 𝑐,
𝑠, 𝑘

1
, 𝑘

2
, Ω) such that model (14) has no positive nonconstant

solution provided thatmin{𝑑
1
, 𝑑

2
} > 𝑑

∗.
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Proof. Let (𝑢, V) be any positive solution of model (14). Then,
multiplying the first equation of model (14) by (𝑢 − 𝑢),
integrating overΩ and usingTheorem 7, we have that

𝑑
1
∫
Ω

|∇ (𝑢 − 𝑢)|
2
𝑑𝑥

= ∫
Ω

(𝑢 − 𝑢) 𝑢 (1 − 𝑢 −
𝑚

𝑢 + 𝑏
) 𝑑𝑥 − ∫

Ω

𝑐𝑢V (𝑢 − 𝑢)
𝑢 + 𝑘

1

𝑑𝑥

= ∫
Ω

(𝑢 − 𝑢) 𝑢 (1 − 𝑢 −
𝑚

𝑢 + 𝑏
) 𝑑𝑥

− ∫
Ω

𝑐V(𝑢 − 𝑢)2

𝑢 + 𝑘
1

𝑑𝑥 − ∫
Ω

𝑐𝑢V (𝑢 − 𝑢)
𝑢 + 𝑘

1

𝑑𝑥

≤ ∫
Ω

(𝑢 − 𝑢)
2
𝑑𝑥 + ∫

Ω

−𝑐𝑢V (𝑢 − 𝑢)
𝑢 + 𝑘

1

𝑑𝑥.

(62)

In a similar manner, we multiply the second equation in
model (14) by (V − V) to have

𝑑
2
∫
Ω

|∇ (V − V)|2𝑑𝑥

= ∫
Ω

𝑠 (1 −
V

𝑢 + 𝑘
2

) V (V − V) 𝑑𝑥

= ∫
Ω

𝑠 (1 −
V

𝑢 + 𝑘
2

) (V − V)2𝑑𝑥

+ ∫
Ω

𝑠 (1 −
V

𝑢 + 𝑘
2

) V (V − V) 𝑑𝑥

≤ ∫
Ω

𝑠(V − V)2𝑑𝑥 + ∫
Ω

𝑠 (1 −
V

𝑢 + 𝑘
2

) V (V − V) 𝑑𝑥.

(63)

UsingTheorem 7 again, we have that

∫
Ω

−𝑐𝑢V (𝑢 − 𝑢)
𝑢 + 𝑘

1

𝑑𝑥

= ∫
Ω

𝑐𝑢 (
V

𝑢 + 𝑘
1

−
V

𝑢 + 𝑘
1

) (𝑢 − 𝑢) 𝑑𝑥

= ∫
Ω

𝑐𝑢 (𝑢 − 𝑢)

(𝑢 + 𝑘
1
) (𝑢 + 𝑘

1
)
(V (𝑢 − 𝑢) − (𝑢 + 𝑘

1
) (V − V)) 𝑑𝑥

≤
𝑐 (1 + 𝑘

2
)

𝑘
1

∫
Ω

(𝑢 − 𝑢)
2
𝑑𝑥 +

𝑐

𝑘
1

∫
Ω

|𝑢 − 𝑢| |V − 𝑢| 𝑑𝑥

≤
𝑐 (3 + 2𝑘

2
)

2𝑘
1

∫
Ω

(𝑢 − 𝑢)
2
𝑑𝑥 +

𝑐

2𝑘
1

∫
Ω

(V − V)2𝑑𝑥.

(64)

Similarly,

∫
Ω

𝑠 (1 −
V

𝑢 + 𝑘
2

) V (V − V) 𝑑𝑥

= ∫
Ω

𝑠V(
V

𝑢 + 𝑘
2

−
V

𝑢 + 𝑘
2

) (V − V) 𝑑𝑥

= ∫
Ω

𝑠V (V − V)
(𝑢 + 𝑘

2
) (𝑢 + 𝑘

2
)
(V (𝑢 − 𝑢) − (𝑢 + 𝑘

2
) (V − V)) 𝑑𝑥

≤
𝑠V2

(𝑢 + 𝑘
1
) (𝑢 + 𝑘

1
)
∫
Ω

|𝑢 − 𝑢| |V − 𝑢| 𝑑𝑥

≤
𝑠(1 + 𝑘

2
)
2

2𝑘2
1

∫
Ω

(𝑢 − 𝑢)
2
𝑑𝑥 +

𝑠(1 + 𝑘
2
)
2

2𝑘2
1

∫
Ω

(V − V)2𝑑𝑥.

(65)

From thewell-knownPoincaré inequality (62), (63), (64), and
(65), we obtain that

𝑑
1
∫
Ω

|∇ (𝑢 − 𝑢)|
2
𝑑𝑥 + 𝑑

2
∫
Ω

|∇ (V − V)|2𝑑𝑥

≤
1

𝜇
1

(𝛼
1
∫
Ω

|∇ (𝑢 − 𝑢)|
2
𝑑𝑥 + 𝛼

2
∫
Ω

|∇ (V − V)|2𝑑𝑥) ,

(66)

where 𝛼
1
= 1 + (𝑐(3 + 2𝑘

2
)/2𝑘

1
) + (𝑠(1 + 𝑘

2
)
2
/2𝑘

2

1
), 𝛼

2
=

𝑠 + (𝑐/2𝑘
1
) + (𝑠(1 + 𝑘

2
)
2
/2𝑘

2

1
).

This shows that if

min {𝑑
1
, 𝑑

2
} >

1

𝜇
1

max {𝛼
1
, 𝛼

2
} , (67)

then ∇(𝑢 − 𝑢) = ∇(V − V) = 0, which asserts our results.

4.2. Existence of the Nonconstant Positive Solutions. In this
subsection, we will discuss the existence of the positive
nonconstant solution of model (14).

Unless otherwise specified, in this subsection, we always
require that Lemma 1 holds, which guarantees thatmodel (14)
has the unique positive constant solution 𝐸

3
= (𝑢

∗
, 𝑢

∗
+ 𝑘

2
).

From now on, we denote w
0
= 𝐸

3
.

Let X be the space defined in (23) and let

X+
= {(𝑢, V) ∈ X 𝑢, V > 0 on Ω} ,

𝐵 (𝐶) = {(𝑢, V) ∈ X𝐶−1
< 𝑢, V < 𝐶 on Ω} , 𝐶 > 0.

(68)

We write model (14) in the form:

−Δw = G (w) , w ∈ X+
,

𝜕]w = 0 on 𝜕Ω,
(69)

where

G (w) = (

𝑢

𝑑
1

(1 − 𝑢 −
𝑚

𝑢 + 𝑏
−

𝑐V
𝑢 + 𝑘

1

)

𝑠V
𝑑
2

(1 −
V

𝑢 + 𝑘
2

)

) . (70)
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Then w is a positive solution of model (69) if and only if w
satisfies

F (w) = w − (I − Δ)−1 {G (w) + w} = 0, in X+
, (71)

where (I − Δ)−1 is the inverse operator of I − Δ subject to the
zero-flux boundary condition. Then

∇F (w
0
) = I − (I − Δ)−1 (I +A) , (72)

where

A ≜ ∇G (w
0
) = (

𝜉
[3]

11

𝑑
1

−
𝑐𝑢

∗

𝑑
1
(𝑢∗ + 𝑘

1
)

𝑠

𝑑
2

−
𝑠

𝑑
2

). (73)

If∇F(w
0
) is invertible, byTheorem 2.8.1 of [50] the index

ofF at w
0
is given by

index (F,w
0
) = (−1)

𝛾
, (74)

where 𝛾 is themultiplicity of negative eigenvalues of∇F(w
0
).

On the other hand, using the decomposition (24), we have
that X

𝑖
is an invariant space under ∇F(w

0
) and 𝜉 ∈ R is an

eigenvalue of ∇F(w
0
) in X

𝑖
, if and only if 𝜉 is an eigenvalue

of (𝜇
𝑖
+ 1)

−1
(𝜇

𝑖
I −A). Therefore, ∇F(w

0
) is invertible, if and

only if for any 𝑖 ≥ 0 the matrix 𝜇
𝑖
I −A is invertible.

Let 𝑚(𝑢
𝑖
) be the multiplicity of 𝜇

𝑖
. For the sake of

convenience, we denote

𝐻(𝑑
2
, 𝑑

2
, 𝜇) = det (𝜇I −A) . (75)

Then, if 𝜇
𝑖
I − A is invertible for any 𝑖 ≥ 0, with the same

arguments as in [51], we can assert the following conclusion.

Lemma 10. Assume that, for all 𝑖 ≥ 0, the matrix 𝜇
𝑖
I − A is

nonsingular; then

index (F,w
0
) = (−1)

𝛾
, 𝑤ℎ𝑒𝑟𝑒 𝛾 = ∑

𝑖≥0,𝐻(𝑢𝑖)<0

𝑚(𝑢
𝑖
) .

(76)

To compute index(F,w
0
), we have to consider the sign of

𝐻(𝜇). A straightforward computation yields

𝐻(𝑑
2
, 𝑑

2
, 𝜇) = 𝜇

2
− 𝜃

1
𝜇 + 𝜃

2
, (77)

where 𝜃
1
= (𝜉

[3]

11
/𝑑

1
)−(𝑠/𝑑

2
), 𝜃

2
= (𝑠/𝑑

1
𝑑
2
)((𝑐𝑢

∗
/(𝑢

∗
+𝑘

1
))−

𝜉
[3]

11
).
If 𝜃2

1
− 4𝜃

2
> 0, then 𝐻(𝑑

2
, 𝑑

2
, 𝜇) = 0 has two positive

solutions 𝜇± given by

𝜇
±
=
1

2
(𝜃

1
± √𝜃2

1
− 4𝜃

2
) . (78)

Theorem 11. Assume that 𝜃2
1
− 4𝜃

2
> 0. If 𝜇− ∈ (𝜇

𝑖
, 𝜇

𝑖+1
) and

𝜇
+
∈ (𝜇

𝑗
, 𝜇

𝑗+1
) for some 0 ≤ 𝑖 < 𝑗, and ∑𝑗

𝑘=𝑖+1
𝑚(𝑢

𝑘
) is odd,

then model (14) has at least one nonconstant solution.

Proof. ByTheorem 9, we can fixed 𝑑
1
> 𝑑

1
and 𝑑

2
> 𝑑

2
such

that

(i) model (12) with diffusion coefficients 𝑑
1
and 𝑑

2
has

no nonconstant solutions;
(ii) 𝐻(𝑑

1
, 𝑑

2
, 𝜇) > 0 for all 𝜇 ≥ 0.

By virtue of Theorem 7, there exists a positive constant
𝑀 = 𝑀(𝑚, 𝑏, 𝑐, 𝑘

1
, 𝑘

2
) such that𝑀−1

< 𝑢, V < 𝑀.
Set

M = {(𝑢, V) ∈ 𝐶 (Ω) × 𝐶 (Ω) : 𝑀−1
< 𝑢, V < 𝑀 in Ω} ,

(79)

and define

Ψ :M × [0, 1] → 𝐶(Ω) × 𝐶 (Ω) (80)

by

Ψ (w, 𝑡) = (I − Δ)−1 {G (w, 𝑡) + w} , (81)

where

G (w, 𝑡)

= (

(𝑡𝑑
1
+ (1 − 𝑡) 𝑑

1
)
−1

(𝑢(1 − 𝑢 −
𝑚

𝑢 + 𝑏
−

𝑐V
𝑢 + 𝑘

1

))

(𝑡𝑑
2
+ (1 − 𝑡) 𝑑

2
)
−1

(𝑠V(1 −
V

𝑢 + 𝑘
2

))

) .

(82)

It is clear that solving model (14) is equivalent to finding
a fixed point of Ψ(w, 1) in M. Further, by virtue of the
definition of M, we have that Ψ(w, 1) has no fixed point in
𝜕M for all 0 ≤ 𝑡 ≤ 1.

Since Ψ(w, 𝑡) is compact, the Leray-Schauder topological
degree deg(I − Ψ(w, 𝑡),M, 0) is well defined. From the
invariance of Leray-Schauder degree at the homotopy, we
deduce

deg (I − Ψ (w, 1) ,M, 0) = deg (I − Ψ (w, 0) ,M, 0) . (83)

Clearly, I−Ψ(w, 1) = F. Thus, if model (14) has no other
solutions except the constant one w

0
, then Lemma 10 shows

that

deg (I − Ψ (w, 1) ,M, 0) = index (F,w
0
)

= (−1)
∑
𝑗

𝑘=𝑖+1
𝑚(𝑢𝑘) = −1.

(84)

On the contrary, by the choice of 𝑑
1
and 𝑑

2
, we have that

w
0
is the only solution of Ψ(w, 0) = w. Furthermore, by (ii)

above, we have

deg (I − Ψ (w, 0) ,M, 0) = index (I − Ψ (w, 0) ,w
0
) = 1.

(85)

From (83)–(85), we get a contradiction, and the proof is
completed.
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Corollary 12. Let𝑑
2
be fixed. If 𝜉[3]

11
> 0 and all the eigenvalues

𝜇
𝑖
have odd multiplicity, then, there exists a sequence of inter-

vals {(𝑘
𝑛
, 𝐾

𝑛
)} with 0 < 𝑘

𝑛
< 𝐾

𝑛
< 𝑘

𝑛+1
→ 0 (as 𝑛 → ∞)

such that the steady-state model (14) has at least one noncon-
stant solution for all 𝑑

1
∈ ⋃

𝑛≥1
(𝑘

𝑛
, 𝐾

𝑛
).

Corollary 13. Let 𝑑
1
be fixed. If 𝜉[3]

11
> 0 and ∑

𝑖≥0,0<𝜇𝑖<𝜉
[3]

11

𝑚(𝜇
𝑖
) is odd, then there exists 𝐷∗

> 0 such that the steady-
state model (14) has at least one nonconstant solution for any
𝑑
2
> 𝐷

∗.

We omit the proofs of Corollaries 12 and 13 here and refer
the reader to more detailed proofs in [52].

Remark 14. Our results suggest that if the parameters are
properly chosen, both the general stationary pattern and
more interesting Turing pattern can arise as a result of
diffusion.

5. Turing Instability and Pattern Formation

5.1. Turing Instability. In this subsection, we mainly focus
on the effects of reaction-diffusion on Turing instability for
model (12).

Let us consider the spatially homogeneous system corre-
sponding to model (12):

𝑑𝑢

𝑑𝑡
= 𝑢(1 − 𝑢 −

𝑚

𝑢 + 𝑏
−

𝑐V
𝑢 + 𝑘

1

) , 𝑡 > 0,

𝑑V
𝑑𝑡
= 𝑠V(1 −

V
𝑢 + 𝑘

2

) , 𝑡 > 0.

(86)

Mathematically speaking, a positive constant steady-state
solution 𝐸

3
is Turing instability, which was emphasized by

Turing in his pioneering work in 1952 [53], meaning that it is
an asymptotically stable steady-state solution of model (86)
but is unstable with respect to the solutions of spatial model
(12). Since 𝜉[33]

11
− 𝑠 < 0, then tr(𝐴

𝑖
) < 0 (the matrix 𝐴

𝑖
=

−𝜇
𝑖
𝐷 + 𝐽

𝐸3
) is always true. Hence 𝐴

𝑖
has an eigenvalue with

a positive real part; then it must be a real value and the other
eigenvalue must be a negative real one. As a consequence, we
can obtain the following results.

Theorem 15. Assume that the following conditions are true:

(a) 𝜉[3]
11
< 𝑠;

(b) 𝜂
1
𝑢
∗2
+ 𝜂

2
𝑢
∗
+ 𝜇

3
> 0;

(c) 𝑑
2
𝜉
[3]

11
− 𝑑

1
𝑠 > 2√𝑑1𝑑2 det 𝐽𝐸3 ;

then the positive constant steady-state solution 𝐸
3
= (𝑢

∗
, 𝑢

∗
+

𝑘
2
) of model (12) is Turing instability if 0 < 𝑘

1
< 𝜇

𝑖
< 𝑘

2
for

some 𝜇
𝑖
, where

𝑘
1
=

𝑑
2
𝜉
[3]

11
− 𝑑

1
𝑠 − √(𝑑

2
𝜉
[3]

11
− 𝑑

1
𝑠)

2

− 4𝑑
1
𝑑
2
det 𝐽

𝐸3

2𝑑
1
𝑑
2

,

𝑘
2
=

𝑑
2
𝜉
[3]

11
− 𝑑

1
𝑠 + √(𝑑

2
𝜉
[3]

11
− 𝑑

1
𝑠)

2

− 4𝑑
1
𝑑
2
det 𝐽

𝐸3

2𝑑
1
𝑑
2

.

(87)

Proof. Using the same approach as inTheorem 3,we have that
the positive constant steady state solution 𝐸

3
of model (86) is

asymptotically stable provided (a) and (b).
For the Turing instability, we must have det(𝑀

𝑖
) < 0 for

some 𝜇
𝑖
. And we notice that det(𝑀

𝑖
) achieves its minimum:

min
𝜇𝑖

det (𝑀
𝑖
) =

4𝑑
1
𝑑
2
det (𝐽

𝐸3
) − (𝑑

2
𝜉
[3]

11
− 𝑑

1
𝑠)

2

4𝑑
1
𝑑
2

(88)

at the critical value 𝜇∗ > 0 when 𝜇∗ = ((𝑑
2
𝜉
[3]

11
− 𝑑

1
𝑠)/2𝑑

1
𝑑
2
).

We now discuss the conditions for Turing instability in
the further calculation. The condition min

𝜇𝑖
det(𝑀

𝑖
) < 0 is

equivalent to 4𝑑
1
𝑑
2
det(𝐽

𝐸𝑒2
)−(𝑑

2
𝜉
[3]

11
−𝑑

1
𝑠)

2
< 0. In this case,

det(𝑀
𝑖
) = 0 has two positive roots 𝑘

1
and 𝑘

2
which satisfy

𝑘
1
=

𝑑
2
𝜉
[3]

11
− 𝑑

1
𝑠 − √(𝑑

2
𝜉
[3]

11
− 𝑑
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Therefore, if we can find some 𝜇
𝑖
such that 𝑘

1
< 𝜇

𝑖
< 𝑘

2
, then

det(𝐴
𝑖
) < 0. By [46] it follows that 𝐸

3
is uniformly asymptot-

ically instable. This finishes the proof.

5.2. Pattern Formation. In this section, we perform extensive
numerical simulations of the spatially extendedmodel (12) in
two-dimensional space, and the qualitative results are shown
here. All our numerical simulations employ the zero-flux
boundary conditions with a system size of 100 × 100.

The numerical integration of model (12) is performed by
using a finite difference approximation for the spatial deriva-
tives and an explicit Euler method for the time integration
[54] with a time stepsize of 1/100. The initial condition is
always a small amplitude random perturbation around the
positive constant steady-state solution 𝐸

3
= (𝑢

∗
, 𝑢

∗
+ 𝑘

2
).

After the initial period during which the perturbation spread,
the model goes either into a time-dependent state, or to an
essentially steady-state solution (time independent).

We use the standard five-point approximation [55] for the
2D Laplacian with the zero-flux boundary conditions. More
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Figure 1: The formation of spots patterns of prey 𝑢 with parameters 𝑏 = 0.495, 𝑐 = 0.5, 𝑘
1
= 0.3, 𝑘

2
= 0.2, 𝑚 = 0.32, 𝑠 = 0.25, 𝑑

1
= 0.1, and

𝑑
2
= 2. Time: (a) 𝑡 = 0, (b) 𝑡 = 300, (c) 𝑡 = 1000, and (c) 𝑡 = 3000.

precisely, the concentrations (𝑢𝑛+1
𝑖,𝑗
, V𝑛+1

𝑖,𝑗
) at the moment (𝑛 +

1)𝜏 at the mesh position (𝑥
𝑖
, 𝑦

𝑗
) are given by
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with the Laplacian defined by

Δ
ℎ
𝑢
𝑛

𝑖,𝑗
=
𝑢
𝑛

𝑖+1,𝑗
+ 𝑢

𝑛

𝑖−1,𝑗
+ 𝑢

𝑛
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+ 𝑢

𝑛

𝑖,𝑗−1
− 4𝑢

𝑛

𝑖,𝑗

ℎ2
, (91)

where 𝑓(𝑢, V) = 𝑢(1 − 𝑢 − (𝑚/(𝑢 + 𝑏))) − (𝑐𝑢V/(𝑢 + 𝑘
1
)) and

𝑔(𝑢, V) = 𝑠V(1 − (V/(𝑢 + 𝑘
2
))), and the space stepsize ℎ = 1/3.

In the numerical simulations, different types of dynamics
are observed and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.

In this section, we show the distribution of prey 𝑢, for
instance. We have taken some snapshots with red (blue)
corresponding to the high (low) value of prey 𝑢.

Now, we show the Turing pattern for the different values
of the parameters. Via numerical simulation, one can see that
the model dynamics exhibits spatiotemporal complexity of
pattern formation, including spots, stripes, and holes Turing
patterns.

In Figure 1, we show the time process of spots pattern
formation of the prey 𝑢 at 𝑡 = 0, 300, 1000, 3000 for 𝑏 = 0.495,
𝑐 = 0.5, 𝑘

1
= 0.3, 𝑘

2
= 0.2, 𝑚 = 0.32, 𝑠 = 0.25, 𝑑

1
= 0.1,

and 𝑑
2
= 2. In this case, there appears a competition between

stripes and spots.The pattern takes a long time to settle down;
starting with a homogeneous state 𝐸

3
= (0.066566, 0.266566)

(cf., Figure 1(a)), the random perturbations lead to the for-
mation of stripes and spots (cf., Figure 1(b)), and the later
random perturbations make these stripes decay and end with
the time-independent regular spots pattern (cf., Figure 1(d)),
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Figure 2: The formation of stripes patterns of prey 𝑢 with parameters 𝑏 = 0.495, 𝑐 = 0.5, 𝑘
1
= 0.3, 𝑘

2
= 0.2, 𝑚 = 0.3, 𝑠 = 0.25, 𝑑

1
= 0.1, and

𝑑
2
= 2. Time: (a) 𝑡 = 0, (b) 𝑡 = 300, (c) 𝑡 = 1000, and (c) 𝑡 = 3000.

which is isolated zones with low prey densities. Ecologically,
spots pattern shows that the prey population is driven by
predators to a very high level in those regions.The final result
is the formation of patches of high prey density surrounded
by areas of high prey densities; that is to say, under the control
of these parameters, the prey is predominant in the area.

In Figure 2, we show the time process of stripes pattern
formation of the prey 𝑢 at 𝑡 = 0, 300, 1000, 3000 for 𝑏 =
0.495, 𝑐 = 0.5, 𝑘

1
= 0.3, 𝑘

2
= 0.2,𝑚 = 0.3, 𝑠 = 0.25, 𝑑

1
= 0.1,

𝑑
2
= 2. In this case, starting with a homogeneous state

𝐸
3
= (0.142318, 0.342318) (cf., Figure 2(a)), the random

perturbations lead to the formation of stripes and spots (cf.,
Figure 2(b)), and the later random perturbations make these
stripes decay and end with the time-independent regular
spots pattern (cf., Figure 2(d)).

In Figure 3, we show the time process of holes pattern
formation of the prey 𝑢 at 𝑡 = 0, 300, 1000, 3000 for 𝑏 = 0.4,
𝑐 = 0.5, 𝑘

1
= 0.3, 𝑘

2
= 0.2,𝑚 = 0.24, 𝑠 = 0.25, 𝑑

1
= 0.1, and

𝑑
2
= 2. In this case, starting with a homogeneous state 𝐸

3
=

(0.2, 0.4) (cf., Figure 3(a)), the random perturbations lead
to the formation of independent regular holes pattern (cf.,
Figure 1(d)), which is isolated zones with low prey densities.

Comparing Figure 1(d) with Figure 3(d), we find that they
share similarities. Figure 1(d) consists of red (maximum den-
sity of 𝑢) spots on a blue (minimumdensity of 𝑢) background;
that is, the preys are isolated zones with high population
density. Figure 3(d) consists of blue (minimum density of 𝑢)
spots on a red (maximum density of 𝑢) background; that
is, the preys are isolated zones with low population density.
For the sake of learning the pattern dynamics of model
(12) further, we illustrate the three-dimensional patterns
in the space (𝑢, 𝑥, 𝑦). From Figure 4, one can realize the
relations of the patterns (e.g., Figures 4(a) and 4(c)) with
their corresponding numerical solutions (e.g., Figures 4(b)
and 4(d)). In fact, the patterns (e.g., Figures 1–3) are the
projections in 𝑥𝑦 plane of the numerical solutions 𝑢(𝑥, 𝑦, 𝑡)
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Figure 3: The formation of holes patterns of prey 𝑢 with parameters 𝑏 = 0.4, 𝑐 = 0.5, 𝑘
1
= 0.3, 𝑘

2
= 0.2, 𝑚 = 0.24, 𝑠 = 0.25, 𝑑

1
= 0.1, and

𝑑
2
= 2. Time: (a) 𝑡 = 0, (b) 𝑡 = 300, (c) 𝑡 = 1000, and (c) 𝑡 = 3000.

to the model (12). In the software MATLAB, imagesc(u)
displays 𝑢(𝑥, 𝑦; 𝑡) as an image; each numerical solution of
𝑢(𝑥, 𝑦; 𝑡) corresponds to a rectangular area in the image; that
is, the values of the numerical solutions 𝑢(𝑥, 𝑦; 𝑡) to themodel
(12) are indices into the current colormap that determine the
color of each patch.

6. Concluding Remarks

In the current investigation, we propose and analyze the dy-
namics of a reaction-diffusive Leslie-Gower predator-prey
model with the additive Allee effect on prey. We are mainly
concerned with the coexistence of the predator and prey and
focus on the case of weak Allee effect (i.e., 𝑚 < 𝑏). The
value of this study is twofold. First, it shows the nonexistence
and existence of the nonconstant positive steady-states, which
guarantees the existence of Turing patterns. Second, it rigor-
ously proves Turing instability by linear stability analysis and
illustrates all three categories of Turing patterns close to the

onset of Turing bifurcation via numerical simulations which
indicates that the model dynamics exhibits complex pattern
replication.

We summarize our findings as well as their related
biological implications as follows.

(1) Theorems 2 and 3 provide us with a full picture on
the dynamics of the model with weak Allee effect.
The dynamics of the model introduced can be very
complicated due to Allee effects. InTheorem 2(a), we
find that the trivial constant solution𝐸

0
= (0, 0) of the

model which is subject to an Allee effect is unstable,
which is exactly consistent with the model without
Allee effect [24–26]. This demonstrates that there is
no extinction of a species in the present of Allee
effects. By comparing them to their corresponding
models without Allee effect, we can conclude that
Allee effect can make the extinction of the prey
although the maximum predation rate 𝑐 is small
(see Theorem 2(b)). In this case, the predator species
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Figure 4: Pattern dynamics of model (12) in two- and three-dimensional space. (a) spots pattern; (b) spots pattern in three-dimensional
space; (c) holes pattern; (d) holes pattern in three-dimensional space.

intends to change its food habits as predator has
sufficient resources for alternative foods [56]. Fur-
thermore, fromTheorem 3, one can obtain that 𝐸

3
=

(𝑢
∗
, 𝑢

∗
+ 𝑘

2
) is locally uniformly asymptotically sta-

ble, which means that nonconstant positive solution
(stationary pattern) of model (12) unlikely exists.

(2) Theorems 9 and 11 indicate the existence and nonex-
istence of nonconstant steady-states with respect to
various parameters. Roughly speaking, we can state
that there is no pattern if the diffusion coefficients are
suitably chosen. While pattern occurs provided that
𝜃
1

1
− 4𝜃

2
> 0 and all the eigenvalues 𝜇

𝑖
have odd

multiplicity (seeTheorem 11).Hence, we can conclude
that themultiplicity of patterns seems very interesting
from the viewpoint of mathematics.

(3) Theorem 15 and numerical simulations give us the
existence of conditions of Turing instability and the
types of Turing pattern. From the numerical results,
one can see that our model has rich and complex
spatiotemporal behavior.We find three typical Turing
patterns, that is, stripes pattern, spot-stripe mixtures
pattern, and spots pattern. That is to say, the effect of
the Allee effect for pattern formation is tremendous.
Therefore, the results of the present paper and [24,
25] show that the types of Turing pattern in the
biological models depend on the effect of the Allee

effect. In other words, the Allee effect may be one of
the determining factors in producing spots and spot-
stripe mixtures Turing patterns.

It is believed that our results made in this investigation
related to predator-prey interactions due to the effect of Allee
effect would certainly be of some help to theoretical mathe-
maticians and the ecologists who are engaged in performing
experimental work. Further studies are necessary to analyze
the behaviour of a reaction-diffusion predator-prey model
with the strong Allee effect (i.e.,𝑚 > 𝑏).
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