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Compressive sensing (CS) reconstruction of a spectrum-sparse signal from undersampled data is, in fact, an ill-posed problem.
In this paper, we mathematically prove that, in certain cases, the exact CS reconstruction of a spectrum-sparse signal from
undersampled data is impossible.Thenwe present the exact CS reconstruction condition of undersampled spectrum-sparse signals,
which is valuable for digital signal compression.

1. Introduction

In digital signal processing, the Nyquist sampling theorem
indicates that the sampling rate must be twice as large as
the bandwidth of the analog signal at least for acquiring the
intact information of the signal. Restricted by the theorem, it
is a challenge to digitize ultrawide bandwidth (UWB) signals
because of the unfeasible high sampling rate requirement
for the analog-to-digital converter (ADC). On the other
hand, the mass sampling data have to be compressed to save
the storage, which means that many data are abandoned in
the compression processing. Hence, why not to obtain the
compressed data of signals directly rather than to sample
signal with ultrahigh rate and then abandon most of the
samplings?

The emerging compressive sensing (CS) theory [1] pro-
vides an effective approach to solve this problem, which has
attracted much attention recently [2–7]. Consider a signal
x ∈ C𝑁×1 and assume it is sparse on an orthogonal basis
Ψ = {𝜓

𝑖
} with 𝐾-sparse representation (𝐾 ≪ 𝑁) as x =

Ψ𝜃, where 𝜃 is an 𝑁 × 1 column vector with 𝐾 nonzero
elements. Let Φ denote a measurement matrix and let y be

the measurements vector of signal x; it can be expressed as
y = Φx = ΦΨ𝜃, where Φ is a 𝑀 × 𝑁 matrix, 𝑀 denotes
the number of measurements, and 𝐾 < 𝑀 ≪ 𝑁. Therefore,
the sampling rate is reduced significantly compared with
Nyquist rate. Generally, recovery of the signal x from the
measurements y is ill-posed because 𝑀 ≪ 𝑁 [8]. However,
the CS theory demonstrates that if ΦΨ has the Restricted
Isometry Property (RIP), then it is indeed possible to recover
the 𝐾 largest 𝜃

𝑥
(𝑖) when 𝑀 is large enough [3, 9]. It is

difficult to validate if a measurement matrix satisfies the RIP
constraints given in [9] directly, but fortunately, the RIP is
closely related to an incoherency between Φ and Ψ, where
the rows of Φ do not provide a sparse representation of the
columns ofΨ and vice versa [4]. Furthermore, to ensure exact
reconstruction, two different 𝐾-sparse signals may not be
projected by a measurement matrix into the same sampling
ensemble [1, 2, 10].

When x is sparse in spectrum, the𝑁-dimensional inverse
discrete Fourier transform (IDFT) matrix (D−1

𝑁
) can be

chosen as the sparse representation matrix (Ψ). In this case,
an easy way to obtain the compressed data of the signal is
to undersample the signal with lower sampling rate than
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the Nyquist rate [2]. Therefore the measurement matrix is in
fact a partial unit matrix [11]. It is important to investigate the
mathematical properties of compressive sensing reconstruc-
tion for this kind of undersampled spectrum-sparse signal.
In the following, we mathematically prove that the exact CS
reconstruction of a spectrum-sparse signal from undersam-
pled data is impossible under certain conditions. In order
to reconstruct a spectrum-sparse signal from undersampled
data exactly, the corresponding exact CS reconstruction
condition is presented, which is valuable for digital signal
compression.

2. Inexact CS Reconstruction Cases

When a signal x is sparse in spectrum, the IDFT matrix D−1
𝑁

and partial unit matrix can be chosen as the sparse repre-
sentation matrix and the measurement matrix, respectively.
By defining the downsampling rate 𝑟 to be the ratio between
the Nyquist rate and the undersampling rate, an inexact CS
reconstruction case can be depicted as the following theorem.

Theorem 1. Suppose x ∈ C𝑁×1 with Nyquist sampling rate
𝑓
𝑠
is 𝐾-sparse in spectrum domain; y = {𝑥

𝑚𝑟+𝑏
| 𝑚𝑟 + 𝑏 ≤

𝑁, 𝑚 > 0, 𝑚 ∈ N} is an arbitrary subset of x, where 𝑟 is the
downsampling rate, 𝑟 ≥ 2, and 𝑟 ∈ N, 𝑏 is a constant and
𝑏 ∈ N, and N is the set of all natural numbers. x cannot be
exactly reconstructed from y by CS.

Proof. According to the expression of y, we have

y
𝑀×1

= Φ
𝑀×𝑁

x
𝑁×1

= Φ
𝑀×𝑁
Ψ
𝑁×𝑁
𝜃
𝑁×1

, (1)

where 𝜃 is 𝐾-sparse; Φ is the measurement matrix with size
𝑀×𝑁:

Column
index

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

··
·

0

0 ,

0

0 0

··
·

0

0

0

0

1

··
·

1

0

0

0

↓

𝑟 + 1

1

0

↓

2𝑟 + 1

1

0

↓

(𝑀− 1)𝑟 + 1

··
·

0

1

↓

𝚽M×N =

[[[[[[[[[[
[

]]]]]]]]]]
]

[[[[[[[[[[[[
[

1 1 1 · · · 1

1 W−1
N W−2

N · · · W(N−1)
N

1 W−2
N W−4

N · · · W
−2(N−1)
N...

...
...

...
...

1 W−(N−1)
N W−2(N−1)

N · · · W−(N−1)2

N

]]]]]]]]]]]]
]

,ΨN×N = D−1
N =

1

N

WN = exp .(−j 2𝜋
N
)
(2)

Equation (1) is equivalent to

𝜃
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= D
𝑀
y
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𝑀
Φ
𝑀×𝑁
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, (3)

where D
𝑀

is the 𝑀-dimensional DFT matrix. Because y is
isometrically downsampled from x, 𝜃 is also sparse. In (3),
we define a new measurement matrixΦ

1
= D
𝑀
Φ
𝑀×𝑁

and it
can be expressed as
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According to CS theory, if Φ
1
D−1
𝑁

satisfies the RIP, 𝜃 can be
exactly reconstructed. Let 𝜙

1𝑎
be the 𝑎th row ofΦ

1
; we have
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where 𝑊
𝑀

= exp(−𝑗2𝜋/𝑀). Because Rank(D−1
𝑁
) = 𝑁,

according to Cramer’s Rule, the equation D−1
𝑁
𝛼 = 𝜙
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has

unique solution; that is,
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Figure 1: The sparsity of 𝛼
𝑛
when𝑁 = 1024,𝑀 = 64, 𝑟 = 16, and 𝑎 = 40. (a) {|𝛼

𝑛
|}; (b) {real(𝛼

𝑛
)}; (c) {imag(𝛼

𝑛
)}.

Let 𝛼
𝑛
be the 𝑛th element of 𝛼; it can be obtained
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.

(7)

It peaks at
(𝑛 − 1) 𝑟

𝑁

= −

𝑎 − 1

𝑀

+ 𝑙, 𝑙 ∈ Z, (8)

whereZ is set of all nonnegative integers. Because𝑁 = (𝑀−

1)𝑟 + 1, we have

𝑛 = −𝑎 + 2 +

(𝑟 − 1) (𝑎 − 1)

𝑀𝑟

+ 𝑙 (𝑀 − 1 +

1

𝑟

) (9)

and 𝑛 is a natural number; hence

𝑛 = [−𝑎 + 2 +

(𝑟 − 1) (𝑎 − 1)

𝑀𝑟

+ 𝑙 (𝑀 − 1 +

1

𝑟

)] , (10)

where [(⋅)] returns the round of (⋅). When 𝑛 does not satisfy
(10), |𝛼

𝑛
| is relatively quite small. It indicates that {|𝛼

𝑛
|} is

sparse. Similarly, it can be proved that both {real(𝛼
𝑛
)} and

{imag(𝛼
𝑛
)} are also sparse. Therefore, 𝜙

1𝑎
can be sparsely

represented by the columns of D−1
𝑁
; that is, Φ

1
D−1
𝑁

does not
satisfy the RIP, and 𝜃 cannot be exactly reconstructed.

Figure 1 shows the values of {|𝛼
𝑛
|}, {real(𝛼

𝑛
)}, and

{imag(𝛼
𝑛
)}when𝑁 = 1024, 𝑀 = 64, 𝑟 = 16, and 𝑎 = 40. It is

obvious that {|𝛼
𝑛
|}, {real(𝛼

𝑛
)}, and {imag(𝛼

𝑛
)} are sparse and

the locations of peaks agree well with the theoretical values
determined by (10).

ByTheorem 1 and its proof, we can also obtain the follow-
ing corollary.

Corollary 2. Suppose x ∈ C𝑁×1 with Nyquist sampling rate
𝑓
𝑠
is 𝐾-sparse in spectrum domain; x = {𝑥

𝑚𝑟+𝑏
| 𝑚𝑟 + 𝑏 ≤

𝑁, 𝑚 > 0, 𝑚 ∈ N} is an arbitrary subset of x, where 𝑟 is the
downsampling rate, 𝑟 ≥ 2, and 𝑟 ∈ N and 𝑏 is a constant and
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𝑏 ∈ N. Let y be an arbitrary subset of x; then x cannot be
exactly reconstructed from y by CS.

Proof. Assume the length of x is𝑀 and we have

y = Φ
2
x = Φ

2
ΦD−1
𝑁
𝜃, (11)

where Φ
2
is a partial unit matrix. Assuming the size of Φ

2
is

𝐿×𝑀(𝐿 ≤ 𝑀), the solution set of (1) is a subset of the solution
set of (11). According toTheorem 1, the solutions of (1) are not
determined; therefore, 𝜃 in (11) cannot be determined and x
cannot be exactly reconstructed.

Corollary 2 indicates that, if the set of undersamplings is
only a subset of the set of signals’ samplings with sampling
rate lower than the Nyquist rate, the signal cannot be exactly
reconstructed from these undersamplings by CS. Therefore,
when designing the ADC with random sampling space, the
ADC should better possess the capability with the minimum
sampling space of 1/𝑓

𝑠
, where 𝑓

𝑠
is the Nyquist rate. Taken

in this sense, the high sampling rate requirement for ADC is
indeed not suppressed even though the CS theory is utilized.

3. Exact CS Reconstruction Condition

In the following, we present the exact CS reconstruction
condition of undersampled spectrum-sparse signals.

Theorem 3. Suppose x ∈ C𝑁×1 with Nyquist sampling rate
𝑓
𝑠
is 𝐾-sparse in spectrum domain; and the frequency indexes

of 𝐾 nonzero points in spectrum are 𝑓
ℎ
(ℎ = 1, 2, . . . , 𝐾).

Undersampling x with rate 𝑓
𝑠
/𝑟
1
, 𝑓
𝑠
/𝑟
2
, . . . , 𝑓
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𝑖
, . . . , 𝑓

𝑠
/𝑟
𝐼

(𝑖 = 1, 2, . . . , 𝐼, 𝑟
𝑖
≥ 2, and 𝑟

𝑖
∈ N), respectively, all the samples

consist of y
𝑀×1

. The necessary and sufficient condition for x
exactly reconstructed from y by CS is
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Proof. Reconstructing x from y is in fact to solve the following
underdetermined equation system:

y
1
= Φ
1
x = Φ

1
D−1
𝑁
𝜃,

y
2
= Φ
2
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2
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𝑁
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...
y
𝐼
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𝐼
x = Φ

𝐼
D−1
𝑁
𝜃,

(13)

whereΦ
𝑖
is the measurement matrix according to the under-

sampling rate 𝑓
𝑠
/𝑟
𝑖
; y
𝑖
is composed of the undersamplings

of x with rate 𝑓
𝑠
/𝑟
𝑖
. Assume the frequency indexes of the

solution set of the 𝑖th equation are {
̂
𝑓
ℎ𝑖
}; because y

𝑖
is the

isometric downsampling from x, we have

{
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Hence, the solution set of (13) is
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Only if (12) holds true, under the constraint of 𝐾-sparse, it
yields ∩{ ̂𝑓

ℎ𝑖
} = {𝑓

ℎ
| ℎ = 1, 2, . . . , 𝐾}; therefore, x is exactly

reconstructed.

Theorem 3 indicates that it is possible to reconstruct a
spectrum-sparse signal exactly from its multirate downsam-
plings. It means that, when condition (12) is satisfied, the
multirate downsampling can be used to compress the data
of digital signals. The conclusion is valuable to the design of
the ADC when the analog signal is a priori known sparse in
spectrum.

In order to validate Theorem 3, an experiment is given
as follows. In the experiment, the signal 𝑥(𝑡) with Nyquist
sampling rate 𝑓

𝑠
= 1Hz is expressed as 𝑥(𝑡) = exp(0.2 ×

2𝜋𝑡) + 0.8 exp(0.45 × 2𝜋𝑡) + 0.6 exp(0.3 × 2𝜋𝑡), 𝑡 ∈ [0, 1023].
The sparsity of 𝑥(𝑡) in spectrum domain is 3 and 𝑓

ℎ
= {0.2,

0.45, 0.3}. The spectrum of 𝑥(𝑡) is shown in Figure 2(a). Let
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Figure 2: Experiment for validation of Theorem 3. (a) The spectrum of the signal 𝑥(𝑡) with Nyquist sampling rate; (b) the spectrum of the
reconstructed signal by CS; (c) the comparison of 𝑥(𝑡) and the reconstructed signal in time domain.
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= {−0.5, −0.4, −0.3, −0.2, −0.1, 0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.45, 0.35, 0.25, 0.15, 0.05, −0.05,

− 0.15, −0.25, −0.35, −0.45} .

(16)

Obviously, the intersection of (16) is 𝑓
ℎ
= {0.2, 0.45, 0.3}.

Hence, 𝑥(𝑡) can be exactly reconstructed from the down-
samplings. In the experiment, we choose the orthogonal
matching pursuit (OMP) algorithm [12] to reconstruct 𝑥(𝑡)
from the downsamplings. The spectrum of the reconstructed
signal by CS is shown in Figure 2(b), which is very close to
that in Figure 2(a).The comparison of the original signal 𝑥(𝑡)
with Nyquist sampling rate and the reconstructed signal in
time domain is also given in Figure 2(c). From the figure,
it can be found that the reconstructed signal is close to the
original signal, which validates the correctness ofTheorem 3.
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