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In this paper, a state-constrained optimal control problem governed by p-Laplacian elliptic equations is studied.  e feasible control 
set or the cost functional may be nonconvex, and the purpose is to obtain the convergence of a solution of the discretized control 
problem to an optimal control of the relaxed continuous problem.

1. Introduction and the Optimal Control 
Problem

Let Ω be a bounded open convex domain of ℝ�, � = 2, 3, with 
a Lipschitz continuous boundary Γ. Let � be a compact subset 
of ℝ�, and we denote by U  the set of measurable functions 
� : Ω → �. For each � ∈ U , we consider the following state 
equation

where 3 < � < +∞.
We �rst make the following assumptions on �:
(S1)  e function �(⋅, �, �) is measurable in Ω,�(�, ⋅, �)

is in �1(ℝ), �(�, ⋅, ⋅), ��(�, ⋅, ⋅) are continuous in ℝ × �. 
Moreover,

and for any � > 0, there exists a constant �� > 0 such that

 e next theorem claims the well-posedness of the state 
equation.

Proposition 1. Suppose that (S1) holds. �en for any � ∈ U , 
there exists a unique weak solution �� ∈ �1,�0 (Ω) ∩ �∞(Ω) of 
(1). Moreover, there exists a constant � > 0, independent of 
� ∈ U , such that

 e estimate of ‖⋅‖�1,�0 (Ω) can be obtained by the same argu-
ments in the proof of  eorem 6.11 in [Chapter 2, 9] and the 
remained results of this theorem can be deduced from Lemma 
3.1 in [1].

Remark 2. Since 3 < � < +∞,�1,�0 (Ω) can be compactly 
embedded into �(Ω), which shows that there exists a 
constant � > 0, independent of � ∈ U , such that

where �� is the solution of (1) corresponding to � ∈ U .
Let us consider another function that satis�es the following 

properties:
(S2) � : Ω × (ℝ × �)→ ℝ is a Carathéodry function 

which satis�es that for any � > 0, there exists a nonnegative 
function �� ∈ �1(Ω) such that

(1){−div(
����∇������−2∇�) = �(�, �(�), �(�)) in Ω,

� = 0 on Γ,

(2)��(�, �, �) ≤ 0 ∀(�, �, �) ∈ Ω × ℝ × �,

(3)

�����(�, �, �)���� + �������(�, �, �)����� ≤�� ∀(�, �) ∈ Ω × �, ��������� ≤ �.

(4)
�����������1,�0 (Ω)∩�∞(Ω) ≤ �.

(5)
�����������(Ω) ≤ �,

(6)

�����(�, �, �)���� ≤ ��(�) a.e. � ∈ Ω, ∀��������� ≤�, ∀� ∈ �.
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Now our optimal control problem can be stated as follows.

where � ∈ ℝ and � : Ω × R→ R is a continuous function.
In the case of no convexity assumption, optimal control 

problems do not have classical solutions generally, whereas 
the corresponding relaxed problems have solutions if some 
reasonable assumptions are made. To deal with these problems 
numerically, one needs to discretize them in some way, and 
then by applying some optimization method to the discrete 
problems to �nd some discrete optimal solution. Since the 
structures of the continuous problems are basically di�erent 
from the discrete ones, it is necessary to know whether discrete 
optimality converges to continuous optimality.

Similar problems were considered by Casas [2] and 
Chryssoverghi and Kokkinis [3]. In the �eld of �nite element 
approximations for optimal controls governed by PDEs, we 
refer the readers to the papers [4–10] and the references 
therein.  is present paper is mainly motivated by the work 
of [2] where the author considered the following state 
equation

with

Our main goal is to generalize the results in [2] to the case of 
p-Laplacian. Such models arise from £uid mechanics, nonlin-
ear di�usion and nonlinear elasticity (see [11]).

Now, we �rst introduce the stability concept of (P�) with 
respect to perturbations of the set of feasible states.

De�nition 3 [1, De�nition 1]. We will say that (P�) is stable 
to the right if

Analogously, (P�) is stable to the le¤ if

(P�) is said stable if it is stable to the le¤ and to the right 
simultaneously.

 e following result shows that problem (P�) is stable 
under what cases, and which can be proved by the same argu-
ments as that in the proof of  eorem 2 [2]. However, we still 
present the details for readers’ convenience.

Lemma 4. Suppose that (S1) and (S2) hold. �ere exists 
�0 ∈ ℝ such that (P�) has no feasible control for � < �0. For 
every � > �0, except at most a countable number of them, 
problem (P�) is stable.

(7)

(P�){Minimize �(�) = ∫Ω�(�, ��(�), �(�))��,� ∈ U, �(�, ��(�)) ≤ � ∀� ∈ Ω,

(8){�� = �(�, �(�), �(�)) in Ω,
� = 0 on Γ,

(9)�� = −
�
∑
�,�=1
���[���(�)����].

(10)lim
��↘�

inf(P��) = inf(P�).

(11)
lim
��↗�

inf(P��) = inf(P�).

Proof. From (5), there exists a constant � > 0 such that 
|��(�)| ≤ � for all � ∈ Ω and � ∈ U .  e minimum 
and maximum of g over Ω × [−�,�] are denoted by 
�� and Λ�, respectively.  en we can claim that for 
� < ��, (P�) admits no a feasible control, while every 
element of U  is a feasible control for any � ≥ Λ�. Let 
�0 = inf{� : (P�)has at least one feasible control}, and then we 
have that �� ≤ �0 ≤ Λ�.

Next we show that, for almost all � > �0, (P�) is stable. We 
consider a function ℎ : (�0,+∞)→ ℝ de�ned by 
ℎ(�) = inf(P�).  en except for at most a countable number 
of �, we �nd that ℎ is monotone, nonincreasing and continuous. 
Moreover, it is easy to see that the continuity of ℎ in � is 
equivalent to the stability of (P�).  us the lemma is proved.  
 ☐

2. The Relaxed Control Problem

In this section, we would like to apply the relaxation theory. 
 at is the control set � can be extended to a bigger space such 
that the new control problem has at least one solution. For this 
reason, we recall the concept of relaxed controls and the rela-
tions between classical controls and relaxed controls given by 
Warga [12] �rst.

Let �(�) denote the space of continuous functions 
endowed with the maximum norm and M (�) = �(�)∗ is the 
space of Radon measures in �. Let M 1+ (�) be the subset of 
M (�) formed by the probability measures in �, and R be the 
subset of the Banach space �∞(Ω;M (�)) = �1(Ω; �(�))∗ 
formed by all M 1+ (�)-valued �(�)-weakly measurable func-
tions in Ω.  at is, � ∈ R if and only if

and

As usual we call each member of R a relaxed control and an 
element of U  a classical control, respectively.

It is known that R is convex and compact, moreover, U  
is dense in R with the weak star topology of �∞(Ω;M (�)) 
(see Warga [12,  eorem IV.2.1, p. 272 and  eorem IV.2.6, 
p. 275]).

We now de�ne the relaxed control problem in the follow-
ing way

where �� ∈�1,�0 (Ω) ∩ �∞(Ω) being the solution of the 
problem

Let us remark that U  can be considered as a subset of R by 
identifying � ∈ U  with Dirac measure-valued function 

(12)�(�) ∈M 1+ (�), ∀� ∈ Ω

(13)� �→ ∫
�
ℎ(v)�(�)(�v) is measurable, ∀ℎ ∈ �(�).

(14)

(RP�){Minimize ��(�) = ∫Ω��∫��(�, ��(�), v)�(�)(�v),� ∈ R, �(�, ��(�)) ≤ � ∀� ∈ Ω,

(15)

{−div(
����∇�������−2∇��) = ∫��(�, ��(�), v)�(�)(�v) in Ω,�� = 0 on Γ.
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� = �� ∈ R. Moreover, with this identi�cation we have �� = ��
and ��(�) = �(�). On the other hand since � is dense in R, 
problem (RP�) can be considered as an extension of (P�). 
Furthermore, we will see below that (RP�) has at least one 
solution. However we must be concerned whether 
inf(RP�) = inf(P�).  e following theorem gives the answer.

Theorem 5. Suppose that (S1) and (S2) hold. Let �0 be as in 
Lemma 4. (RP�) has at least one solution for every � > �0. 
Moreover inf(RP�) = inf(P�) if and only if (P�) is stable to the 
right.

Proof. Step 1. We would like to prove the existence of one 
solution of (RP�) for � > �0. Indeed, similar to (5), there 
exists a constant � > 0, independent of � ∈ R, such that

It follows from (16) and (S2) that

 erefore, there exists a minimizing sequence �� ∈ R with the 
property of

Since R is convex and compact, there exists a � ∈ R such that 
(as �→ +∞)

Moreover, without losing generality, we can suppose that there 
exists a function � ∈�1,�0 (Ω) ∩ �∞(Ω) such that

when � → +∞, where ��, � is the solution of (15) correspond-
ing to ��,�, respectively. Finally the continuity of �(⋅) and g(⋅, ⋅)
shows that � is a solution of (RP�).
Step 2. We deal with the remainder part of the theorem. To do 
this, we �rst sate the following inequalities

 e �rst and the last inequalities can be deduced from the identi�-
cation of every feasible control for (P�) (resp. (P��)) with a feasible 
control for (RP�) (resp. (RP��)). We only need prove the second 
inequality. Since U  is dence in R, if � ∈ R is a feasible control for 
(RP�), then there exists {��}∞�=1 ⊂ U  such that (as �→ +∞)

 at is,

(16)
�����������(Ω) ≤ �.

(17)inf
�∈R
��(�) > −∞.

(18)lim
�→+∞
��(��) = inf�∈R ��(�).

(19)�� → � weakly∗ in �∞(Ω;M (�)).

(20)
�� → � weakly in �1,�0 (Ω), strongly in �(Ω)

(21)

inf(RP��) ≤ inf(P��) ≤ inf(RP�) ≤ inf(P�) for every �� > �.

(22)��� → � weakly
∗
in �∞(Ω;M (�)).

Let �� be the solution of (15) corresponding to � ∈ R. From 
(23), we have that

which means that ��� → �� uniformly in Ω, then

therefore �(�, ���(�)) ≤ �� for any � ∈ Ω and � bigger than 
some �0, only depending on ��.  us {��}�≥�0 are feasible solu-
tions for problem (P��) and

the desired inequality is obtained.
Next, we only need to prove that

Let ��� be a solution of (RP��) for every �� > �. Since R is 
compact, one can take a sequence {���}∞�=1, with �� ↘ �, such 
that ��� → � weakly∗ for some � ∈ R. By the uniform con-
vergence ���� → �� in Ω, for every � ∈ Ω, we have that

this shows that � is a feasible control for (RP�). Hence we 
obtain that

Finally, it follows from (22) and (27) the proof can be deduced. 
In fact, if inf(RP�) = inf(P�), then we have that

that is (P�) is stable to the right. On the other hand, if 
lim��↘�inf(P��) = inf(P�), then

and the proof is completed. ☐

Corollary 6. Suppose that (S1) and (S2) hold. If problem (P�)
is stable to the right and it has a solution �, then � = �� is also 
a solution of (RP�).

(23)

∫
Ω
��∫
�
�(�, v)���(�)(�v)

→ ∫
Ω
��∫
�
�(�, v)�(�)(�v), ∀� ∈ �1(Ω; �(�)).

(24)

lim
�→+∞
∫
Ω
�(�, ��, ��)�� = lim

�→+∞
∫
Ω
��∫
�
�(�, ��, v)���(�)(�v)

= ∫
Ω
��∫
�
�(�, ��, v)�(�)(�v),

(25)� ≥ �(�, ��(�)) = lim
�→+∞
�(�, ���(�)),

(26)��(�) = lim
�→+∞
�(��) ≥ inf(P��),

(27)lim
��↘�

inf(RP��) = inf(RP�).

(28)�(�, ��(�)) = lim
�→+∞
�(�, ���� (�)) ≤ lim

�→+∞
�� = �,

(29)

inf(RP�) ≤ ��(�) = lim
�→+∞
��(���) = lim��↘� inf(RP��) ≤ inf(RP�).

(30)

lim
��↘�

inf(P��) ≤ inf(P�) = inf(RP�) = lim��↘� inf(RP��) ≤ lim��↘� inf(P��),

(31)

inf(RP�) = lim��↘� inf(RP��) ≤ inf(P�) = lim��↘� inf(P��) ≤ inf(RP�),
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Proof. By the compactness of Uℎ and the continuity of 
�ℎ, we can claim that (P�ℎ) has one solution if one can 
show the set of feasible controls is nonempty. In fact, 
let �0 ∈ � be a feasible control for (P�0) and we take 
�0ℎ ∈ Uℎ such that �0ℎ(�)→ �0(�) for almost all � ∈ Ω
as ℎ→ 0.  en it follows from (36) that �ℎ(�0ℎ) → ��0
uniformly in Ω. Using this uniform convergence, we have 
that limℎ→0�(�, �ℎ(�0ℎ)(�)) = �(�, ��0(�)) ≤ �0 for any 
� ∈ Ω.  us for � > �0, there exists a constant ℎ� > 0 such 
that g(�, �ℎ(�0ℎ)(�)) ≤ � holds for all � ∈ Ω and each ℎ ≤ ℎ�. 
 at is to say that �0ℎ is feasible for (P�ℎ) and thus the proof is 
over. ☐

Finally, we will prove the main result in this paper.

Theorem 9. Suppose that (S1) and (S2) hold. Let us assume 
that (P�) is stable and let ℎ� > 0 be as in Lemma 8. Given a 
family of controls {�ℎ}ℎ<ℎ� , �ℎ being a solution of (P�ℎ), there 
exist subsequences {�ℎ�}�∈ℕ, with ℎ� → 0 as � → +∞, and 
elements � ∈ R such that �ℎ� = ��ℎ� → � in the weakly∗ 
topology of �∞(Ω;M (�)). Each one of these limit points is a 
solution of (RP�). Moreover we have that

Proof. Let �ℎ be the state corresponding to �ℎ and we set 
�ℎ(�) = �[�ℎ(�)]. Since R is a weakly∗ compact subset of 
the space �∞(Ω;M (�)) and {�̃ℎ}ℎ≤ℎ� ⊂ R, there exists a 
subsequence �ℎ� such that ℎ� → 0 and �ℎ� = ��ℎ� → � weakly∗ 
in �∞(Ω;M (�)) for some � ∈ R. Now we show that � is a 
solution of (RP�). Let � be the state associated to �. Similar 
to the proof of Lemma 8, since �ℎ� converges to � uniformly 
in Ω and �(��, �ℎ�(��)) ≤ � for any 1 ≤ � ≤ �(ℎ), therefore 
�(�, �(�)) ≤ �, which shows that � is feasible for the problem 
(RP�).

For �� ∈ [δ0 + �, � ), with 0 < � < � − �0 �xed, and we let 
��� be a solution of (RP��). Since U  is dense in R, there exists 
sequence {��}∞�=1 ⊂ U  such that �� → ��� weakly∗ in 
�∞(Ω;M (�)). By the uniform convergence ��� → ����, one 
can claim that there exists ��� ∈ ℕ such that 
�(�, ���(�)) ≤ �� + �/2 for every � ∈ Ω and � ≥ ���. For any �
�xed we can take a sequence {�ℎ}ℎ>0 ⊂ Uℎ such that 
�ℎ(�) → ��(�) for almost all � ∈ Ω. It follows from the uni-
form convergence �ℎ(�ℎ) → ��� and �(�, �ℎ(�ℎ)(�)) ≤ � (for 
each � ∈ Ω, ℎ ≤ ℎ�) that �ℎ is a feasible control for (P�ℎ). 
Hence, we have that �ℎ�(�ℎ�) = �ℎ�(�ℎ�) ≤ �ℎ�(�ℎ�) whenever 
ℎ� ≤ ℎ�.  erefore, we get

Now passing to the limit as �→ +∞, we gain that 
��(�) ≤ ��(���). Finally, from the feasibility of � for (RP�) and 
the stability condition (De�nition 3), we conclude that

(37)lim
ℎ→0
�ℎ(�ℎ) = inf(RP�) = inf(P�).

(38)��(�) = lim
�→+∞
�ℎ�(�ℎ�) ≤ lim

�→+∞
�ℎ�(�ℎ�) = �(��).

(39)

inf(RP�) ≤ ��(�) ≤ lim��↗� ��(���) = lim��↗� inf(RP��)
≤ lim
��↗�

inf(P��) = inf(P�) = inf(RP�),

3. Numerical Approximation of the Control 
Problem

In this section the numerical discretization of problem (P�) will 
be considered, and the convergence of optimal discrete controls 
to optimal relaxed controls in some topology will be proved.

We �rst give some standard notations to use the �nite ele-
ment method (see Ciarlet [13] or Casas [2]). Let {Tℎ}ℎ>0 be a 
regular family of triangulations in Ω satisfying the inverse 
assumption. Let us take Ωℎ = ⋃�∈Tℎ� with the interior Ωℎ and 
the boundary Γℎ.  en we assume that Ωℎ is convex and the 
vertices of Tℎ placed on the boundary Γℎ are points of Γ. To any 
boundary triangle � of Tℎ we associate another triangle �̃ ⊂ Ω 
with two interior sides to Ω coincident with two sides of � and 
the third side is the curvilinear arc of Γ limited by the other two 
sides. Denote by T̃ℎ the family formed by these boundary tri-
angles with a curvilinear side and the interior triangles to Ω of 
Tℎ, and thus Ω = ⋃�∈T̃ℎ�. We now consider the spaces

where P1 denotes the space of the polynomials of degree less 
than or equal to 1. It is noticed that since we assume the set Ω 
is convex, the inclusion �ℎ ⊂�1,�0 (Ω) holds. For any �ℎ ∈ Uℎ 
we denote by �ℎ(�ℎ) the unique element of �ℎ that satis�es (for 
any vℎ ∈ �ℎ):

Now we state the �nite dimensional optimal control problem 
as follows:

where {��}�(ℎ)�=1  is the set of vertices of Tℎ.
From  eorem 5.3.2 in [13], we can prove the discrete 

solution converges to the solution �� of (1), as we now show.

Lemma 7. Suppose that (S1) holds. Let there be given a family 
of �nite element spaces as previously described. If ��, �ℎ(�ℎ) 
are the solutions of (1), (34), respectively. �en

 e following result shows that problem (P�ℎ) has at least one 
solution.

Lemma 8. Suppose that (S1) and (S2) hold. For every � > �0 
there exists ℎ� > 0 such that (P�ℎ) has at least one solution �ℎ 
for all ℎ < ℎ�.

(32)Uℎ = {�ℎ ∈ U : �ℎ����� is constant ∀� ∈ T̃ℎ},

(33)

�ℎ = {�ℎ ∈ �(Ω) : �ℎ������ ∈P1 ∀� ∈ Tℎ and �ℎ(�) = 0 ∀� ∈ Ω\Ωℎ},

(34)

∫
Ω

����∇�ℎ(�ℎ)�����−2∇�ℎ(�ℎ) ⋅ ∇vℎ�� = ∫
Ω
�(�, �ℎ(�ℎ)(�), �ℎ(�))vℎ(�)��.

(35)

(P�ℎ){
Minimize �ℎ(�ℎ) = ∫Ωℎ�(�, �ℎ(�ℎ)(�), �ℎ(�))��
subject to �ℎ ∈ Uℎ and g(��, �ℎ(�ℎ)(��)) ≤ � 1 ≤ � ≤ �(ℎ),

(36)lim
ℎ→0
������ − �ℎ(�ℎ)�����1,�0 (Ω) = 0.
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constraints,” International Journal of Numerical Analysis and 
Modeling, vol. 9, no. 4, pp. 844–875, 2012.

[11]  W. B. Liu and J. W. Barrett, “A remark on the regularity of the 
solutions of the p-Laplacian and its application to their �nite 
element approximation,” Journal of Mathematical Analysis and 
Applications, vol. 178, no. 2, pp. 470–487, 1993.

[12]  J. Warga, Optimal Control of Di�erential and Functional 
Equations, Academic Press, New York, 1972.

[13]  P. G. Ciarlet, �e Finite Element Method for Elliptic Problems, 
North-Holland, Amsterdam, 1978.

[14]  X. Li and J. Yong, Optimal Control �eory for In�nite Dimensional 
Systems, Birkhäuser Boston, Cambridge, MA, 1995.

which shows that � is a solution of (RP�).  e rest of this 
theorem is obvious. ☐

Data Availability

No data were used to support this study.

Conflicts of Interest

 e author declares that they have no con£icts of interest.

Funding

 is work was partially supported by the National Natural 
Science Foundation of China under Grants 11726619, 
11726620, 11601213, the Natural Science Foundation of 
Guangdong Province under Grant 2018A0303070012, and 
the Key Subject Program of Lingnan Normal University (No. 
1171518004).

References

[1]  H. W. Lou, “Maximum principle of optimal control for degen-
erate quasi-linear elliptic equations,” SIAM Journal on Control 
and Optimization, vol. 42, no. 1, pp. 1–23, 2003.

[2]  E. Casas, “ e relaxation theory applied to optimal control 
problems of semilinear elliptic equations,” System Modelling 
and Optimization, pp. 187–194, 1996.

[3]  I. Chryssoverghi and B. Kokkinis, “Discretization of nonlinear 
elliptic optimal control problems,” Systems & Control Letters, 
vol. 22, pp. 227–234, 1994.

[4]  E. Casas and F. Tröltzsch, “Error estimates for the �nite-element 
approximation of a semilinear elliptic control problem,” Control 
Cybernetics, vol. 31, pp. 695–712, 2002.

 [5]  E. Casas and F. Tröltzsch, “Numerical analysis of some optimal 
control problems governed by a class of quasilinear elliptic 
equations,” ESAIM: Control, Optimisation and Calculus of 
Variations, vol. 17, no. 3, pp. 771–800, 2011.

 [6]  E. Casas and J. P. Raymond, “Error estimates for the numerical 
approximation of Dirichlet boundary control for semilinear 
elliptic equations,” SIAM Journal on Control and Optimization, 
vol. 45, no. 5, pp. 1586–1611, 2006.

 [7]  W. Gong, G. S. Wang, and N. N. Yan, “Approximations of 
elliptic optimal control problems with controls acting on a 
lower dimensional manifold,” SIAM Journal on Control and 
Optimization, vol. 52, no. 3, pp. 2008–2035, 2014.

 [8]  D. Klaus, G. Andreas, and H. Michael, “Finite element 
approximation of Dirichlet boundary control for elliptic PDEs 
on two- and three-dimensional curved domains,” SIAM Journal 
on Control and Optimization, vol. 48, no. 4, pp. 2798–2819, 
2009.

 [9]  R. Sandilya and S. Kumar, “A discontinuous interpolated �nite 
volume approximation of semilinear elliptic optimal control 
problems,” Numerical Methods for Partial Di�erential Equations, 
vol. 33, no. 6, pp. 2090–2113, 2017.

[10]  G. S. Wang and L. J. Wang, “Finite element approximations 
of optimal controls for the heat equation with end-point state 



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

