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The nonlinear convective flow of Eyring-Powell nanofluid using Catteneo-Christov model with heat generation or absorption
term and chemical reaction rate over nonlinear stretching surface is analyzed. The simultaneous nonlinear partial differential
equations governing the boundary layer flow are transformed to the corresponding nonlinear ordinary differential equations
using similarity solution and then solved using Galerkin finite element method (GFEM). The impacts of pertinent governing
parameters like Brownian diffusion, thermophoresis, mixed convection, heat generation or absorption, chemical reaction rate,
Deborah numbers, Prandtl number, magnetic field parameter, Lewis number, nonlinear stretching sheet, and Eyring-Powell fluid
parameters on velocity field, temperature, and nanoparticle concentration are given in both figures and tabular form. The result
shows that the rise in chemical reaction rate will improve mass transfer rate and reduce heat transfer rate and local buoyancy
parameter has quit opposite effect. The attributes of local skin friction coefficient, Nusselt number, and Sheer wood number are
investigated and validated with existing literatures.

1. Introduction

Due to wide application of non-Newtonian fluids in the
advancement of modern technologies, many researchers
engaged to explore the non-Newtonian fluid. The investi-
gators exposed that non-Newtonian fluids are applicable in
polymer devolatilization and processing, heat exchangers,
extrusion process, wire and fiber coating, chemical process-
ing equipment, etc. Different researchers studied different
non-Newtonian models by different solution method. Mod-
eling of the viscoelastic properties of polymers has often been
a very hot subject. The viscoelastic constitutive equations
have been developed for the understanding of the numerous
means of deformation and flow but unluckily have not offered
us quantitative prophetic power. Extremely often the pre-
dictions depend on the model applied for the computations
and are not confirmed with experimental observations. Few
viscoelastic boundary layer flow problems can be solved with
the suitable constitutive equations, but this is still an area of

academic research with partial practical applications at the
moment.

Most of the products we enjoy today in our daily life are
invented from polymers. Some of them are house wares, toys,
knobs, appliance parts, electrical fixtures, toothbrushes, cups,
handles, lids, and packages. The Eyring-Power law model
which is often used in chemical engineering is also capable
of modelling these complex fluid flows under general flow
conditions. Many fluids do not exhibit the same type of
rheological attributes. They exhibit Newtonian character for
a range of shear stresses and non-Newtonian character for
some other ranges of shear stresses. In some cases, these types
of fluids are suitable to be investigated. Among this kind of
scenario, the present study paid attention to Eyring-Powell
model which has more advantage as a result of its reduction
to Newtonian model for smaller and larger shear rates. To
give clear insight on non-Newtonian flow especially Eyring-
Powell fluid, recently much research has been conducted. We
discuss few of them as follows.
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Satyaban et al. [1] studied mixed convective flow of a
Powell-Eyring fluid over a nonlinear stretching surface with
thermal diffusion and diffusion thermo. Khan et al. [2]
analyzed flow of an Eyring-Powell fluid over a stretching
sheet. Gaffar et al. [3] investigated non-Newtonian ther-
mal convection of Eyring-Powell fluid from an isothermal
sphere with Biot number effects. Obaid et al. [4] studied
entropy generation in MHD Eyring–Powell fluid flow over
an unsteady oscillatory porous stretching surface under the
impact of thermal radiation and heat source/sink. The effect
of Cattaneo-Christov heat flux model for Eyring-Powell fluid
over an exponentially stretching sheet is discussed by Ahmad
and Iqbal [5].The boundary layer flow of the non-Newtonian
power-law fluid past the nonlinear stretching sheet has
been analyzed by Megahed [6, 7]. Later on, Megahed [8]
introduced the concepts of flow and heat transfer of non-
Newtonian Sisko fluid past a nonlinearly stretching sheetwith
heat generation and viscous dissipation. Upadhay and Raju
[9] explored Cattaneo-Christov on heat and mass transfer
of unsteady Eyring-Powell dusty nanofluid over sheet with
heat and mass flux conditions. Kumar et al. [10] discussed the
concept of magnetohydrodynamic Cattaneo-Christov flow
past a cone and a wedge with variable heat source/sink.
Later on, Kumar et al. [11] introduced impact of nonlinear
radiation on MHD nonaligned stagnation point flow of
micropolar fluid over a convective surface. Beside this, Kumar
et al. [12] investigated the impact of Brownian motion and
thermophoresis on bioconvective flow of nanoliquids past a
variable thickness surface with slip effects.

Hayat et al. [13] described MHD nonlinear stretching
flow of Powell–Eyring nanomaterial. Madhu and Kishan
[14] derived MHD boundary-layer flow of a non-Newtonian
nanofluid past a stretching sheet with a heat source/sink.
Rahimi et al. [15] presented solution of the boundary layer
flow of an Eyring-Powell non-Newtonian fluid over a linear
stretching sheet by collocation method. Akinshilo and Olaye
[16] explained the analysis of the Eyring-Powell model based
fluid flow in a pipe with temperature dependent viscosity
and internal heat generation. Madhu and Kishan [17] ana-
lyzed finite element analysis of heat and mass transfer by
MHD mixed convection stagnation-point flow of a non-
Newtonian power-law nanofluid towards a stretching surface
with radiation. Babu et al. [18] described free convective
MHDCattaneo-Christov flow over three different geometries
with thermophoresis and Brownian motion.

Moreover, large temperature difference between the sur-
face and the ambient fluid forces the researchers to investigate
the nonlinear density temperature (NDT) difference in the
buoyancy force term due to its major influence on the flow
and heat transfer characteristics. Vajravelu and Sastri [19]
investigated the flow between two parallel plates in view
of the quadratic density temperature (QDT) variation and
reported that the flow and heat transfer rates are considerably
affected by it. The fully developed free convection flow in
circular pipe with nonlinear density temperature variations
was studied by Bhargava and Agarwal [20]. Khan et al.
[21] investigated entropy generation in radiative motion of
tangent hyperbolic nanofluid in presence of activation energy
and nonlinear mixed convection. The nonlinear convection

effects on the flow past a flat porous plate have been
investigated by Vajravelu et al. [22]. Khan et al. [23] studied
the numerical simulation of nonlinear thermal radiation and
homogeneous-heterogeneous reactions in convective flow by
a variable thickened surface.

Most recently, Hayat and Nadeem [24] solved flow of
3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat
flux model and chemical processes over an exponentially
stretching surface. In the same year, Saima and Noreen [25]
presented magneto-thermo-hydrodynamic peristaltic flow of
Eyring-Powell nanofluid in asymmetric channel. Later on,
Wubshet Ibrahim and Bullo Hindebu [26] analyzed MHD
boundary layer flow of Eyring-Powell nanofluid past stretch-
ing cylinder with Cattaneo-Christov heat flux model. Kumar
et al. [27] analyzed impact of Lorentz force on unsteady
bioconvective flowofCarreau fluid across a variable thickness
sheet with non-Fourier heat flux model. Ramadevi et al.
[28] scrutinized MHD flow of Carreau fluid over a variable
thickness melting surface subject to Cattaneo-Christov heat
flux. Kumar et al. [29] have been studyingMHDCarreau fluid
flow past a melting surface with Cattaneo-Christov heat flux.

From the surveyed literatures above, it has been observed
that the problem of nonlinear convective flow of magneto-
hydrodynamic (MHD) boundary layer flow of an Eyring-
Powell nanofluid using Catteneo-Christov model with heat
generation/absorption and chemical reaction term past non-
linear stretching surface is still limited. Additional effects of
local buoyancy parameter, local heat generation, chemical
reaction rate, nonlinear stretching sheet parameter, and the
technique used to solve the problem are added features to the
uniqueness.

Thus, the main target of the present study is to analyze
nonlinear convective flow of two-dimensional steady lami-
nar incompressible magnetohydrodynamic (MHD) bound-
ary layer flow of an electrically conducting Eyring-Powell
nanofluid using Catteneo-Christov model with heat gen-
eration/absorption and chemical reaction over nonlinear
stretching surface.The impacts of diverse governing variables
on fluid velocity, temperature of the fluid, and nanoparticle
concentration profile of laminar boundary layer flow are
presented in both graphs and tabular form. The numerical
method employed to solve the current problem is Galerkin
finite element method (GFEM) [21–30].

2. Mathematical Formulation of the Problem

We analyze a nonlinear convective flow of two-dimensional
steady laminar incompressible magnetohydrodynamic
(MHD) boundary layer flow of Eyring-Powell nanofluid
using Catteneo-Christov model with heat generation or
absorption and chemical reaction over nonlinear stretching
surface. The diagram of the targeted incompressible
boundary layer flow is illustrated in Figure 1. The x-axis is
considered along the nonlinear stretching surface and the
y-axis is taken normal to it. The surface is extended with a
nonlinear velocity 𝑢𝑤(𝑥) = 𝑎𝑥𝑛, where 𝑎 > 0 is constant. The
induced magnetic field is ignored owing to small Reynolds
number.
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Figure 1: Geometry of the problem.

The extra stress tensor for Powell-Eyring fluid is given by
[30]

𝜏𝑖𝑗 = 𝜇 𝜕𝑢𝑖𝜕𝑥𝑗 +
1𝛽∗ sinh−1 ( 1𝑐∗ 𝜕𝑢𝑖𝜕𝑥𝑗) , (1)

where 𝜇 represents dynamic viscosity and 𝛽∗ and 𝑐∗ stand for
materials constants.

Assuming

sinh−1 ( 1𝑐∗ 𝜕𝑢𝑖𝜕𝑥𝑗) ≅
1𝑐∗ 𝜕𝑢𝑖𝜕𝑥𝑗 −

16 ( 1𝑐∗ 𝜕𝑢𝑖𝜕𝑥𝑗)
3 ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1𝑐∗ 𝜕𝑢𝑖𝜕𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 << 1,
(2)

the governing equations for the boundary layer flow are

𝜕𝑢𝜕𝑥 + 𝜕V𝜕𝑦 = 0 (3)

𝑢𝜕𝑢𝜕𝑥 + V
𝜕𝑢𝜕𝑦 = (] + 1𝜌𝑓𝛽∗𝑐∗) −

12𝜌𝛽∗𝑐∗3 (𝜕𝑢𝜕𝑦)
2 𝜕2𝑢𝜕𝑦2

− 𝜎𝐵20𝜌𝑓 𝑢 + 𝑔Λ 1 (𝑇 − 𝑇∞) + 𝑔Λ 2 (𝑇 − 𝑇∞)
2

+ 𝑔Λ 3 (𝐶 − 𝐶∞) + 𝑔Λ 4 (𝐶 − 𝐶∞)2
(4)

𝑢𝜕𝑇𝜕𝑥 + V
𝜕𝑇𝜕𝑦 + 𝜆𝐸 (𝑢𝜕𝑢𝜕𝑥 𝜕𝑇𝜕𝑥 + V

𝜕V𝜕𝑦 𝜕𝑇𝜕𝑦 + 𝑢 𝜕V𝜕𝑥 𝜕𝑇𝜕𝑦
+ V

𝜕𝑢𝜕𝑦 𝜕𝑇𝜕𝑥 + 2𝑢V 𝜕
2𝑇𝜕𝑥𝜕𝑦 + 𝑢2 𝜕

2𝑇𝜕𝑥2 + V2
𝜕2𝑇𝜕𝑦2 )

= 𝛼𝑓 𝜕2𝑇𝜕𝑦2 + 𝜏{𝐷𝐵 (𝜕𝑇𝜕𝑦 𝜕𝐶𝜕𝑦 ) + 𝐷𝑇𝑇∞ (
𝜕𝑇𝜕𝑦 )
2}

+ 𝑄𝜌𝑓𝑐𝑝 (𝑇 − 𝑇∞)

(5)

𝑢𝜕𝐶𝜕𝑥 + V
𝜕𝐶𝜕𝑦 + 𝜆𝐶(𝑢𝜕𝑢𝜕𝑥 𝜕𝐶𝜕𝑥 + V

𝜕V𝜕𝑦 𝜕𝐶𝜕𝑦 + 𝑢 𝜕V𝜕𝑥 𝜕𝐶𝜕𝑦
+ V

𝜕𝑢𝜕𝑦 𝜕𝐶𝜕𝑥 + 2𝑢V 𝜕2𝐶𝜕𝑥𝜕𝑦 + 𝑢2 𝜕
2𝐶𝜕𝑥2 + V2

𝜕2𝐶𝜕𝑦2 )
= 𝐷𝐵 𝜕2𝐶𝜕𝑦2 + 𝐷𝑇𝑇∞

𝜕2𝑇𝜕𝑦2 − k1 (C − C∞)
(6)

with appropriate boundary condition

𝑢 = 𝑢𝑤 (𝑥) = 𝑎𝑥𝑛,
V = 0

at 𝑦 = 0
𝑢 󳨀→ 0 as 𝑦 󳨀→ ∞
𝑇 = 𝑇𝑤,
𝐶 = 𝐶𝑤

at 𝑦 = 0
𝑇 󳨀→ 𝑇∞,
𝐶 󳨀→ 𝐶∞

as 𝑦 󳨀→ ∞,

(7)

where 𝑢 and V are the velocity components in the 𝑥 and 𝑦
directions, ] is the kinematic viscosity, 𝑢𝑤 is the stretching
velocity, 𝑔 is the gravitational acceleration, Λ 1 and Λ 2 are
linear and nonlinear thermal expansion coefficients due to
temperature andΛ 3 andΛ 4 are linear and nonlinear thermal
expansion coefficients due to concentration, 𝜌𝑓 is density of
base liquid, 𝑐𝑝 is specific heat capacity of the base fluid, 𝛼𝑓
is thermal diffusivity of the base fluid, 𝑇 is temperature, 𝐶
is concentration, 𝜎 is electric conductivity, 𝐵20 is magnetic
parameter, 𝑘1 is a reaction rate,𝐷𝐵 is the Brownian diffusion
coefficient, 𝐷𝑇 is the thermophoresis diffusion coefficient,
and 𝜏 is the ratio of the effective heat capacity of the
nanoparticle material and the heat capacity of base fluid.

These simultaneous partial differential equations (PDEs)
(3)-(6) with the corresponding boundary conditions (7) are
reduced to ordinary differential equations (ODEs) using
similarity transformation. In this case, continuity equation
and momentum equation are reduced to a single ODE and
energy equation and concentration equation are reduced to
another ODE.

We know set up the similarity transformation as follows
[31]:

𝜂 = 𝑦√𝑎 (𝑛 + 1)2] 𝑥(𝑛−1)/2,
V = −√𝑎] (𝑛 + 1)2 𝑥(𝑛−1)/2 [𝑓 (𝜂) + (𝑛 − 1𝑛 + 1) 𝜂𝑓󸀠 (𝜂)]
𝑢 = 𝑎𝑥𝑛𝑓󸀠 (𝜂) ,
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𝜓 = √ 2]𝑎𝑛 + 1𝑥(𝑛+1)/2𝑓 (𝜂) ,
𝜃 (𝜂) = T − T∞

Tw − 𝑇∞
and 𝜙 (𝜂) = C − C∞

Cw − 𝐶∞ ,
(8)

where 𝜂 is a similarity variable 𝜓 stream function defined as𝑢 = 𝜕𝜓/𝜕𝑦 and V = 𝜕𝜓/𝜕𝑥 which identically satisfies
continuity equation (3), 𝑓 is dimensionless function, 𝜃 is
dimensionless temperature, and 𝜙 is dimensionless nanopar-
ticle concentration.

Substituting (8) into (4)-(6), we obtain the following
corresponding simultaneous nonlinear ordinary differential
equations:

𝑓𝑓󸀠󸀠 − 2𝑛𝑛 + 1𝑓󸀠2 + (1 + 𝜀) 𝑓󸀠󸀠󸀠 − 𝜀𝛿 (𝑛 + 12 )𝑓󸀠󸀠2𝑓󸀠󸀠󸀠
− 2𝑛 + 1𝑀𝑓󸀠 + 2𝜆𝑛 + 1 (1 + 𝛽𝑡𝜃) 𝜃
+ 2𝜆𝑛 + 1𝑁∗ (1 + 𝛽𝑐𝜙) 𝜙 = 0

(9)

𝜃󸀠󸀠 + Pr𝑓𝜃󸀠 + Pr 𝛾𝐸 (𝑛 − 32 𝑓𝑓󸀠𝜃󸀠 − 𝑛 + 12 𝑓2𝜃󸀠󸀠)
+ 2𝑛 + 1 Pr𝛽𝜃 + Pr𝑁𝑏𝜃󸀠𝜙󸀠 + Pr𝑁𝑡𝜃󸀠2 = 0

(10)

𝜙󸀠󸀠 + Pr 𝐿𝑒𝑓𝜙󸀠 + Pr 𝐿𝑒𝛾𝑐 (𝑛 − 32 𝑓𝑓󸀠𝜙󸀠 − 𝑛 + 12 𝑓2𝜙󸀠󸀠)
+ 𝑁𝑡𝑁𝑏𝜃󸀠󸀠 − 2𝑛 + 1 Pr 𝐿𝑒𝛽1𝜙 = 0

(11)

with the corresponding boundary conditions

𝑓 = 0,
𝑓󸀠 = 1

at 𝜂 = 0,
𝑓󸀠 󳨀→ 0 as 𝜂 󳨀→ ∞
𝜃 = 1 at 𝜂 = 0,
𝜃 󳨀→ 0 as 𝜂 󳨀→ ∞
𝜙 = 1 at 𝜂 = 0,
𝜙 󳨀→ 0 as 𝜂 󳨀→ ∞,

(12)

where

Pr = ]𝑓𝛼𝑓 ,
𝛾𝐸 = 𝜆𝐸𝑎𝑥𝑛−1,

𝛾𝐶 = 𝜆𝐶𝑎𝑥𝑛−1,
𝜀 = 1𝜇𝛽∗𝑐∗ ,
𝛿 = 𝑎3𝑥3𝑛−12]𝑐∗2 ,
𝑀 = 𝜎𝐵20𝑥𝑛−1𝑎𝜌𝑓 ,
𝜆 = 𝐺𝑟𝑅2𝑒𝑥 ,
𝛽𝑡 = Λ 2Λ 1 (𝑇𝑤 − 𝑇∞) ,
𝛽𝑐 = Λ 4Λ 3 (𝐶𝑤 − 𝐶∞) ,
𝑁∗ = 𝐺𝑟∗𝐺𝑟 = Λ 4Λ 3 (

𝐶𝑤 − 𝐶∞𝑇𝑤 − 𝑇∞ ) ,
𝐺𝑟 = 𝑔Λ 1

]2
(𝑇𝑤 − 𝑇∞) 𝑥3,

𝐺𝑟∗ = 𝑔Λ3
]2

(𝐶𝑤 − 𝐶∞) 𝑥3,
𝑁𝑏 = 𝐷𝐵𝜏 (𝐶𝑤 − 𝐶∞)

]
,

𝑁𝑏 = 𝐷𝑇𝜏 (𝑇𝑤 − 𝑇∞)𝑇∞] ,
𝛽 = 𝑄

𝑎𝑥𝑛−1 (𝜌𝑐𝑝)𝑓 ,

𝐿𝑒 = 𝛼𝑓𝐷𝐵 ,
𝛽1 = 𝑘𝑎 ,

(13)

where Pr is the Prandtl number, 𝛾𝐸 is the Deborah number
with respect to the relaxation time of the heat flux, 𝛾𝐶 is the
Deborah number due to nanoparticle concentration, 𝜀 and𝛿 are Eyring-Powell fluid parameters, 𝑀 is magnetic field
parameter, 𝜆 is mixed convection parameter/local buoyancy
parameter, 𝛽𝑡 is nonlinear convection parameter due to tem-
perature, 𝛽𝑐 is nonlinear convection parameter due to con-
centration, 𝑁∗ is ratio of concentration to thermal buoyancy
forces, 𝐺𝑟 is Grashof number in terms of temperature, 𝐺𝑟∗ is
Grashof number in terms of concentration, 𝑁𝑏 is Brownian
motion parameter,𝑁𝑡 is thermophoresis parameter, 𝛽 is heat
generation/absorption term, 𝐿𝑒 is Lewis number, and 𝛽1 is
chemical reaction rate.

The Engineering quantities of interest in the study are
local skin coefficient friction 𝐶𝑓, the Nusselt number 𝑁𝑢𝑥
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and the nanoparticle of Sherwood number 𝑆ℎ𝑥 are given by𝐶𝑓 = 𝜏𝑤/𝜌𝑢2𝑤, 𝑁𝑢𝑥 = 𝑥𝑞𝑤/𝑘(𝑇𝑤 − 𝑇∞), 𝑆ℎ𝑥 = 𝑥𝑞𝑛𝑝/𝐷𝐵(𝐶𝑤 −𝐶∞), where 𝜏𝑤 is the wall skin friction, 𝑞𝑤 is the heat flux
and 𝑞𝑛𝑝 is the nanofluid mass flux at the surface of the sheet
defined as follow:

𝜏𝑤 = (𝜇 + 1𝛽𝐶) 𝜕𝑢𝜕𝑦 − 16 ( 1𝐶 𝜕𝑢𝜕𝑦)
3 ,

𝑞𝑤 = −𝑘(𝜕𝑇𝜕𝑦 )𝑦=0 ,

𝑞𝑛𝑝 = −𝐷𝐵 (𝜕𝜙𝜕𝑦)𝑦=0 .
(14)

After replacing the values from similarity transformation in
(8) into (14), we obtain

Re1/2𝑥 𝐶𝑓 = √𝑛 + 12 [(1 + 𝜀) 𝑓󸀠󸀠 (0) − 𝜀𝛿3 (𝑓󸀠󸀠 (0))3] ,
𝑁𝑢𝑟 = 𝑁𝑢𝑥(((𝑛 + 1) /2)Re𝑥)1/2 = −𝜃

󸀠 (0)
and Shr = 𝑆ℎ𝑥(((𝑛 + 1) /2)Re𝑥)1/2 = −𝜙

󸀠 (0) .
(15)

Here, 𝑁𝑢𝑟 and 𝑆ℎ𝑟 are reduced form of Nusselt number and
nanoparticle Sherwood number, respectively, and the local
Reynolds number depending on the nonlinear stretching
surface velocity is given by

Re𝑥 = 𝑢𝑥𝑥
]
. (16)

3. Method of Solution

We employed the Galerkin finite element method which is a
prominent technique to solve nonlinear differential equations
through the following five steps that are essential to realize
what the approach of the FEM is (see [13, 32–34]):

(i) Discretization of the domain into elements
(ii) Element formulation which is called setup of differ-

ential equation in its weak form
(iii) Assembly of element equations known as setup of

global problem or obtaining equations for the entire
system from the equations for one element

(iv) Impose the appropriate boundary condition
(v) Solve the system of equations.

An attribute feature of the finite element method is that,
instead of seeking the approximation solution over the entire
region, the region is partitioned into smaller elements and the
approximation is then carried out over each element. After
determining the character of all single elements, the elements
is patched together, which hopefully enables us to get an
approximate solution over the entire body.

Assuming

𝑓󸀠 = 𝑔 (17)

the simultaneous nonlinear ordinary differential equations in
(9)-(11) with the boundary conditions in (12) are reduced to

𝑓𝑔󸀠 − 2𝑛𝑛 + 1𝑔2 + (1 + 𝜀) 𝑔󸀠󸀠 − 𝜀𝛿 (𝑛 + 12 ) 𝑔󸀠2𝑔󸀠󸀠
− 2𝑛 + 1𝑀𝑔 + 2𝜆𝑛 + 1 (1 + 𝛽𝑡𝜃) 𝜃
+ 2𝜆𝑛 + 1𝑁∗ (1 + 𝛽𝑐𝜙) 𝜙 = 0

(18)

𝜃󸀠󸀠 + Pr𝑓𝜃󸀠 + Pr 𝛾𝐸 (𝑛 − 32 𝑓𝑔𝜃󸀠 − 𝑛 + 12 𝑓2𝜃󸀠󸀠)
+ 2𝑛 + 1 Pr𝛽𝜃 + Pr𝑁𝑏𝜃󸀠𝜙󸀠 + Pr𝑁𝑡𝜃󸀠2 = 0

(19)

𝜙󸀠󸀠 + Pr 𝐿𝑒𝑓𝜙󸀠 + Pr 𝐿𝑒𝛾𝑐 (𝑛 − 32 𝑓𝑔𝜙󸀠 − 𝑛 + 12 𝑓2𝜙󸀠󸀠)
+ 𝑁𝑡𝑁𝑏𝜃󸀠󸀠 − 2𝑛 + 1 Pr 𝐿𝑒𝛽1𝜙 = 0,

(20)

with the corresponding boundary conditions

𝑓 = 0,
𝑔 = 1

at 𝜂 = 0,
𝑔 󳨀→ 0 as 𝜂 󳨀→ ∞
𝜃 = 1 at 𝜂 = 0,
𝜃 󳨀→ 0 as 𝜂 󳨀→ ∞
𝜙 = 1 at 𝜂 = 0,
𝜙 󳨀→ 0 as 𝜂 󳨀→ ∞.

(21)

At this step, we discretize the whole domain into elements
called Mesh.

The second step is writing the weighted integral form
associated with (17), (18), (19), and (20) over a typical three-
node linear element (𝜂𝑒, 𝜂𝑒+1) as follows:
∫𝜂𝑒+1
𝜂𝑒

𝑤1 {𝑓󸀠 − 𝑔} 𝑑𝜂 = 0 (22)

∫𝜂𝑒+1
𝜂𝑒

𝑤2 {𝑓𝑔󸀠 − 2𝑛𝑛 + 1𝑔2 + (1 + 𝜀) 𝑔󸀠󸀠

− 𝜀𝛿 (𝑛 + 12 )𝑔󸀠2𝑔󸀠󸀠 − 2𝑛 + 1𝑀𝑔
+ 2𝜆𝑛 + 1 (1 + 𝛽𝑡𝜃) 𝜃 + 2𝜆𝑛 + 1𝑁∗ (1 + 𝛽𝑐𝜙) 𝜙} 𝑑𝜂
= 0

(23)
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∫𝜂𝑒+1
𝜂𝑒

𝑤3 {𝜃󸀠󸀠 + Pr𝑓𝜃󸀠

+ Pr 𝛾𝐸 (𝑛 − 32 𝑓𝑔𝜃󸀠 − 𝑛 + 12 𝑓2𝜃󸀠󸀠) + 2𝑛 + 1 Pr𝛽𝜃
+ Pr𝑁𝑏𝜃󸀠𝜙󸀠 + Pr𝑁𝑡𝜃󸀠2}𝑑𝜂 = 0

(24)

∫𝜂𝑒+1
𝜂𝑒

𝑤4 {𝜙󸀠󸀠 + Pr𝐿𝑒𝑓𝜙󸀠

+ Pr 𝐿𝑒𝛾𝐶 (𝑛 − 32 𝑓𝑔𝜙󸀠 − 𝑛 + 12 𝑓2𝜙󸀠󸀠) + 𝑁𝑡𝑁𝑏𝜃󸀠󸀠
− 2𝑛 + 1 Pr 𝐿𝑒𝛽1𝜙}𝑑𝜂 = 0,

(25)

where 𝑤1, 𝑤2, 𝑤3, and 𝑤4 are arbitrary weight functions
and may be considered as the variation in 𝑓, 𝑔, 𝜃, and 𝜙,
respectively, and domain (𝜂𝑒, 𝜂𝑒+1) represents the interval of
the boundary layer region.

At the third step, we seek approximation solution of the
form

𝑓 = 3∑
𝑗=1

𝑓𝑗𝜓𝑗,

𝑔 = 3∑
𝑗=1

𝑔𝑗𝜓𝑗,

𝜃 = 3∑
𝑗=1

𝜃𝑗𝜓𝑗,

𝜙 = 3∑
𝑗=1

𝜙𝑗𝜓𝑗

(26)

with 𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 𝜓𝑖 (𝑖 = 1, 2, 3), the quadratic
shape functions 𝜓𝑖 defined as

𝜓𝑒1 = (𝜂𝑒+1 − 𝜂) (𝜂𝑒+1 + 𝜂𝑒 − 2𝜂)(𝜂𝑒+1 − 𝜂𝑒)2 ,

𝜓𝑒2 = 4 (𝜂 − 𝜂𝑒) (𝜂𝑒+1 − 𝜂)(𝜂𝑒+1 − 𝜂𝑒)2 ,

𝜓𝑒3 = −(𝜂 − 𝜂𝑒) (𝜂𝑒+1 + 𝜂𝑒 − 2𝜂)(𝜂𝑒+1 − 𝜂𝑒)2 ,
(27)

where 𝜂𝑒 ≤ 𝜂 ≤ 𝜂𝑒+1
At the fourth step, replacing approximate solution (26)

into (22)-(25), we obtain the finite element model for the
equation which is given by

[𝐾𝑒] [𝑌𝑒] = [𝐹𝑒] , (28)

where [𝐾𝑒] denotes the elemental stiffness matrix, [𝑌𝑒] is the
vector of elemental nodal variables (unknowns), and [𝐹𝑒] is
the force vector expressed as follows:

[𝐾𝑒] =
[[[[[[
[

[𝐾11] [𝐾12] [𝐾13] [𝐾14]
[𝐾21] [𝐾22] [𝐾23] [𝐾24]
[𝐾31]
[𝐾41]

[𝐾32]
[𝐾42]

[𝐾33]
[𝐾43]

[𝐾34]
[𝐾44]

]]]]]]
]
,

[𝑌𝑒] = [[[[[
[

{𝑓}
{𝑔}
{𝜃}
{𝜙}

]]]]]
]
,

[𝐹𝑒] =
[[[[[[
[

{ℎ1}
{ℎ2}
{ℎ3}
{ℎ4}

]]]]]]
]
,

(29)

where each [𝐾𝑚𝑛] is of the order 3𝑥3 and [ℎ𝑚], (𝑚, 𝑛 =1, 2.3, 4) is of the order 3𝑥1.
These matrices are defined as

𝐾11𝑖𝑗 = ∫𝜂𝑒+1
𝜂𝑒

𝜓𝑖 𝜕𝜓𝑗𝜕𝜂 𝑑𝜂,
𝐾12𝑖𝑗 = −∫𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜓𝑗𝑑𝜂,
𝐾13𝑖𝑗 = 0,
𝐾14𝑖𝑗 = 0,
K21ij = 0
𝐾22𝑖𝑗 = ∫𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝑓𝜕𝜓𝑗𝜕𝜂 𝑑𝜂 − 2𝑛𝑛 + 1 ∫
𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝑔𝜓𝑗𝑑𝜂
− (1 + 𝜀)∫𝜂𝑒+1

𝜂𝑒

𝜕𝜓𝑖𝜕𝜂
𝜕𝜓𝑗𝜕𝜂 𝑑𝜂

− 𝜀𝛿𝑛 + 12 ∫𝜂𝑒+1
𝜂𝑒

𝜓𝑖𝑔󸀠 𝑔󸀠󸀠 𝜕𝜓𝑗𝜕𝜂 𝑑𝜂
− 2𝑛 + 1𝑀∫𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜓𝑗𝑑𝜂,
𝐾23𝑖𝑗 = 2𝜆𝑛 + 1 ∫

𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜓𝑗𝑑𝜂 + 2𝜆𝑛 + 1𝛽𝑡 ∫
𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜃𝜓𝑗𝑑𝜂
𝐾24𝑖𝑗 = 2𝜆𝑛 + 1𝑁∗ ∫

𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜓𝑗𝑑𝜂
+ 2𝜆𝑛 + 1𝑁∗𝛽𝑐 ∫

𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜙𝜓𝑗𝑑𝜂,
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𝐾31𝑖𝑗 = 0,
𝐾32𝑖𝑗 = 0,
𝐾33𝑖𝑗 = −∫𝜂𝑒+1

𝜂𝑒

𝜕𝜓𝑖𝜕𝜂
𝜕𝜓𝑗𝜕𝜂 𝑑𝜂 + Pr∫𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝑓𝜕𝜓𝑗𝜕𝜂 𝑑𝜂

+ Pr 𝛾𝐸𝑛 − 32 ∫𝜂𝑒+1
𝜂𝑒

𝜓𝑖𝑓𝑔𝜕𝜓𝑗𝜕𝜂 𝑑𝜂

− Pr 𝛾𝐸𝑛 + 12 ∫𝜂𝑒+1
𝜂𝑒

𝜓𝑖𝑓𝑓𝜕
2𝜓𝑗𝜕𝜂2 𝑑𝜂

+ 2𝑛 + 1 Pr𝛽∫
𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜓𝑗𝑑𝜂
+ Pr𝑁𝑏∫𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜙󸀠 𝜕𝜓𝑗𝜕𝜂 𝑑𝜂

+ Pr𝑁𝑡∫𝜂𝑒+1
𝜂𝑒

𝜓𝑖𝜃󸀠 𝜕𝜓𝑗𝜕𝜂 𝑑𝜂,
𝐾34𝑖𝑗 = 0,
𝐾41𝑖𝑗 = 0,
𝐾42𝑖𝑗 = 0
𝐾43𝑖𝑗 = −𝑁𝑡𝑁𝑏 ∫

𝜂𝑒+1

𝜂𝑒

𝜕𝜓𝑖𝜕𝜂 𝜕𝜓𝑖𝜕𝜂 𝑑𝜂,
𝐾44𝑖𝑗 = −∫𝜂𝑒+1

𝜂𝑒

𝜕𝜓𝑖𝜕𝜂 𝜕𝜓𝑖𝜕𝜂 𝑑𝜂 + Pr𝐿𝑒 ∫𝜂𝑒+1
𝜂𝑒

𝜓𝑖𝑓𝜕𝜓𝑖𝜕𝜂 𝑑𝜂

+ Pr 𝐿𝑒𝛾𝐶𝑛 − 32 ∫𝜂𝑒+1
𝜂𝑒

𝜓𝑖𝑓𝑔𝜕𝜓𝑗𝜕𝜂 𝑑𝜂

− Pr 𝐿𝑒𝛾𝐶𝑛 + 12 ∫𝜂𝑒+1
𝜂𝑒

𝜓𝑖𝑓𝑓𝜕
2𝜓𝑗𝜕𝜂2 𝑑𝜂

− 2𝑛 + 1 Pr 𝐿𝑒𝛽1 ∫
𝜂𝑒+1

𝜂𝑒

𝜓𝑖𝜓𝑗𝑑𝜂
ℎ1𝑖 = 0,
ℎ2𝑖 = − (1 + 𝜀) (𝜓𝑖 𝜕𝑔𝜕𝜂)

𝜂𝑒+1

𝜂𝑒

,

ℎ3𝑖 = −(𝜓𝑖 𝜕𝜃𝜕𝜂)
𝜂𝑒+1

𝜂𝑒

,

ℎ4𝑖 = −(𝜓𝑖 𝜕𝜙𝜕𝜂 + 𝑁𝑡𝑁𝑏𝜓𝑖 𝜕𝜃𝜕𝜂)
𝜂𝑒+1

𝜂𝑒

,
(30)

where

𝑓󸀠 = 3∑
𝑗=1

𝑓𝑗 𝜕𝜓𝑗𝜕𝜂 ,

𝑔󸀠 = 3∑
𝑗=1

𝑔𝑗 𝜕𝜓𝑗𝜕𝜂 ,

𝜃󸀠 = 3∑
𝑗=1

𝜃𝑗 𝜕𝜓𝑗𝜕𝜂 ,

𝜙󸀠 = 3∑
𝑗=1

𝜙𝑗 𝜕𝜓𝑗𝜕𝜂 .

(31)

4. Results and Discussion

The numerical method employed to solve the present prob-
lem is influential method in solving nonlinear partial differ-
ential equations and called Galerkin finite element method
(GFEM).The nonlinear partial differential equations govern-
ing the laminar boundary layer flow were converted to the
matching nonlinear ordinary differential equations (ODEs)
using appropriate similarity transformation and then passed
through five necessary steps for solving differential equations
using GFEM. We used Gaussian integration rule to evaluate
the integrations in (30) and (31) and Matlab software is
employed to produce the numerical result. Moreover, we
interpreted the impact of physical parameters like magnetic
field, Prandtl number, Brownian motion, thermophoresis,
mixed convection/local buoyancy parameter, Deborah num-
ber with respect to the relaxation time of the heat flux and
nanoparticle concentration, heat generation or absorption
term, chemical reaction rate, ratio of concentration to ther-
mal buoyancy forces, and stretching sheet parameter. The
results are illustrated by tabular and graphical forms. The
default values of the related parameters used for this study
are

Pr = 1.0,
𝜆 = 0.2,
𝜀 = 0.3,
𝛽1 = 0.3,
𝛿 = 0.2,
𝛾𝐸 = 0.2,
𝛾𝐶 = 0.2,
𝑛 = 1.2,
𝑀 = 1.0,
𝑁𝑡 = 0.1,
𝑁𝑏 = 0.1,
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Figure 2: Impact ofmagnetic parameterMon nanoparticle concen-
tration.

𝑁∗ = 0.1,
𝛽𝑡 = 0.3,
𝐿𝑒 = 1.0,
𝛽 = 0.1,
𝛽𝑐 = 0.2.

(32)

These values are carefully chosen in accordance with previous
literatures (see [31]).

Figures 2, 3, and 4 show the impacts of magnetic field
variable on nanoparticle concentration, temperature profile,
and velocity field, respectively. Figures 2 and 3 show the
attribute of both nanoparticle concentration and temperature
profile of the fluid when magnetic field varies. The graphs
reveal that as magnetic field intensified, both the temperature
and concentration graphs rise up. This is in agreement with
the physical meanings of magnetic field which is directly
related to Lorentz force that has the capability of increasing
the nanoparticle volume fraction in the motion of the
nanofluid and fluid temperature as well. Opposite to this
as seen from Figure 4, the enhancement in magnetic field
parameter reduces the fluid velocity. This is due to the
enhancement of Lorentz force which opposes the motion of
the fluid.

It is observed from Figure 6 that an increase in ther-
mophoresis parameter increases the temperature of the
fluid. This is a result of large thermophoretic force which
causes large temperature gradient that produces movement
of suspended particle from higher temperature to lower
temperature.
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Figure 3: Impact of magnetic parameter M on temperature profile.
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Figure 4: Impact of magnetic parameter M on velocity field.

Figures 5 and 7 also indicate that the enhancement in
thermophoresis parameter will enhance both velocity of the
fluid and nanoparticle concentration profile. This is due to
large thermophoresis which causes particle migration to pro-
duce nonuniform distribution of nanoparticle concentration
as seen from Figure 7.

Brownian motion is the unsystematic motion of particles
suspended in fluid resulting from their collision with high-
speed moving molecules in the fluid. It is crystal clear
that Brownian motion parameter enlargement leads to the
increase in thermal boundary layer region as indicated in
Figure 9 and opposite to this the enlargement in Brownian
motion parameter which causes in fluid motion the particle
deposition away from fluid regime and then produces the
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Figure 5: Impact of thermophoresis𝑁𝑡 on velocity field.
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Figure 6: Impact of thermophoresis𝑁𝑡 on temperature profile.

nanoparticle volume fraction decrease or nanoparticle con-
centration reduction as shown in Figure 8.

Figure 10 reveals that the increase in heat generation
or absorption parameter magnifies the temperature of the
fluid and thermal boundary layer thickness of the fluid.
This is simply as expected that adding heat to the fluid will
rise temperature of the fluid. Figure 11 shows nanoparticle
concentration diminishes as Lewis number increases. The
Lewis number (Le) characterizes fluid flows where there are
simultaneous heat and mass transfer. Thus, it is a measure
of the relative thermal and mass-transfer (concentration)
boundary layer thicknesses and hence increase in Lewis
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Figure 7: Impact of thermophoresis𝑁𝑡 on nanoparticle concentra-
tion.
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Figure 8: Impact of Brownian motion𝑁𝑏 on nanoparticle concen-
tration.

number also results in diminishing concentration boundary
layer thickness.

Figures 12 and 13 describe the notion that the amplifica-
tion in Prandtl number results in diminishing both temper-
ature and nanoparticle concentration profile, respectively. It
also indicates a shrink in both thermal boundary layer and
boundary layerwidth of concentration. Since Prandtl number
itself relates momentum diffusivity and thermal diffusivity, it
controls the relative thickness of the momentum and thermal
boundary layers. Therefore, a large value of Pr implies heat
diffuses slowly compared to the velocity (momentum).

Figures 14–19 show mixed convection parameter 𝜆 and
Eyring-Powell fluid parameter 𝜀 have similar influences on
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Figure 9: Impact of Brownian motion𝑁𝑏 on temperature profile.
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Figure 10: Impact of heat generation/absorption 𝛽 on temperature
profile.

velocity field, temperature, and nanoparticle concentration,
respectively. Velocity field increases with enlargement in
mixed convection parameter 𝜆 and both nanoparticle con-
centration and temperature of the fluid decreasewith increase
in 𝜆. Eyring-Powell fluid parameter 𝜀 also exhibits similar
property as shown in Figures 16–19.

As revealed in Figures 21 and 22, increase in chem-
ical reaction rate 𝛽1 reduces nanoparticle concentration;
enhancement inDeborah number 𝛾𝐸 diminishes temperature
profile and large values of Deborah number 𝛾𝐶 result in
smaller value in nanoparticle concentration, respectively.
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Figure 11: Impact of Lewis number Le on nanoparticle concentra-
tion.
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Figure 12: Impact of Prandtl number Pr on temperature profile.

Figures 23 and 24 are drawn to manifest the effect of
stretching sheet parameter on temperature and nanoparticle
concentration profile, respectively. Stretching sheet parame-
ter has decreasing impact on both temperature and nanopar-
ticle concentration of the boundary layer flow.

Tables 1–3 pointed out that the results obtained in the
present study in terms of engineering physical quantities of
interest like local skin friction coefficient, local Nusselt num-
ber, and local Sheer wood number are in a good conformity
with existing literature.
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Figure 13: Impact of Prandtl number Pr on nanoparticle concentra-
tion profile.
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Figure 14: Impact of mixed convection parameter 𝜆 on velocity
field.

Table 4 reveals that the skin friction coefficient is an
increasing function of magnetic field parameter 𝑀, stretch-
ing sheet parameter 𝑛, and Eyring-Powell fluid parameter 𝜀
and is a decreasing function of mixed convection parameter𝜆, and Eyring-Powell fluid parameter 𝛿. Table 4 also indicates
that local Nusselt number is an increasing function of Prandtl
number Pr, Deborah number 𝛾𝐸, mixed convection parame-
ter 𝜆, stretching sheet parameter 𝑛, and Eyring-Powell fluid
parameters and is a decreasing function of Deborah number𝛾𝐶, heat generation or absorption term 𝛽, thermophoresis
parameter𝑁𝑡, and Brownian diffusion parameter𝑁𝑏.

Table 4 also shows sheer wood number is an increasing
function of Prandtl number Pr, Deborah number 𝛾𝐶, mixed
convection parameter 𝜆, Eyring-Powell fluid parameters,
chemical reaction rate 𝛽1, heat generation or absorption term
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Figure 15: Impact ofmixed convection parameter𝜆 on nanoparticle
concentration.
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Figure 16: Impact of mixed convection parameter 𝜆 on temperature
profile.

𝛽, Brownian diffusion parameter 𝑁𝑏, and Lewis number𝐿𝑒 and is a decreasing function of Deborah number 𝛾𝐸,
stretching sheet parameter 𝑛, and thermophoresis parameter𝑁𝑡.
5. Conclusion

We investigated the nonlinear convective flow of Eyring-
Powell nanofluid using Catteneo-Christov heat andmass flux
model over a nonlinear stretching surface in the presence
of heat generation/absorption and chemical reaction. The
Galerkin finite element method (GFEM) is used to solve
the coupled highly nonlinear partial differential equations
resulting from the problem formulation. The attributes of the
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Table 1: Comparison of the Nusselt number 𝜃󸀠(0) when 𝑛 = 1.0, Pr = 10.0, 𝐿𝑒 = 1.0, 𝜀 = 𝛽1 = 𝛿 = 𝛾𝐸 = 𝛾𝐶 = 𝑀 = 𝛽 = 𝛽𝑡 = 𝛽𝑐 = 𝜆 = 0.0.
𝑁𝑡 Nusselt number𝑁𝑏 = 0.1 𝑁𝑏 = 0.2 𝑁𝑏 = 0.3 𝑁𝑏 = 0.4

[35] [36] present [35] [36] Present [35] [36] present [35] [36] present
0.1 0.9524 0.95244 0.95239 0.5056 0.50561 0.50557 0.2522 0.25218 0.25217 0.1194 0.11940 0.11940
0.2 0.6932 0.69318 0.69318 0.3654 0.36536 0.36536 0.1816 0.18159 0.18159 0.0859 0.08588 0.08590
0.3 0.5201 0.52025 0.52019 0.2731 0.27313 0.27313 0.1355 0.13564 0.13554 0.0641 0.06424 0.06409
0.4 0.4026 0.40260 0.40258 0.2110 0.21100 0.21101 0.1046 0.10461 0.10461 0.0495 0.04962 0.04946
0.5 0.3211 0.32105 0.32109 0.1681 0.16811 0.16812 0.0833 0.08342 0.08330 0.0394 0.03932 0.03939

Table 2: Comparison of the Sheer wood number 𝜙󸀠(0)when 𝑛 = 1.0,Pr = 10.0, 𝐿𝑒 = 1.0, 𝜀 = 𝛽1 = 𝛿 = 𝛾𝐸 = 𝛾𝐶 = 𝑀 = 𝛽 = 𝛽𝑡 = 𝛽𝑐 = 𝜆 = 0.0.
𝑁𝑡 Sheer wood number𝑁𝑏 = 0.1 𝑁𝑏 = 0.2 𝑁𝑏 = 0.3 𝑁𝑏 = 0.4

[35] [36] present [35] [36] Present [35] [36] present [35] [36] Present
0.1 2.1294 2.12949 2.12938 2.3819 2.38186 2.38190 2.4100 2.41009 2.41002 2.3997 2.39970 2.39966
0.2 2.2740 2.27401 2.27400 2.5152 2.51537 2.51521 2.5150 2.51501 2.51500 2.4807 2.48066 2.48072
0.3 2.5286 2.52855 2.52855 2.6555 2.65550 2.65550 2.6088 2.60876 2.60884 2.5486 2.54848 2.54860
0.4 2.7952 2.79520 2.79519 2.7818 2.78181 2.78178 2.6876 2.68758 2.68761 2.6038 2.60380 2.60380
0.5 3.0351 3.03511 3.03511 2.8883 2.88830 2.88830 2.7519 2.75190 2.75188 2.6483 2.64831 2.64831

Table 3: Comparison of the skin friction 𝑓󸀠󸀠(0) when 𝑛 = 1.0, Pr = 1.0, 𝐿𝑒 = 1.0, 𝛽1 = 𝛾𝐸 = 𝛾𝐶 = 𝛽 = 𝛽𝑡 = 𝛽𝑐 = 0.0.
𝜀 𝜆 𝛿 𝑀 −𝑓󸀠󸀠(0) −𝑓󸀠󸀠(0)

[31] present
0.1 0.1 0.1 0.5 1.2272 1.22720
0.2 1.2826 1.28261
0.3 1.3361 1.33566
0.1 0.5 1.2216 1.22158

0.3 1.1152 1.11520
0.5 1.0133 1.01330
0.1 0.1 1.2271 1.22720

0.3 1.2245 1.22445
0.5 1.2217 1.22168

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

=0.0
=0.3
=0.6




(

)

Figure 17: Impact of Eyring-Powell fluid parameter 𝜀 on nanoparti-
cle concentration.

laminar follow pertinent to different governing parameters
are indicated as follows:

(i) Both nanoparticle concentration and temperature of
the fluid are increasing functions of themagnetic field
parameter and the velocity field is decreasing function
of the magnetic field parameter

(ii) Velocity field, temperature, and nanoparticle con-
centration profile are increasing functions of ther-
mophoresis parameter

(iii) The enlargement in Brownian motion yields large
values in temperature and decrease in nanoparticle
concentration

(iv) Both nanoparticle concentration and temperature
profile of the fluid are decreasing functions of the
Lewis and Prandtl numbers

(v) The temperature and nanoparticle concentration
are reduced and opposite to this the velocity
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Table 4: Numerical values of skin friction coefficient, Nusselt number and Sheer wood number for different parameters.

𝑛 𝑃𝑟 𝜆 𝜀 𝛽1 𝛿 𝛾𝐸 𝛾𝐶 𝑀 𝑁𝑡 𝑁𝑏 𝐿𝑒 𝛽 −𝑓󸀠󸀠(0) −𝜃󸀠(0) −𝜙󸀠(0)
1.2 1.0 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.1 0.1 1.0 0.0 1.28652 0.53393 0.38052

1.5 1.28652 0.66299 0.48308
2.0 1.28652 0.76485 0.60785
1.0 0.1 1.23845 0.54212 0.38183

0.2 1.19147 0.54981 0.38327
0.0 0.2 1.34109 0.54197 0.38170

0.3 1.39448 0.54922 0.38300
0.1 0.2 1.28652 0.53208 0.47720

0.4 1.28652 0.52920 0.64069
0.1 0.2 1.28175 0.53423 0.38054

0.5 1.26850 0.53510 0.38060
0.1 0.5 1.28652 0.55509 0.35871

1.0 1.28652 0.61103 0.30691
0.2 0.5 1.28652 0.53359 0.38194

1.0 1.28652 0.39878 0.53207
0.3 1.0 1.46343 0.50976 0.37836

1.5 1.62013 0.49047 0.37790
0.5 0.3 1.28652 0.49660 -0.09250

0.5 1.28652 0.46138 -0.43839
0.1 0.3 1.28652 0.47553 0.58955

0.5 1.28652 0.42186 0.63049
0.1 1.5 1.28652 0.52835 0.59337

2.0 1.28652 0.52440 0.78393
1.0 0.2 1.28652 0.34687 0.55032

0.3 1.28652 0.22448 0.66179
0.5 1.28652 -0.15594 1.01042

0.5 1.0 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.1 0.1 1.0 0.0 1.26147 0.51567 0.42594
1.5 1.29252 0.54171 0.36815
2.0 1.29941 0.55482 0.35257

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

=0.0

=0.3

=0.6


(

)



Figure 18: Impact of Eyring-Powell fluid parameter 𝜀 on tempera-
ture profile.

field increases when mixed convection parameter
increases
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Figure 19: Impact of Eyring-Powell fluid parameter 𝜀 on velocity
profile.

(vi) Velocity field is increasing function of Eyring-Powell
fluid parameter 𝜀 and both temperature and concen-
tration profiles are decreasing functions of 𝜀
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Figure 20: Impact of chemical reaction rate 𝛽1 on nanoparticle
concentration.
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Figure 21: Impact of 𝛾𝐸 on temperature profile.

(vii) The rise in reaction rate 𝛽1 and the Deborah number
due to nanoparticle concentration 𝛾𝐶 diminishes
nanoparticle concentration of the boundary layer
flow

(viii) The larger stretching sheet parameter and the Deb-
orah number with respect to relaxation time of heat
flux 𝛾𝐸 results in reduction in temperature profile of
the flowing fluid

(ix) The rise in chemical reaction rate will improve mass
transfer rate and reduce heat transfer rate and local
buoyancy parameter has quit opposite effect.
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Figure 22: Impact of 𝛾𝐶 on nanoparticle concentration.
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Figure 23: Impact of stretching sheet parameter 𝑛 on temperature
profile.

Nomenclature

𝑎: Constant𝐶: Concentration𝑐𝑝: Specific heat at constant pressure𝐶𝑓: Skin friction coefficient𝐷𝐵: Brownian diffusion𝐷𝑇: Thermophoresis diffusion𝐺𝐹𝐸𝑀: Galerkin finite element method𝑇: Temperature𝑔: Gravitational acceleration𝑢, V: Velocity components𝑈𝑤: Stretching velocity
]: Kinematic viscosityΛ 1, Λ 2: Linear and nonlinear thermal expansion

coefficients due to temperature
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Figure 24: Impact of stretching sheet parameter 𝑛 on nanoparticle
concentration.

Λ 3, Λ 4: Linear and nonlinear
thermal expansion
coefficients due to
concentration𝜌𝑓: Density of base liquid𝛼𝑓: Thermal diffusivity of the
base fluid𝜎: Electric conductivity𝐵20: Magnetic field parameter𝑘1: Reaction rate

Pr: Prandtl number𝛾𝐸: Deborah number with
respect to the relaxation
time of the heat flux𝛾𝐶: Deborah number due to
nanoparticle concentration𝜀, 𝛿: Eyring-Powell fluid
parameters𝑀: Magnetic field parameter𝜆: Mixed convection
parameter𝛽𝑡: Nonlinear convection
parameter due to
temperature𝛽𝑐: Nonlinear convection
parameter due to
concentration𝑁∗: Ratio of concentration to
thermal buoyancy forces𝐺𝑟: Grashof number in terms
of temperature𝐺𝑟∗: Grashof number in terms
of concentration𝑁𝑏: Brownian motion
parameter

𝑁𝑡: Thermophoresis parameter𝛽: Heat
generation/absorption
term𝐿𝑒: Lewis number𝛽1: Chemical reaction rate
parameter𝑁𝑢𝑥: Nusselt number𝑆ℎ𝑥: Sherwood number
subscript∞: Condition at the free
stream𝑤: Condition at the surface.
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