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Two  numerical techniques, namely, Haar Wavelet and the product integration methods, have been employed to give an approximate 
solution of the fractional Volterra integral equation of the second kind. To test the applicability and e�ciency of the numerical 
method, two illustrative examples with known exact solution are presented. Numerical results show clearly that the accuracy of these 
methods are in a good agreement with the exact solution. A comparison between these methods shows that the product integration 
method provides more accurate results than its counterpart.

1. Introduction

Fractional integral equations of the second kind have attracted 
the attention of many scientists and researchers in recent years. 
�ese equations appear frequently in heat transformations and 
heat radiation, population growth model, biological species 
living together, porous media, rheology, control, and elec-
tro-chemistry (see [1–5] for more details). �e concept of frac-
tional calculus is now considered as a partial technique in many 
branches of science including physics (Oldham and Spanier 
[6]). Recently Srivastava et al. [7] gave the model of under actu-
ated mechanical system with fractional order derivative and 
Sharma [8] studied advanced generalized fractional kinetic 
equation in Astrophysics. Caputo refermulated the more “clas-
sic” de¤nition of the Riemann–Liouville fractional derivatives 
in order to use integer order initial conditions to solve his frac-
tional order di¥erential Equation [9]. Kowankar and Gangal 
reformulated the Riemann–Liouville fractional derivative in 
order to di¥erentiate nowhere di¥erentiable fractal functions 
[10]. Abdou et al. [11] have implemented the Toeplitz matrix 
and product Nystrom methods for solving singular integral 
equation with logarithmic kernel and Hilbert kernel. �ey con-
cluded that these methods give a very accurate approximation 
for these types of kernels. In [12] Hamaydi and Qatanani have 
solved Linear Fuzzy Volterra Integral Equation. In addition, 
Hamdan [13] has employed several numerical methods for 

solving Volterra fractional integral equations. In recent years, 
numerous methods have been proposed for solving fractional 
Volterra integral Equations [2, 14, 15]. Lepik [16] has solved 
fractional integral equations by the Haar wavelet method. 
Fractional linear multistep methods have been employed by 
Lubich [17] to solve Abel’s Volterra integral equation of the 
second kind. Bruner [18] has solved Volterra integral and 
related functional equations by using the collocation method. 
Moreover, collocation method based on the orthogonal poly-
nomials is presented to solve fractional integral Equations [19]. 
Other numerical methods on fractional integral equations are 
hybrid collocation [20], smoothing technique [15], piecewise 
constant orthogonal functions approximation [14], the 
Galerkin method [2], Berstein’s approximation [19, 21], the 
Simpson 3/8 rule method [22], mechanical quadrature [23], 
Legender Pseudo spectral [24], and iterative numerical method 
[25]. �e fractional Volterra integral equation of the second 
kind under investigation is de¤ned as follows:

where �(�, �) is called the kernel or the nucleus of the integral 
equation. �e function �(�) to be determined appears under 
the integral sign. �e kernel �(�, �) and the function �(�) are 
given.

(1)
�(�) = �(�) + 1Γ(�)∫

�

�
(� − �)�−1�(�, �)�(�)��, 0 < 
 < 1,
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In this article, two numerical techniques, namely the Harr 
wavelet and the product integration method are implemented 
to solve the Volterra fractional integral Equation (1). A com-
parison between these methods is carried out by solving some 
test examples.

�e paper is organized as follows: In Section 2 the Haar 
wavelet method is introduced. �e product integration method 
used to approximate solution of the fractional integral equa-
tion is addressed in Section 3. �e proposed methods are 
implemented using numerical examples with known analytical 
solution by applying MAPLE so®ware in Section 4. Conclusions 
are given in Section 5.

2. The Haar Wavelet Method

�e Haar functions are an orthogonal family of switched rec-
tangular waveforms where amplitudes can di¥er from one 
function to another. �ey are de¤ned in the interval [0, 1]. 
However, we are interseted in de¤ning these functions for the 
more general interval [�, �]. First, we de¤ne the integer 
� = 2� (� is the maximal level of resolution). We divide the 
interval [�, �] into 2� subintervals of equal length; each sub-
interval has the length Δ� = (� − �)/2�. Next, two parame-
ters are introduced: the dilation parameter � for which 
� = 0, 1, . . . , � and the translation parameter � = 0, 1, . . . , � − 1
(here the notation � = 2� is introduced). �e wavelet number 
� is identi¤ed as � = � + � + 1, (� > � and � ̸= �).

�e ��ℎ Haar wavelet is de¤ned as:

where

For � = 1 and � ∈ [0, 1], the function ℎ1(�) is the scaling func-
tion or the father wavelet for the family of the Haar wavelets 
which is de¤ned as

For � = 2 and � ∈ [0, 1], the function ℎ2(�) is the mother wave-
let for the family of the Haar wavelet which is de¤ned as

For � = 3 and � ∈ [0, 1], the function ℎ3(�) is de¤ned as

For � = 4 and � ∈ [0, 1], the function ℎ4(�) is de¤ned as

(2)ℎ�(�) =
{
{
{

1, �1 ≤ � ≤ �2,
−1, �2 ≤ � ≤ �3,
0, otherwise,

(3)

�1 = � + 2��Δ�,�2 = � + (2� + 1)�Δ�,�3 = � + 2(� + 1)�Δ�,� = �� .

(4)ℎ1(�) = { 1, 0 ≤ � < 1,0, otherwise.

(5)ℎ2(�) =
{
{
{

1, 0 ≤ � < 12 ,
−1, 12 ≤ � < 1,0, otherwise.

(6)ℎ3(�) =
{
{
{

1, 0 ≤ � < 14 ,
−1, 14 ≤ � <

2
4 ,0, otherwise.

In fact Table 1 shows the index computations for Harr basis 
functions. �e Haar wavelet series expansion of a given func-
tion g(�) is given as [24]

where � ∈ [�, �] and ���� are the wavelet coe�cients. �ere are 
many methods for computing ����, one of these is the colloca-
tion method.

�e collocation points are de¤ned as

Substituting Equation (9) into Equation (8) gives the discrete 
version, i.e.,

It is convenient to put Equation (10) into the matrix form as

where g and � are 2�-dimensional row vectors and the Haar 
coe�cients �(�, �) = ℎ�(��) is the element of a 2� × 2�
matrix.

Now, in virtue of Equation (9) and upon substituting 
Equation (10) into Equation (1) we get

or

Assume that

(7)ℎ4(�) =
{
{
{

1, 24 ≤ � <
3
4 ,

−1, 34 ≤ � <
4
4 ,0, otherwise.

(8)g(�) =
2�
∑
�=1
��ℎ�(�),

(9)�� = � + (� − 0.5)Δ�, � = 1, 2, . . . , 2�.

(10)g(��) =
2�
∑
�=1
��ℎ�(��).

(11)g = ��,

(12)g(��) = �(��) + 1Γ(�)∫
��

0
(�� − �)�−1�(��, �)g(�)��

(13)

2�
∑
�=1
��ℎ�(��) = �(��) +

1
Γ(�)∫

��

0
(�� − �)

�−1�(��, �)
2�
∑
�=1
��ℎ�(�)��,

(14)
�(��) =

2�
∑
�=1
��ℎ�(��) −

1
Γ(�)∫

��

0
(�� − �)

�−1�(��, �)
2�
∑
�=1
��ℎ�(�)
�,

(15)

�(��) =
2�∑
�=1
��[ℎ�(��) − 1Γ(�)∫

��

0
(�� − �)�−1�(��, �)ℎ�(�)��].

Table 1: Index computations for Haar basis function.

� 0 1 1 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
� 0 0 1 0 1 2 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
� = 2� + � + 1 2 3 4 5 6 7 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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then Equation (15) becomes

�e matrix form of Equation (17) is

where �(�, �) = ��(��), �(�) = �(��).
�e solution of Equation (18) is

Upon using Equation (2), then Equation (16) can be rewritten 
in the following form

3. The Product Integration Method

We introduce the product integration method that can be used 
to solve linear Volterra fractional integral equation of the sec-
ond kind.

To use the product integration method as a numerical 
technique [3, 10], we consider the linear Volterra integral 
equation of the second kind which has the general form:

where �(�, �) is the kernel (and is known ), � is a constant 
parameter and g(�) is unknown function to be determined. 
�is method is based on factoring of the singularity of the 
kernel �(�, �) as follows:

where �(�, �) is well-behaved function and �(�, �) is badly 
behaved function.

Set Equation (22) into Equation (21) yields

First, we decompose the interval [�, �] into � subintervals ℎ�
where:

and

If we use the �-points quadrature rule and collocate Equation 
(23) at the nodes {��}��=1 ∪ {0}, we get

(16)��(��) = 1Γ(�)∫
��

0
(�� − �)�−1�(��, �)ℎ�(�)��

(17)�(��) =
2�
∑
�=1
��[ℎ�(��) − ��(��)], � = 1, 2, . . . , 2�.

(18)� = �[� − �],

(19)� = �([� − �])−1.

(20)

{{{{{
{{{{{
{

�(�, �) = 0, �� < �1,
�(�, �) = 1Γ(�)∫

��
�1
(�� − �)

�−1�(��, �)
�, �1 ≤ � ≤ �2,
�(�, �) = 1Γ(�)[∫

�2
�1
(�� − �)

�−1�(��, �)
� − ∫
��
�2
(�� − �)

�−1�(��, �)
�], �2 ≤ � ≤ �3,
�(�, �) = 1Γ(�)[∫

�2
�1
(�� − �)

�−1�(��, �)
� − ∫
�2
�2
(�� − �)

�−1�(��, �)
�], �3 ≤ ��.

(21)g(�) = �(�) + �∫
�

�
�(�, �)g(�)��, � ≤ � ≤ �,

(22)�(�, �) = �(�, �)�(�, �),

(23)g(�) = �(�) + �∫
�

�
�(�, �)�(�, �)g(�)��, � ≤ � ≤ �.

(24)ℎ� = �(�+1) − ��, � = 0, 1, 2, . . . , � − 1

(25)� = �0 < �1 < ⋅ ⋅ ⋅ < �� = �.

Using Lagrange interpolation polynomial, Equation (26) can 
be written as:

where �� = �� = � + �ℎ for � = 0, 1, . . . , �, with ℎ = (� − �)/�
and w�� are the weights which can be determined directly. 
Approximating the integral terms by a product integration 
using composite trapezoidal rule, where � = ��, we get:

It follows that

where

(26)
g(��) = �(��) + �∫

��

�
�(��, �)�(��, �)g(�)��, � = 0, 1, 2, . . . , �.

(27)g(��) = �(��) + �
�
∑
�=0

w���(��, ��)g(��),

(28)

∫��
�
�(��, �)�(��, �)g(�)�� ≈

�∑
�=0

w���(��, ��)g(��), � = 0, 1, 2, . . . , 
.

(29)

∫��� �(��, �)�(��, �)g(�)�� =
�−1
∑
�=0
∫��+1�� �(��, �)�(��, �)g(�)��

≈
�−1
∑
�=0
∫��+1�� �(��, �)[

(��+1−�)
ℎ�
�(��, ��)g(��) + (

�−��+1)
ℎ�
�(��, ��+1)g(��)]��

=
�
∑
�=0

w���(��, ��)g(��),

(30)w�0 = ∫
�1

�0
�(��, �)((�1 − �)ℎ0 )��, for � = 0

(31)

w�� =∫
��+1

��
�(��, �)(

(��+1 − �)
ℎ� )��

+ ∫��
��−1
�(��, �)(

(� − ��−1)
ℎ�−1 )��, for � = 1, . . . , � − 1,

Table 2: �e exact and numerical solutions using the Haar wavelet 
method with � = 64.

�� Exact solution 
g(�) = �1/2 − 1

Numerical 
 solution gℎ(�) ����� : |g − gℎ|

0.0078 −0.9116116523 −0.9116009499 1.0702�−05
0.1172 −0.6576734015 −0.6576324164 4.0985�−05
0.2266 −0.5240141808 −0.5239489931 6.5188�−05
0.3359 −0.4203988440 −0.4203067536 9.2090�−05
0.4453 −0.3326826092 −0.3325562333 1.2638�−04
0.5547 −0.2552265445 −0.2550525941 1.7395�−04
0.6641 −0.1850996993 −0.1848551078 2.4459�−04
0.7734 −0.1205470450 −0.1201906958 3.5635�−04
0.8828 −0.0604189763 −0.0598738640 5.4511�−04
0.9922 −0.0039139093 −0.0030264584 8.8745�−04
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(39)� = [�(�0) = �(�), �(�1), ⋅ ⋅ ⋅ , �(��) = �(�)]�,

(40)�̂� = [ ̂g(�0) = ̂g(�), ̂g(�1), ⋅ ⋅ ⋅ , ̂g(��) = ̂g(�)]�.
�e approximate solution to Equation (26) is determined 
recursively using:

with

Hence, Equation (26) yields a system of linear algebraic 
equations:

Solving Equation (35) gives

where the matrix � = (���), 0 ≤ � ≤ �, 0 ≤ � ≤ � − 1 with:

(32)w�� = ∫
��

��−1
�(��, �)(

(� − ��−1)
ℎ�−1
)��, for � = �,

(33)

̂g(��) = �(��) + �
�
∑
�=0

w���(��, ��)g(��), � = 1, 2, . . . , �

(34)̂g�(�0) = �(�).

(35)��̂� = �.

(36)�̂� = �−1�,

(37)

{{{{{{{{{
{{{{{{{{{
{

�00 = 1��� = 0, ∀� ≤ � + 1�0� = 0, ∀� ≥ 1��� = 0, ∀� > �
��0 = �w�0�(��, �0), � = 0��� = 1 − �w���(��, ��), � = �
��� = �w���(��, ��), � = 0, 1, . . . , � − 1

(38)
� =
[[[[[
[

1 0 0 0 . . . 0
�10 �11 0 0 . . . 0�20 �21 �22 0 . . . 0
...

...
...

. . .
...

...

��0 ��1 ��2 0 . . . ���

]]]]]
]
,
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Figure 1: A comparison and absolute error between exact and numerical solutions in Example 1 with � = 64. (a) A comparison. (b) Absolute 
error.

1: Input:

• �, �: [�, �] is the interval for the solution function.
• �: �e maximal level of resolution.
• �: �e dilation parameter.
• �: �e translation parameter.
• �(�): �e function of the integral equation.
• �(�, �): �e kernel function.
• ℎ1(�): �e scaling function.
• �: Is a constant parameter.

2: Calculate:

• �e quantity � = 2�.
• � = 2�
• �e length of each subintervals Δ� = �−�� .
• � = 2�
• �e wavelet number � = � + � + 1.

3: Calculate: �e collocation points �� = � + (� − 0.5)Δ�.
4: Calculate: ℎ�(��), ��(��) and �(��).
5: Calculate:

• �e matrix [� − �].
• Calculate � = �([� − �]−1).

6: Determine the solution of the linear system g = ��.

Algorithm 1: Numerical realization using the Haar wavelet method.
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�e analytical solution of Equation (42) is:

We implement Algorithm 1 to solve Equation (42) using the 
Haar wavelet method. Table 2 displays the exact and the 
numerical results using the Haar wavelet method for Equation 
(42) with Δ� = 0.0156 and � = 64. �e maximum error with 
� = 64 is 8.8745�−04. Figure 1(a) compares both the exact and 
numerical solutions for the Volterra fractional integral 
Equation (42). Moreover, Figure 1(b) shows the absolute error 
between exact and numerical solutions. Now, we implement 
Algorithm 2 to solve Equation (42) using the Product 
Integration Method. We obtain the following results:

4.1. � Function. If �(��, �) = (�� − �)−1/2, then we have

(42)
g(�) = �1/2 − 34 √��

2 + 83√��
3/2 − 1 + 1√�∫

�

0
(� − �)−1/22�g(�)��.

(43)g(�) = �1/2 − 1.

(44)w�0 = 1ℎ0∫
�1

�0
�(��, �)(�1 − �)��, for � = 0,

(45)w�0 = 1ℎ∫
�1

�0
(�� − �)−1/2(ℎ − �)��,

(46)w�0 = 1ℎ∫
�1

�0
(�ℎ − �)−1/2(ℎ − �)��,

(47)w�0 =
2
3ℎ
1/2[3�1/2 + 2[(� − 1)3/2 − �3/2]],

(48)
w�� =∫

��+1

��
�(��, �)(

(��+1 − �)
ℎ� )��

+ ∫��
��−1
�(��, �)(

(� − ��−1)
ℎ�−1 )��, � = 1, . . . , � − 1,

(49)
w�� =∫
(�+1)ℎ
�ℎ
(�� − �)−1/2((� + 1)ℎ − �ℎ )��

+ ∫
�ℎ

(�−1)ℎ(�� − �)
−1/2( � − (� − 1)ℎ)ℎ )��,

(50)

w�� = 43ℎ
1/2[(� − � − 1)3/2 + [(� − � + 1)3/2 − 2(� − �)3/2]],

(51)w�� = 1ℎ�−1∫
��

��−1
�(��, �)(� − ��−1)��, � = �,

(52)w�� = 1ℎ∫
�ℎ

(�−1)ℎ
(�� − �)−1/2(� − (� − 1)ℎ)��,

(53)w�� = 1ℎ∫
�ℎ

(�−1)ℎ
(�ℎ − �)−1/2(� − (� − 1)ℎ)��,

(54)w�� = 43ℎ
1/2.

Here � is a lower triangular matrix (� + 1) ∗ (� + 1) and 
(1 − �w���(��, ��)) ̸= 0.
3.1. Uniqueness of a Solution. To prove the uniqueness of the 
solution, we can apply the Cauchy–Minkoviski inequality 
(see [11] for more details) and get |�| ≤ 1 which represents a 
su�cient condition to have a unique solution, and the value 
of ����g����� satis¤es the inequality:

4. Numerical Examples and Results

In this section, in order to examine the accuracy of the pro-
posed methods, we solve two numerical examples of fractional 
Volterra integral equations. Moreover, the numerical results 
will be compared with exact solution.

Example 1. Consider the linear Volterra fractional integral 
equation of the second kind:

(41)
����g����� ≤
����������
1 − � .

1: Input:

• �, �: [�, �] is the interval for the solution function.
• �: �e number of subdivisions of [�, �].
• �(�): �e function of the integral equation.
• �(�, �), �(�, �): �e kernel functions.
• �: Is a constant parameter.
• Set �0 = � and �� = �.

2: Calculate:

• ℎ = �−��
• �� = �� = � + �ℎ
• ℎ� = �(� + 1) − ��.

3: Calculate: w�0,w��,w��
w�0 = ∫�1�0�(��, �)(

(�1−�)
ℎ0
)��, for � = 0   

w�� = ∫��+1�� �(��, �)(
(��+1−�)
ℎ�
)��

+∫����−1�(��, �)(
(�−��−1)
ℎ�−1
)��, for � = 1, ⋅ ⋅ ⋅ , � − 1

w�� = ∫����−1�(��, �)(
(�−��−1)
ℎ�−1
)��, for � = �  

4: Solve the recurrence relation:
̂g�(�0) = �(�0) = �(�)  
̂g(��) = �(��) + �

�
∑
�=0

w���(��, ��)g(��), � = 1, 2, ⋅ ⋅ ⋅ , �  

or we can also solve the linear system of algebraic equations
  �̂� = �−1�

Algorithm 2: Numerical realization using the product integration 
method.
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(62)

w�� = ∫
��+1

��
�(��, �)(

(��+1 − �)
ℎ� )��

+ ∫��
��−1
�(��, �)(

(� − ��−1)
ℎ�−1 )��, � = 1, . . . , � − 1,

(63)

w�� = ∫
(�+1)ℎ
�ℎ
(�� − �)−2/3((� + 1)ℎ − �ℎ )��

+ ∫
�ℎ

(�−1)ℎ(�� − �)
−2/3( � − (� − 1)ℎ)ℎ )��,

From above equations we obtain the linear system of algebraic 
equations:

Table 3 displays the exact and the numerical results using the 
product integration method for Equation (42) with ℎ = 0.0156. 
�e maximum error with � = 64 is 4.7435�−04. Figure 2(a) 
compares both the analytical and numerical solutions for 
Equation (42) with � = 64. Moreover, Figure 2(b) shows the 
absolute error between exact and numerical solutions.

Example 2. Consider the Abel’s integral equation of the 
second kind:

�e exact solution of Equation (56) is:

Applying Algorithms 1 to Equation (56), we obtain the fol-
lowing results. Table 4 displays the exact and the numerical 
results using the Haar wavelet method for Equation (56) with 
Δ� = 0.0156 and � = 64. �e maximum error with � = 64 is 
1.1113�−03. Figure 3(a) compares both the exact and numerical 
solutions for the Abel’s integral equation (56). Moreover, 
Figure 3(b) shows that the absolute error between exact and 
numerical solutions. Applying Algorithm 2 to Equation (56) 
using the product integration method, we get

4.2. � Function. If �(��, �) = (�� − �)−2/3, then we have

(55)�� = �−1�.

(56)

g(�) = 13�
2 − � + 0.2399�7/3 + 0.8399�4/3 + 0.3733∫

�

0
(� − �)−2/3g(�)��.

(57)g(�) = 13�
2 − �.

(58)w�0 = 1ℎ0∫
�1

�0
�(��, �)(�1 − �)��, for � = 0,

(59)
w�0 = 1ℎ∫

�1

�0
(�� − �)−2/3(ℎ − �)��,

(60)
w�0 = 1ℎ∫

�1

�0
(�ℎ − �)−2/3(ℎ − �)��,

(61)w�0 =
3
4ℎ
1/3[4�1/3 + 3[(� − 1)4/3 − �4/3]],
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Figure 2:  A comparison and absolute error between exact and 
numerical solutions in Example 1 with � = 64. (a) A comparison. 
(b) Absolute error.

Table 3: �e exact and numerical solutions using the product inte-
gration method with � = 64.

�� Exact solution 
g(�) = �1/2 − 1

Numerical 
 solution gℎ(�) ����� : |g − gℎ|

0 −1 −1 0
0.125 −0.6464466094 −0.6463939905 5.2619�−05
0.250 −0.5000000000 −0.4999385093 6.1491�−05
0.375 −0.3876275643 −0.3875532017 7.4363�−05
0.500 −0.2928932188 −0.2927990146 9.4204�−05
0.625 −0.2094305849 −0.2093044528 1.2613�−04
0.750 −0.1339745962 −0.1337942129 1.8038�−04
0.875 −0.0645856533 −0.0643065527 2.7910�−04
1 0 4.7435e–04 4.7435�−04
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(66)w�� = 1ℎ�−1∫
��

��−1
�(��, �)(� − ��−1)��, � = �,

(67)w�� = 1ℎ∫
�ℎ

(�−1)ℎ
(�� − �)−2/3(� − (� − 1)ℎ)��,

(64)

w�� = ∫
(�+1)ℎ
�ℎ
(�ℎ − �)−2/3((� + 1)ℎ − �ℎ )��

+ ∫
�ℎ

(�−1)ℎ(�ℎ − �)
−2/3( � − (� − 1)ℎ)ℎ )��,

(65)
w�� = 94ℎ

1/3[(� − � − 1)4/3 + [(� − � + 1)4/3 − 2(� − �)4/3]],

Table 4: �e exact and numerical solutions using the Haar wavelet method with � = 64.
�� Exact solution g(�) = �1/2 − 1 Numerical solution gℎ(�) ����� : |g − gℎ|
0.0078 −0.0077921549 −0.0083481389 5.5598�−04
0.1172 −0.1126098632 −0.1131662257 5.5636�−04
0.2266 −0.2094523111 −0.2100916889 6.3938�−04
0.3359 −0.2983194986 −0.2990367942 7.1730�−04
0.4453 −0.3792114257 −0.3800030241 7.9160�−04
0.5547 −0.4521280924 −0.4529904969 8.6240�−04
0.6641 −0.5170694986 −0.5179996508 9.3015�−04
0.7734 −0.5740356445 −0.5750303556 9.9471�−04
0.8828 −0.6230265299 −0.6240817729 1.0552�−03
0.9922 −0.6640421549 −0.6651534675 1.1113e–03
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Figure 3: A comparison and absolute error between exact and numerical solutions in Example 2 with � = 64. (a) A comparison. (b) Absolute 
error.

Table 5: �e exact and numerical solutions using the product integration method with � = 64.
�� Exact solution g(�) = �1/2 − 1 Numerical solution gℎ(�) ����� : |g − gℎ|
0 0 0 0
0.125 −0.1197916666 −0.1197818969 9.7697�−05
0.250 −0.2291666666 −0.2291501145 1.6552�−05
0.375 −0.3281250000 −0.3280982056 2.6794�−05
0.500 −0.4166666666 −0.4166237294 4.2937�−05
0.625 −0.4947916666 −0.4947244207 6.7246�−04
0.750 −0.5625000000 −0.5623979179 1.0208�−04
0.875 −0.6197916666 −0.6196416593 1.5001�−04
1 −0.6666666666 −0.6664528164 2.1385�−04
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