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In this study, we develop and analyze a deterministic mathematical model for tuberculosis (TB) transmission dynamics. �e model 
includes vaccination for newborns and treatment for both high-risk latent and active TB patients. �e stability of disease-free 
equilibrium point is discussed in detail. In the numerical simulation, the model parameters are estimated using reported TB incidence 
data in Ethiopia from the years 2003 to 2017, and R0 is calculated as R0 ≈ 2.13. Finally, the sensitivity indices of R0 with respect 
to the model parameters are performed, and their corresponding graphical results are presented. Our results quantify the positive 
in�uence of vaccination and the treatment for high-risk latent and active TB patients on the control of tuberculosis.

1. Introduction

Tuberculosis (TB) is an airborne and highly infectious disease 
caused by Mycobacterium tuberculosis. A susceptible individual 
is infected with the bacteria when he or she inhales the TB 
germs, which are released into the air when infected individuals 
cough, sneeze, spit or talk [1]. �e �ght against TB involves 
vaccination with Bacillus Calmette-Guérin (BCG), screening 
of those at high risk, early detection, and treatment of cases [2]. 
In most TB endemic countries, BCG vaccination is recom-
mended for tuberculosis prevention and is usually administered 
shortly a�er birth to prevent TB in infants [3, 4].

Globally, tuberculosis remains a major global health prob-
lem, and it is one of the top 10 causes of death and the leading 
cause of a single infectious agent (above HIV/AIDS). In 2017, 
an estimated 10 million people developed TB, and 1.3 million 
died from the disease (including 300,000 deaths among HIV-
positive people) [5]. In Ethiopia, TB is still a serious public 
health challenge and one of the leading causes of morbidity 
and mortality [6]. According to the WHO report, Ethiopia is 
one of the 30 high-burden countries, and there were an esti-
mated 172,000 (164 per 100,000 populations) incident cases 
of TB in 2017. According to the same report, there were an 
estimated 25,000 deaths (24 per 100,000) due to TB, excluding 
HIV related deaths.

Mathematical models and computer simulations are inex-
pensive, easy to manage, relatively fast, and quite productive 
experimental tools. �ey have been widely used to examine, 
explain, and predict the dynamics of infectious disease transmis-
sion. Starting from the �rst mathematical model for TB by Waaler 
et al. [7], di¨erent mathematical models for tuberculosis have 
been formulated, analyzed, and utilized. �ese models apply to 
di¨erent types of populations such as a city or country, a school, 
prison, or refugee camp, see for instance, [8, 9] Also, di¨erent 
models would focus on various factors such as progression rate, 
treatment, vaccination, immigration, etc. see [10–12].

For many years mathematical models have been applied to 
study the transmission dynamics of TB. For example, Zhao et 
al. [13] investigated the role of age on the transmission of TB in 
Mainland China and found that the BCG vaccine is useful only 
for younger people. �ey also recommended that the DOTS 
program should be more focused on the senior-aged group, and 
more attention should be given to people with latent TB in the 
middle-aged group. Choi et al. [14] introduced three control 
mechanisms: distancing, case �nding, and case holding into the 
SEIL model in South Korea. �ey showed that distancing con-
trol is the most e¨ective prevention mechanism of all. On the 
other hand, Moualeu et al. [15] developed a model for the trans-
mission dynamics of TB and applied to the data for Cameroon. 
�ey identi�ed that the combined e¨ort that is education and 
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chemoprophylaxis might lead to a reduction of 80% in the num-
ber of infected people in 10 years. Kim et al. [16] developed a 
mathematical model for TB and �tted to the Philippine data. 
�eir result showed that applying a combination of distancing 
and case �nding control strategies has signi�cant potential for 
curtailing the spread of TB in the Philippines. �erefore the 
transmission dynamics of TB by mathematical models are 
important for proposing the best mechanisms to control the 
spread of TB. �e purpose of this study is to develop a suitable 
TB dynamics model and calibrating it for Ethiopia.

2. Materials and Methods

2.1. Model Formulation. �e model that we present in this paper 
is the modi�cation of the models in [14, 16] by including TB 
vaccination for newborns. �e homogeneously mixing total 
population at time �, of size �(�), is divided into �ve subclasses: 
susceptible �(�), Vaccinated �(�)), high-risk latently infected, 
�(�), Infectious (or active TB) �(�), and low-risk latent �(�).

We assume that the recruitment rate into the population 
is Λ and some portion it, (�Λ), will receive a vaccination at 
birth where (0 ≤ � ≤ 1). �e natural death rate (any death 
which is not due to TB) is assumed to be the same for each 
class and denoted by �. �e mortality due to the TB disease 
will happen only in the I-class with a rate �. �e e®ciency of 
the BCG vaccine is not complete. Hence, it is assumed that 
some portion of vaccinated individuals will be susceptible to 
bacteria with a rate of �.

Susceptible individuals can be infected with TB through the 
transmission coe®cient �. �e treatment rate for the �-class is 
denoted by �. It is assumed that the untreated portion of the 
E-class will develop active TB at the rate �. If treatment is admin-
istered for the I-class with a rate �, then some of them will com-
plete their treatment correctly at a rate (1 − �)� for (0 ≤ � ≤ 1). 
�e recovered individuals are moved to the �-class because 
treatment cannot eradicate the TB bacteria from the body of 
the patients. Hence, recovered and low-risk latently infected 
individuals are classi�ed into a single class of low-risk latent 
individuals. It is assumed that there is no permanent immunity 
to tuberculosis hence some of the recovered (low-risk latent) 
individuals can lose their immunity and become high-risk-la-
tently infected, with the relapse rate �. We further assume that 
all parameters to be used in this model are nonnegative.

Given these assumptions, we have the following �ow dia-
gram, which describes the interaction between classes (Figure 1).

Based on our de�nitions, assumptions, and interrelations 
between the variables, the system of ODE that describes the 
dynamics of TB is formulated as follows,

2.2. Basic Properties

2.2.1. Positivity of Solutions.

�eorem 1. Let the initial data �0, �0, �0, �0 and �0 be 
nonnegative. �en the solution set � > 0.
Proof. Take the second equation of the model (1)

For simplicity let us write � + � = � and �Λ = �. �en,

Multiplying both sides of (3) by exp (��) gives

By the product rule of the derivative we have

Hence from (4), we have

Integrating both sides of (6) gives

Similarly taking the �rst equation of (1) gives

By letting  (1 − �)Λ = � and (��(�) − �) = �(�), we have

Multiply both sides of (9) by exp {∫�0�(�)��} gives

(1)

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

��
�� = (1 − �)Λ + �� − ��
 − ��,
��
�� = �Λ − (� + �)�,
��
�� = ��
 + ��I + �� − (� + � + �)E,
�

�� = �� − (� + � + �)I,
��
�� = (1 − �)�I + �E − (� + �)�,�(�) = �(�) + �(�) + �(�) + 
(�) + �(�).

(2)
��(�)
�� = �Λ − (� + �)�(�).

(3)
��(�)
�� + ��(�) = �.

(4)
��(�)
�� exp (��) + ��(�) exp (��) = �exp(��).

(5)
��(�)
�� exp (��) + ��(�) exp (��) = ��� [�(�) exp (��)].

(6)
�
�� [�(�) exp (��)] = � exp (��).

(7)�(�) = �(0) exp (−��) + �� (1 − exp (−��)) ≥ 0.

(8)
��(�)
�� = (1 − �)Λ + ��(�) − (��(�) − �)�(�).

(9)
��(�)
�� + �(�)�(�) = � + ��(�).

(10)

��(�)
�� exp{∫

�

0
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0
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0
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Figure 1: Flow diagram of the TB transmission model.
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By the product rule of the derivative, we have

Hence

Integrating both sides of (12) gives

�en

Similarly, we can show that �(�), �(�), and �(�) are   
nonnegative. ☐

Remark. Note that, in particular, from equation (13) it follows 
that

2.2.2. Invariant Regions
�eorem 2. With the nonnegative initial conditions, the feasible 
region of the model is de�ned by

Proof. �e change of total population size is

(11)

��(�)
�� exp{∫

�

0
�(�)��} + �(�)�(�) exp{∫

�

0
�(�)��}

= ���[�(�) exp{∫
�

0
�(�)��}].

(12)
�
��[�(�) exp{∫

�

0
�(�)��}]

= � exp{∫
�

0
�(�)��} + ��(�) exp{∫

�

0
�(�)��}.

(13)

�(�) exp{∫
�

0
�(�)��} − �0 = �∫

�

0
exp {∫

�

0
�(�)��}

+ ∫
�

0
�
(�) exp {∫

�

0
�(�)��}.

(14)

�(�) = �0 exp{−∫
�

0
�(�)��} + [�∫

�

0
exp {∫

�

0
�(�)��}]

⋅ [exp{−∫
�

0
�(�)��}]

+ [∫
�

0
�
(�) exp {∫

�

0
�(�)��}]

⋅ [∫
�

0
�
(�) exp {∫

�

0
�(�)��}] ≥ 0.

(15)lim
�→∞
�(�) = �Λ� + � .

(16)Ω ={(�(�), �(�), �(�), �(�), �(�)) ∈ R+5|�(�)
+�(�) + �(�) + �(�) + �(�) ≤ Λ� }.

(17)��(�)
�� =
��(�)
�� +
��(�)
�� +

��(�)
�� +
��(�)
�� +
��(�)
�� =

Λ − ��(�) − �I(�) ≤ Λ − ��(�).

�e inequality (17) implies

�us for every � > 0, as �→∞,�(�) ≤ Λ� .
Hence an invariant region for this model is

â

3. Model Analysis

3.1. Disease-Free Equilibrium Point and the Basic Reproduction 
Number. �e disease-free equilibrium point of the model (1) 
is given by:

where �∗0 = Λ/� (� + �(1 − �))/(� + �) , and �∗0 = �Λ/(� + �).
�e basic reproduction number (R0) is the expected aver-

age number of new TB infections caused by a single infected 
individual when in contact with a completely susceptible pop-
ulation. We obtained R0 by using the next-generation matrix 
method given in [17], this amounts to calculating the two 
matrices � and �, where � is the rate of transfer of individ-
uals into and out of the infected classes and � is the rate of 
new infections in the compartment. Hence, by the equations 
we obtain,

�en R0 is the dominant eigenvalue of the matrix ��−1.
�us we have R0 = (��Λ[� + �(1 − �)](� + �))/(�(� + �)
[�(� + � + �)(� + � + �) + �{��(1 − �) + (� + �)(� + �)}]).

�e following number, Rg, serves as an indicator for global 
stability of the disease-free equilibrium point:

with �1 = � + � + �, �2 = � + � + �, and � = (��/��Λ)
[��1 + (1 − �)��].

Note that since � ≤ 1 and � > 0, we are guaranteed that 
�1�2 − ��� > 0.
�eorem 3. For model (1), the disease-free equilibrium point 
�∗0  is globally asymptotically stable if Rg < 1.

(18)�(�) ≤ Λ� −�0 exp (−��).

(19)

Ω ={(�(�), �(�), �(�), �(�), �(�)) ∈ R+5|�(�)
+�(�) + �(�) + �(�) + �(�) ≤ Λ� }.

(20)�∗0 = (�∗0 , �∗0 , 0, 0, 0),

(21)� = (
0 �Λ( 1� −

�
� + �) 0

0 0 0
0 0 0

),

(22)� = ( � + � + � −�� −�
−� � + � + � 0
−� (−1 + �)� � + �

).

(23)Rg =
��Λ[� + �(1 − �) + �]
�(� + �)[�1�2 − ���]

,

☐
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Proof. We follow a methodology similarly as in the stability 
analysis of [18, 19].

For Rg < 1 we have

�is can be written as

By the Archimedean property of R, there exists �0 > 0, for 
which

Also, we can �nd a number �1, with 0 < �1 < �, and such that

We require an upper bound for �(�). From Remark (15) it 
follows that there exists �0 such that  �����(�) − �Λ/(� + �)

���� < �0
whenever � < �0 . Without loss of generality, we can assume 
that �����(�) − �Λ/(� + �)

���� < �0 whenever � > 0.
�e latter inequality implies that �Λ/(� + �) − �0 < �(�)

and consequently, that −�(�) < −�Λ/(� + �) + �0. Also, we 
have �(�) ≤ Λ/�.

�us for every � > 0,

Now taking �2 = �1/2, we introduce two constants �0 and �1
as follows:

In particular then, �0 > 0.
Now we de�ne a function:

We prove now that �̇(�) is negative-de�nite. Note that we can 
write

where �2 = �0� − �2 + �1�, �3 = �� + �� − �0�1 +(1 − �)��1 , 
and �4 = � − �1(� + �).

(24)
��Λ[� + �(1 − �) + �]
�(� + �) − [�1�2 − ���] < 0.

(25)
��Λ[� + �(1 − �)]
�(� + �) + ��Λ��(� + �) − [�1�2 − ���] < 0.

(26)

��Λ[� + �(1 − �)]
�(� + �) + �0�� +

��Λ�
�(� + �) − [�1�2 − ���] < 0.

(27)

��Λ[� + �(1 − �)]
�(� + �) + �0�� +

��Λ�
�(� + �)

� + �1
�1

− [�1�2 − �
�] < 0.

(28)

�(�) ≤ �(�) − �(�) < Λ� −
�Λ
� + � + �0 =

Λ
�
� + �(1 − �)
(� + �) + �0.

(29)�0 =
�2
� −
�(� + �1)
�(� + �) ,

(30)�1 =
� + �2
� + � .

(31)�(�) = �(�) + �0�(�) + �1�(�).

(32)�̇(�) = �2� + �3� + �4�,

�en �4 = −�2 < 0.

Since �2 < �1, it follows that �2 < 0.
We can write ��3 as:

where

Noting also the upper bound for �(�), we obtain the following 
inequality

�erefore by the inequality (16), it follows that ��3 < 0. �is 
proves that �̇(�) is negative-de�nite. Hence, �(�) is a Lyapunov 
function on Ω. �erefore, by LaSalle’s invariance principle [20], 
every solution of model (1), with any initial conditions in Ω, 
approaches �∗0  as �→∞, whenever R0 < 1.

�e results in �eorem 3 implies that for any initial size 
of the subpopulation of the model, TB can be eliminated from 
the population when R0 < 1.

3.2. Existence of the Endemic Equilibrium Point. In this section, 
we show the existence of an endemic equilibrium point of the 
model (1). �e endemic equilibrium point is the steady-state 
where the disease keeps alive in the population that is when 
at least one of the infected classes of the model is nonzero.

�eorem 4. If R0 > 1, then the model (1) has a unique positive 
endemic equilibrium 

with:

(33)�2 = −
�(� + �1)
(� + �) +

�(� + �2)
(� + �) =

�(�2 − �1)
(� + �) .

(34)��3 = �(�� + ��) − �1�2 + �5,

(35)

�5 =
�1�(� + �1) + ��(1 − �)(� + �2)

� + �

≤ � + �1� + � [�1� + ��(1 − �)]

= (� + �1)��Λ��(� + �) �.

(36)

��3 ≤�{
Λ�
�(� + �)[� + �(1 − �)] + 
0� + ��}

− �1�2 +
�Λ�
�(� + �)

	 + 
1
	 �.

(37)�∗ = (�∗, �∗, �, �∗, �∗)

(38)�∗ = Λ[� + �(1 − �)]
R0(� + �)

,

(39)�∗ = �Λ� + � ,

(40)E∗ = (� + � + �)��� (R0 − 1),

(41)
�∗ = �� (R0 − 1),

(42)

☐
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rate of �-class are obtained by �tting the yearly TB 
incidence data obtained from WHO [23] to the model 
by using fmincon MATLAB routine. Figure 2 shows 
the graph of TB incidence data obtained (  ) and the 
estimated solid curve. �e estimated values are 
� = 1.646 × 10−7, � = 0.023, � = 0.546, � = 0.0013 and 
� = 0.153.

(h)  We calculate the initial number of vaccinated children 
as the product of the average number of newborns and 
the vaccination coverage, which is �0 = 1 × 106.

(i)  �e initial fraction for the infectious class �0 = 3.73 × 105
is taken from the TB- prevalence in 2003 reported by 
the WHO [23].

(j)  We estimate the initial value of the E-class and the 
L-class from the data-�tting process. �us, the amount 
of �0 and �0 is 16.37% and 30% out of the total popu-
lation, respectively. �is gives �0 = 1.19 × 107 and 
�0 = 2.18 × 107.

(k)  Finally, the initial number of the susceptible class is 
found from �0 = �0 − (�0 + �0 + �0 + �0) = 3.75 × 107.

(l)  Consequently, using these estimated parameters values 
we calculated the average value of R0 for the year 2003–
2017 TB cases in Ethiopia is R0 ≈ 2.13.

4.2. Sensitivity Analysis of the Basic Reproduction Number. To 
determine the best strategy for reducing human mortality 
and morbidity due to TB, it is crucial to know the relative 

�∗ = �(��(1 − �) + �(� + � + �))(R0 − 1)��(� + �) .

4. Numerical Simulations

4.1. Estimation of the Model Parameters. In this subsection, 
we estimate the values of the parameters of the model (1) 
based on the existing literature and the epidemiological data 
of Ethiopia in the years between 2003 and 2017. �e values of 
the parameters are summarised in Table 1, and the detailed 
estimation process of the parameter values is as follows.

(a)  According to the World Bank report, [21], the average 
life expectancy of Ethiopia in the years between 2003 
and 2017 is 60.93 years. �e natural death rate can be 
calculated as the inverse of life expectancy [8, 22]. 
Hence we estimate � = 0.016.

(b)  �e upper limit of the total population in the absence 
of the disease is Λ/�. Hence it is possible to take Λ as 
a product of � and the average population size over the 
years 2003–2017. Using this formula and the WHO 
report [23], the average yearly recruitment rate to the 
population of Ethiopia is 1.4 × 106.

(c)  Also, from the WHO report [23], the average 
TB-induced death rate is approximately � = 0.17.

(d)  From the WHO report, the average BCG vaccination 
coverage in Ethiopia over the years 2003–2017 is 71.5% 
[24]. �erefore, we take � = 0.715.

(e)  According to the data obtained from WHO [25], the 
treatment success rate for TB in Ethiopia is 83.2%. 
Hence we estimate 1 − � = 0.832.

(f)  On average, the BCG vaccine signi�cantly reduces the 
risk of TB by 50% [26]. �erefore, � = 0.5.

(g)  �e transmission coe®cient, progression rate from  
�-class to �-class, treatment coverage rate of �-class, 
the relapse rate from �-class to �-class, and treatment 
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Figure 2: �e yearly reported TB incidence data (  ) and and the 
corresponding best �t (solid blue curve) of ��(�).

Table 1: �e parameter values of the model (1).

Parameters Description Value Source
�0 Initial total population 7.25 × 107 [23]

�0
�e initial number of 

susceptible individuals 3.75 × 107 Estimated

�0
�e initial number of 
vaccinated individuals 1 × 106 Estimated

�0
�e initial number 
of high-risk latent 

individuals
1.19 × 107 Fitted

�0
�e initial number of 
infectious individuals 3.73 × 105 [23]

�0
�e initial number of low-

risk latent individuals 2.18 × 107 Fitted

Λ Recruitment rate 1.4 × 106 Estimated

� �e transmission 
coe®cient 1.646 × 10−7 Fitted

� Vaccination coverage rate 0.715 [24]

� Loss of protection for 
vaccination 0.5 [26]

� �e natural death rate 0.016 Estimated

� Progression rate from � 
to � 0.023 Fitted

� �e treatment rate of � 0.546 Fitted

1 − � Successful treatment rate 
of � 0.832 [25]

� Treatment rate of � 0.153 Fitted
� TB induced death rate 0.17 [23]
� �e relapse rate 0.0013 Fitted
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Using this formula, we calculate the sensitivity indices of R0
with respect to �, �, �, �, and �. �e values of ΓR0�  and ΓR0�  are 
positive. �is tells us, the total number of infected people can 
be decreased by reducing the contact rate of active TB infected 
individuals and the treatment failure rate. On the other hand, 
ΓR0� , ΓR0� , and ΓR0�  are negative. �is means that TB infection 
can be controlled by increasing the treatment rate of active 
and latent TB infected individuals, and vaccination coverage 
rate. �e values of the sensitivity indices for R0 are summa-
rized in Table 2.

�e most sensitive parameter for R0 is the transmission 
coe®cient �. �e next essential parameters are the treatment 
rates of latent and active TB patients. Table 2 shows that to 
have 1% decrease in the value of R0, it is necessary to 
decrease the amount of � and � to 1%, and 45.5%

importance of the di¨erent factors responsible for its 
transmission and prevalence. Sensitivity analysis using the 
normalized forward sensitivity index is used to determine 
the relative importance of various parameters accountable for 
the disease transmission [27]. �e basic reproduction number 
is the most signi�cant threshold in studying the dynamics 
of infectious disease [28]. In this section, we calculate the 
sensitivity indices of R0 for the model parameters by using 
the normalized forward sensitivity index.

De�nition. �e normalized forward sensitivity index of R0 which 
is di¨erentiable with respect to a given parameter �, is de�ned by

(43)ΓR0� = �R0�� × �R0 .

Table 2: Sensitivity indices of R0.

Parameters Sensitivity index of R0 Corresponding % changes
� �e transmission coe®cient +1 1%
� Treatment rate of � −0.801543 +1.25%
� �e treatment rate of � −0.742021 +1.35%
� Vaccination coverage rate −0.0226732 +44.1%
� Treatment failure rate +0.0219702 +45.5%
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Figure 3: �e plot shows for di¨erent initial values of (�, �, �, �, �), the solution of the model converges to the disease-free equilibrium point 
�∗0 = (6.84 × 107, 1.61 × 106, 0, 0, 0) for Rg = 0.65.
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disease-free equilibrium point �∗0 , this indicates that �∗0  is 
globally asymptotically stable for Rg < 1 and this agrees with 
�eorem 3 (Figure 4).

Figures 5–8 show the e¨ect of di¨erent epidemiological 
parameters on the number of the infected population. It is 
found that decreasing transmission coe®cient (the contact 
between susceptible class and active TB patients) and mini-
mizing the failure rate of treatment is essential to reduce the 
number of infected TB patient population. Also, increasing 
the treatment and vaccination coverage is vital to decrease the 
amount of infected TB patient population.

respectively. While to have 1% decrease in the value of R0 it 
is necessary to increase the amount of �, �, and � to 44.1, 1.35,
and 1.25% respectively.

4.3. Numerical Simulations. In this subsection, the results of the 
model are simulated using ODE 45 solvers code in MATLAB 
programming language. �e e¨ect of epidemiological 
parameters on the number of active TB patients is simulated, 
and their impact is determined. �e results of numerical 
simulations are displayed graphically.

As shown in Figure 3, for Rg < 1, for di¨erent initial 
conditions the solution curve of the model converges to the 
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Figure 4: �e plot shows the e¨ect of transmission coe®cient on the 
total number of infected class.
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Figure 5:  �e e¨ect of vaccination coverage on the number of 
infected class.
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Figure 6:  �e e¨ect of treatment failure rate on the number of 
infected class.
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Figure 7: �e e¨ect of treatment coverage on the number of infected 
class.
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