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Recent studies reveal that Allee effect may play important roles in the growth of tumor. We present one of the first mathematical
models of avascular tumor that incorporates the weak Allee effect. The model considers the densities of tumor cells in three stages:
proliferating cells, quiescent cells, and necrotic cells. We investigate how Allee effect impacts the growth of the avascular tumor.
We also investigate the effect of apoptosis of proliferating cells and necrosis of quiescent cells. The system is numerically solved in
2D using different sets of parameters. We show that Allee effect and apoptosis play important roles in the growth of tumor and the
formation of necrotic core.

1. Introduction

Genetic mutation in DNA modifies the normal cell prolif-
eration rate and causes a normal cell to become cancerous.
A cancer cell then searches for nutrient such as oxygen and
glucose from nearby tissues and proliferates rapidly. This
results in a clump of cancer cells known as tumor.The growth
of a tumor depends on many factors such as its location, cell
type, and also the availability of nutrients. There are three
stages of tumor growth, namely, avascular stage, angiogenesis
stage, andmetastasis stage ([1]). At avascular stage, the tumor
often grows in an almost spherical form (Figure 1). At this
stage, the tumor is harmless and may reach a saturation size
due to the limited nutrient supply to the core of the tumor.
However, nutrient-deficient tumor cells produce signaling
proteins such as vascular endothelial growth factor (VEGF).
When enough such signaling proteins are produced, the
nearby blood vessels will provide additional nutrient through
neovasculature to sustain the growth of the tumor, leading to
the second stage called angiogenesis. Once the tumor makes
connection with nearby blood vessels, mobile tumor cells can
migrate to the other parts of the body and develop additional
tumors at different sites, resulting in themetastasis stage ([2]).

In experiments, tumor cell lines may be grown in many
different ways, for example, as a two dimensional monolayer
on a substrate, as a three dimensional spheroid suspended in a

liquid or gel, and as amouse xenograft. Each of thesemethods
yields different information about the cell line. For example, it
is known that the response of the tumor culture to treatment
differs between monolayer and spheroid cultures ([3]), and
mathematical models exhibit this differential response also
([4]). Glioma cells grown as spheroids produce more lactic
acid, use more glucose, and exhibit more markers of hypoxia
than those grown in monolayer.

There are multiple methods for growing spheroids ([5]).
Tumor cell lines that are adhesive enough to be grown as
in vitro spheroids always exhibit a necrotic core ([6]). It is
commonly believed that the necrotic core is formed when
the oxygen drops to a critical level, although it is also known
that a feedback mechanism due to the production of tumor
necrosis factor alpha causes apoptosis in the proliferating
cell population ([7, 8]). Both mechanisms are supported by
the observation that when the tumor spheroids grown in
vitro have a diameter reaching 500 𝜇𝑚, a necrotic core will
form ([9]), and their growth eventually ceases ([10]). Both
mechanisms are also supported by assorted simple mathe-
matical models ([11]). In support of factors besides hypoxia,
some researchers observed that necrotic core can also form
in relatively high oxygen level ([12, 13]). In ([13]), Muller-
Klieser pointed out that necrotic core is not necessarily a
consequence of hypoxia or anoxia but emerges as an accu-
mulation of apoptosis. Apoptotic fragments may accumulate
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Figure 1: Structure of a typical tumor spheroid: a proliferating layer in the outer rim and an inner core of necrotic cells, separated by a layer
of quiescent cells.

in the tumor, leading to the formation of a necrotic core.
They observe that the diameter of the necrotic core expands
at approximately the same rate as the spheroid volume
increases. This results in a relatively constant thickness of the
viable cell rim with increasing spheroid diameter ([12]). In
this article, we consider both hypoxia-induced apoptosis and
necrosis as mechanisms that lead to the formation of central
necrotic core, but leave the role of tumor necrosis factor alpha
for a future study, although it is known that glioma cells are
sensitive to TNF-alpha ([14]). See Figure 2 for a comparison
between apoptosis and necrosis.

In recent years, there has been a growing interest in
viewing tumors and its microenvironment as an ecosystem
([15, 16]). A cancer ecosystem contains multiple strains of
tumor cells as well as epithelial cells, nutrients, growth
factors, etc. This perspective emphasizes their interactions
and consequences ([17]) instead of treating cancer as a col-
lection ofmuted cells. Our knowledge of ecological dynamics
within tumors is limited, especially in small tumors prior to
detection or after treatment ([16]). However, even under the
assumption that a single cell line is grown in a biologically
inert substrate, ecological phenomena may occur, in partic-
ular, the Allee effect. First described in the 1930s, Warder
Allee was able to show that, contrary to intuition, goldfish
grow more rapidly in a tank with more goldfish ([18]). Since
then, ecologists and mathematicians have studied this effect,
now termed Allee effect, in many different situations. A
strong Allee effect describes a population that can grow
at intermediate population density but declines when the
number of organisms is either too small or too large. Such
populations are then likely to collapse and become extinct if
their population size falls below a certain threshold. Clearly,
any cancer cell lines that can propagate indefinitely in vitro are
highly unlikely to be subject to a strong Allee effect. However,
a weak Allee effect describes a population that grows with
a reduced per capita growth rate at a low population size,
although the growth rate is still positive. For example, low-
grade cell line cultures, in vivo and in vitro, have low chances
of persistence and low reproducibility. On the contrary, high-
grade cell lines have a higher chance to establish ([19, 20]).
The possible existence of a weakAllee effect in tumor cells has

been described in a very recent study ([21]).The proliferation
rate of tumor cells at low density was measured via a series of
in vitro experiments with two glioblastoma cell lines ([22]),
where it was found that when the cell density is low, the
growth rate increases with the population density, while
decreasing at larger density. This study, which suggests a
weak Allee effect in glioblastoma, is echoed in some cellular
automata models of spheroid growth, in which low density
affects slow proliferation ([23]). In cultures of cancer cells
weak Allee effect likely arises due to autocrine growth factors,
diffusive signaling molecules produced and secreted by cells
that enhance growth and proliferation of other cells ([22]).

The study of tumor growth using mathematical models
has been in focus for the past four decades or so. Starting from
early diffusion and differential equation models by Thom-
linson and Gray, which was then extended by Burton and
Greenspan, tumor models have expanded to include ordi-
nary differential equation (ODE) models, partial differential
equation (PDE) models, cellular automata (CA) models, and
the more sophisticated hybrid models that combines PDE
models and CA models ([24–26]). For a complete review
on mathematical modeling of avascular tumors, we refer the
readers to the review by Araujo and McElwain ([27]) or the
more recent one by ([28]). Here we describe briefly a handful
of models closely related to the one presented in this study.

A malignant tumor invasion model with strong Allee
effect was recently studied in ([29]), focusing on properties
of travelling wave solutions. A PDE system comprising
both live-cell density, dead-cell density, and nutrient density
was developed in ([30]). However, they did not distinguish
between proliferating and quiescent cells, nor did they con-
sider different types of cell death (via necrosis or apoptosis).
Later they built upon this model by incorporating two
necrotic depletion mechanisms: leakage of the dead cellular
material by diffusion or consumption of cellular material for
the construction of new cells ([31]).

Sherratt andChaplain proposed an interestingmodel that
accounts for three different states of tumor cells ([32]). In
their model, the necrotic core comes directly from the necro-
sis of quiescent cells and there is no weak Allee effect. Their
model also does not consider the fact that quiescent cells
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Figure 2: Difference between necrosis and apoptosis.

consume nutrients as well, only at a slower rate. Including
cell movement due to contact inhibition, they considered the
following reaction diffusion model in 1D:

𝜕𝑃𝜕𝑡 = 𝜕𝜕𝑥 [ 𝑃𝑃 + 𝑄 𝜕𝜕𝑥 (𝑃 + 𝑄)]
+ 𝑔 (𝑐) 𝑃 (1 − 𝑃 − 𝑄 − 𝑁) − 𝑓 (𝑐) 𝑃,

𝜕𝑄𝜕𝑡 = 𝜕𝜕𝑥 [ 𝑄𝑃 + 𝑄 𝜕𝜕𝑥 (𝑃 + 𝑄)] + 𝑓 (𝑐) 𝑃 − ℎ (𝑐) 𝑄,
𝜕𝑁𝜕𝑡 = ℎ (𝑐) 𝑄,
𝜕𝐶𝜕𝑡 = 𝐷𝑐Δ𝐶 + 𝑘1𝐶0 [1 − 𝛼 (𝑃 + 𝑄 + 𝑁)] − 𝑘1𝐶

− 𝑘2C𝑃.

(1)

The existence of travellingwave solutions for some special
cases was studied in Zhu and Ou [33] using the Banach
fixed point theorem and perturbation methods. Travelling
wave solutions to similar systems for contact inhibition were
also studied in Bertsch et al. [34]. The impact of Allee
effect on the spreading of species has been well studied in
ecological modeling. It is generally believed that Allee effect
can adversely affect the spreading speed. The Allee effect can
also explain the time lag that is oftennoticed between the time
when a species first establishes and the time it starts to spread
rapidly ([35]). Similarly, an Allee effect caused a long time lag
between the resection and recurrence in a one dimensional
spatial model glioblastoma ([22]).

The early study of the travelling wave solution of the
following reaction diffusion equation with Allee effect

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢 (1 − 𝑢) (𝑢 − 𝛽) (2)

can be found in ([36, 37]). 𝑏𝑒𝑡𝑎 represents the Allee threshold
below which the growth rate of the species becomes negative.
The main results can be summarized as follows: (a) For 0 <𝛽 < 1, there exists a uniquewave front solutionwith speed 𝑐 =√2(𝛽 − 1/2). For 𝛽 < 1/2, the front propagates to the region
where the species is absent, i.e., the invasion of the species; for𝛽 > 1/2, the front propagates to the region where the species
is at its carrying capacity, i.e., the retreat of the species; when𝛽 = 1/2, the front is stationary.

(b) For −1 < 𝛽 ≤ 0, there exists a maximal wave speed
such that the travelling wave solution exists when 𝑐 ≤ 𝑐∗.
Moreover, 𝑐∗ = −2√−𝛽 for −1 < 𝛽 ≤ −1/2 (derived by
linearizing about zero) and 𝑐∗ = √2(𝛽 − 1/2) when −1/2 <𝛽 ≤ 0.

A weak Allee effect in a highly necrotic expanding
spheroid would necessarily apply to any spatial region where
the density of live cells is quite low. This is a situation where
mathematical modeling can reveal unknown or counter-
intuitive principles that may have been overlooked before.
It can test theories by simplifying the underlying mecha-
nisms ([38]). Our model builds on prior ones by extending
the spatial domain to two dimensions, including diffusion
of nutrient, motion of cells, the weak Allee effect, the
quiescent cell compartment, and two mechanisms of cell
death: apoptosis and necrosis. Our hypothesis is that, for
expanding spheroids in substrate suitable for migration, a
weak Allee effect will slow the rate of expansion of the
proliferating edge, asmeasured by the speed of the wavefront.
To capture the spatial characteristics of central necrosis, a
ring of quiescent cells, and a proliferating rim developing
in response to nutrient delivery and depletion we propose
a system of PDEs in two spatial dimensions, and with weak
Allee effect, for the purpose of computationally testing this
hypothesis.
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2. Mathematical Model

Consider the following model:

𝜕𝑃𝜕𝑡 = ∇ ⋅ ( 𝑃𝑃 + 𝑄 ∇ (𝑃 + 𝑄))
+ 𝑔 (𝐶) 𝑃 (𝑃 + 𝑚) (1 − 𝑃 − 𝑄 − 𝑁)
− 𝑓1 (𝐶) 𝑃 + 𝑓2 (𝐶) 𝑄 − 𝑓3 (𝐶) 𝑃,

𝜕𝑄𝜕𝑡 = ∇ ⋅ ( 𝑄𝑃 + 𝑄 ∇ (𝑃 + 𝑄)) + 𝑓1 (𝐶) 𝑃 − 𝑓2 (𝐶) 𝑄
− ℎ (𝐶) 𝑄,

𝜕𝑁𝜕𝑡 = ℎ (𝐶) 𝑄 + 𝑓3 (𝐶) 𝑃,
𝜕𝐶𝜕𝑡 = 𝐷𝑐Δ𝐶 + 𝑘1𝐶0 [1 − 𝛼 (𝑃 + 𝑄 + 𝑁)] − 𝑘1𝐶

− 𝑘2𝐶𝑃 − 𝑘3𝐶𝑄,

(3)

subject to the initial conditions

𝑃 (0, 𝑥, 𝑦) = 𝑃0 (𝑥, 𝑦) ,
𝑄 (0, 𝑥, 𝑦) = 0,
𝑁 (0, 𝑥, 𝑦) = 0,
𝐶 (0, 𝑥, 𝑦) = 𝐶0,

(4)

and boundary conditions

(𝑃, 𝑄, 𝑁, 𝐶) → (0, 0, 0, 𝐶0)
when 𝑟 = √𝑥2 + 𝑦2 → ∞,

(∇𝑃, ∇𝑄, ∇𝑁, ∇𝐶) → (0, 0, 0, 0)
when 𝑟 = √𝑥2 + 𝑦2 → ∞.

(5)

Here 𝑃 represents the density of proliferating cells, 𝑄 the
density of quiescent cells, and 𝑁 the density of necrotic cells.𝐶 denotes the concentration of oxygen.

The functions𝑓1(𝐶) andℎ(𝐶)will be decreasing functions
of 𝐶 with 𝑓1(+∞) = ℎ(+∞) = 0. 𝑔(𝑐) is an increasing
function of 𝐶. 𝑓2(𝐶) will be increasing with 𝑓2(0) = 0.𝑓3(𝐶) is the apoptotic rate at which proliferating cells die.
For simplicity, we assume 𝑓3(𝐶) is a constant. The exact
forms of these switching functions remain unknown. Many
authors have considered the simplest case, for example, a
linear switching rate between proliferating cells and quiescent
cells. 𝑓1(𝐶) is the rate at which proliferating cells become
quiescent. We use a Michaelis-Menten-type expression

𝑓1 (𝐶) = 𝐾𝑃 (1 − 𝐶𝑚1𝐶𝑚1𝑐𝑟𝑖𝑡1 + 𝐶𝑚1 ) , (6)

where 𝐶𝑐𝑟𝑖𝑡1 is the critical oxygen level and 𝑚1 is positive
constant which governs the sharpness of change 𝑓1(𝐶) near
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Figure 3: A typical profile of 𝑓1(𝑐) with 𝐾𝑃 = 0.9, 𝑚1 = 3, and𝑐𝑐𝑟𝑖𝑡1 = 0.5.

the critical concentration. 𝐾𝑃 is the switching rate when the
oxygen is 0. In the numerical simulations that follow, we take𝐾𝑃 = 0.9 as the standard value. A typical profile of 𝑓1(𝐶) is
presented in Figure 3.

For the switching rate from quiescent cells back to
proliferating cells, we take

𝑓2 (𝐶) = 𝐾𝑄𝐶𝑚1𝐶𝑚1𝑐𝑟𝑖𝑡1 + 𝐶𝑚1 , (7)

where 𝐾𝑄 is switching rate when 𝑐 is high. In the simulations
that follow, we take 𝐾𝑄 = 0.05 as the standard value. See
Figure 4 for a typical profile of 𝑓2(𝐶).

For the apoptotic rate, we let

𝑓3 (𝐶) = 𝐾𝑁, (8)

where 0 ≤ 𝐾𝑁 ≤ 1 is the apoptosis rate of proliferating cells.
For the necrosis rate of quiescent cells, we adopt the

following form

ℎ (𝐶) = 𝐾𝐷(1 − 𝐶𝑚1𝐶𝑚1𝑐𝑟𝑖𝑡2 + 𝐶𝑚1 ) , (9)

where 0 < 𝐾𝐷 < 1 is the maximum necrosis rate of quiescent
cell.𝐶𝑐𝑟𝑖𝑡2 is the critical oxygen level for necrosis. See Figure 5.

We let 𝑔(𝐶) = 𝛽𝑒𝛽𝐶 with 𝛽 = 0.5.
As 𝑚1 → ∞, 𝑓1 tends to a Heaviside function. These

two choices of switching function do not significantly alter
the outcome as their profiles can become very similar when𝑚1 is large.

The oxygen diffuses according to a diffusion coefficient𝐷𝑐. The degradation rate of oxygen is denoted by 𝑘1 and it is
utilized by proliferation cells at a rate 𝑘2.The rate that is being
utilized by quiescent cells is denoted by 𝑘3. Throughout this
paper, 𝑘3 is assumed to be (1/5)𝑘2, within the experimentally
determined range Freyer et al. [39].

Given that the diffusion rate of oxygen throughout the
tumor spheroid is much faster comparing to the scale of
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Figure 4: A typical profile of 𝑓2(𝑐) with 𝐾𝑄 = 0.05, 𝑚1 = 3, and 𝑐𝑐𝑟𝑖𝑡1 = 0.5.
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Figure 5: A typical profile of ℎ(𝑐) with 𝐾𝐷 = 0.5, 𝑚1 = 3, and 𝑐𝑐𝑟𝑖𝑡2 = 0.4.

growth, we adopt the standard quasi steady-state assumption
that

𝐶 = 𝐶01 + 𝛾1𝑃 + 𝛾2𝑄 (1 − 𝛼 (𝑃 + 𝑄 + 𝑁)) , (10)

where 𝛼, 𝛾1 = 𝑘2/𝑘1, and 𝛾2 = 𝑘3/𝑘1 are dimensionless
parameters. For simplicity, we assume 𝛾2 = (1/5)𝛾1.

Our model depends crucially on the biological parame-
ters.These parameters vary greatly depending on tumor type,
localization, progression, etc. Since our goal is to investigate
the impact of different parameters on the growth of avascular
tumors, parameters are chosen within the experimentally
observable range rather than a quantitative description of
any specific tumor. Most of the parameters involved are
available in literature ([40, 41]). Our system is already given
in nondimensional form for computational reasons. We take
characteristic scale of time and length 𝑇0 = 104 second and𝐿 = 0.05 cm, respectively. These nondimensional parameters
are summarized in Table 1.

3. Impact of Allee Effect on Travelling Wave
Solution and Wave Speed

In Petrovskii et al. [42], the authors considered how Allee
effect impacts different scenarios of biological invasion in
a predator-prey system. They noticed that as a result of
the interplay between the Allee effect and the predation,
species extinction and unbounded spatial spread are not the
only possible system dynamics. For certain parameter values,
initial species distribution can evolve to quasi-stationary
patches. The position of these patches does not change with
time while their shape is either stationary or oscillatory.They
pointed out that invasive species can be held localized due to
certain interspecific and intraspecific interactions such as the
interplay between the Allee effect and predation.

We consider travelling wave solutions of the following
form:

𝑃 (𝑥, 𝑡) = 𝑃 (𝑧) ,
𝑄 (𝑥, 𝑡) = 𝑄 (𝑧) ,
𝑁 (𝑥, 𝑡) = 𝑁 (𝑧) ,

(11)
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Table 1: Dimensionless parameter values used in our simulation.

Parameter Value Description𝐾𝑃 0.9 Maximum switch rate to quiescent cells𝐾𝑄 0.05 Maximum switch rate to proliferating cells𝐾𝐷 0.5 Maximum necrosis rate𝐾𝑁 0.01 Apoptosis rate𝐶𝑐𝑟𝑖𝑡1 0.5 Critical oxygen level for proliferation𝐶𝑐𝑟𝑖𝑡2 0.4 Critical oxygen level for necrosis𝑘1 0.15 Oxygen degradation rate𝑘2 0.3 Oxygen utilization rate by proliferating cells𝑘3 0.06 Oxygen utilization rate by quiescent cells𝛾1 = 𝑘2/𝑘1 2 Positive parameter𝛾2 = 𝑘3/𝑘1 0.4 Positive parameter𝛼 0.9 Crowding factor𝑚 0.4 Allee effect𝑚1 3 Positive parameter

where 𝑧 = 𝑥 − 𝑎𝑡 and 𝑎 is the wave speed. Substituting these
solutions into the original system yields the following ODEs

( 𝑃 (𝑃 + 𝑄)
𝑃 + 𝑄 )



+ 𝑎𝑃
+ 𝑔 (𝐶) 𝑃 (𝑃 + 𝑚) (1 − 𝑃 − 𝑄 − 𝑁) − 𝑓1 (𝐶) 𝑃
+ 𝑓2 (𝐶) 𝑄 − 𝑓3 (𝐶) 𝑃 = 0

( 𝑄 (𝑃 + 𝑄)
𝑃 + 𝑄 )



+ 𝑎𝑄 + 𝑓1 (𝐶) 𝑃 − 𝑓2 (𝐶) 𝑄
− ℎ (𝐶) 𝑄 = 0,

𝑎𝑁 + ℎ (𝐶) 𝑄 + 𝑓3 (𝐶) 𝑃 − 𝑑𝑁 = 0

(12)

As usual, we linearize the first equation of this system about𝑃 = 𝑄 = 0 and assume 𝑃(𝑧) = 𝑃𝑒−𝜉𝑧, 𝑄(𝑧) = 𝑄𝑒−𝜉𝑧, and𝑁(𝑧) = 𝑁𝑒−𝜉𝑧 to leading orders ([37]); we have
𝜉2𝑃 − 𝑎𝜉𝑃 + [𝑚𝑔 (𝑐0) − 𝑓1 (𝑐0) − 𝑓3 (𝑐0)] 𝑃 = 0. (13)

Thus for nontrivial solutions, we must have

𝜉 = 12 (𝑎 ± √𝑎2 − 4 [𝑚𝑔 (𝑐0) − 𝑓1 (𝑐0) − 𝑓3 (𝑐0)]) . (14)

Thus positive solution exists if and only if 𝑎 ≥ 𝑎∗ where
𝑎∗ fl 2√𝑚𝑔 (𝑐0) − 𝑓1 (𝑐0) − 𝑓3 (𝑐0). (15)

Thus the minimal speed 𝑎𝑚𝑖𝑛(if exists) for our model must
satisfy 𝑎𝑚𝑖𝑛 ≥ 𝑎∗.

It remains unclear if linear determinacy holds for this
problem. By linear determinacy, we mean 𝑎𝑚𝑖𝑛 = 𝑎∗.
4. Numerical Results and Discussion

All our numerical simulations employ the zero-flux boundary
conditions with a system size 210×210 discretized through𝑥 → (𝑥0, 𝑥1, . . . , 𝑥𝑛) and 𝑦 → (𝑦0, 𝑦1, . . . , 𝑦𝑛), with 𝑛 =210. Our simulations use forward difference in time and
central difference in space with a small time step 𝜏 = 0.004
and space step ℎ = 1.The concentration atmesh point (𝑥𝑖, 𝑦𝑗)
at time (𝑛 + 1)𝜏 is denoted by (𝑃𝑛+1𝑖,𝑗 , 𝑄𝑛+1𝑖,𝑗 , 𝑁𝑛+1𝑖,𝑗 ) and they are
given by

𝑃𝑛+1𝑖,𝑗 = 𝑃𝑛𝑖,𝑗 + 𝜏 (𝑈𝑛𝑖,𝑗 + 𝐹 (𝑃𝑛𝑖,𝑗, 𝑄𝑛𝑖,𝑗, 𝑁𝑛𝑖,𝑗, 𝐶𝑛𝑖,𝑗))
𝑄𝑛+1𝑖,𝑗 = 𝑄𝑛𝑖,𝑗 + 𝜏 (𝑉𝑛𝑖,𝑗 + 𝐺 (𝑃𝑛𝑖,𝑗, 𝑄𝑛𝑖,𝑗, 𝑁𝑛𝑖,𝑗, 𝐶𝑛𝑖,𝑗))
𝑁𝑛+1𝑖,𝑗 = 𝑁𝑛𝑖,𝑗 + 𝜏 (𝐻 (𝑃𝑛𝑖,𝑗, 𝑄𝑛𝑖,𝑗, 𝑁𝑛𝑖,𝑗, 𝐶𝑛𝑖,𝑗))
𝐶𝑛+1𝑖,𝑗 = 11 + 𝛾1𝑃𝑛𝑖,𝑗 + 𝛾2𝑄𝑛𝑖,𝑗 (1 − 𝛼 (𝑃𝑛𝑖,𝑗 + 𝑄𝑛𝑖,𝑗 + 𝑁𝑛𝑖,𝑗))

(16)

with 𝑈𝑛𝑖,𝑗 and 𝑉𝑛𝑖,𝑗 defined by

𝑈𝑛𝑖,𝑗 = (𝑃𝑛𝑖+1,𝑗 − 𝑃𝑛𝑖−1,𝑗) 𝑅𝑛𝑖,𝑗 (𝑅𝑛𝑖+1,𝑗 − 𝑅𝑛𝑖−1,𝑗) + 4𝑃𝑛𝑖,𝑗𝑅𝑛𝑖,𝑗 (𝑅𝑛𝑖+1,𝑗 − 2𝑅𝑛𝑖,𝑗 + 𝑅𝑛𝑖−1,𝑗) − 𝑃𝑛𝑖,𝑗 (𝑅𝑛𝑖+1,𝑗 − 𝑅𝑛𝑖−1,𝑗)2
2 (ℎ𝑅𝑛𝑖,𝑗)2

+ (𝑃𝑛𝑖,𝑗+1 − 𝑃𝑛𝑖,𝑗−1) 𝑅𝑛𝑖,𝑗 (𝑅𝑛𝑖,𝑗+1 − 𝑅𝑛𝑖,𝑗−1) + 4𝑃𝑛𝑖,𝑗𝑅𝑛𝑖,𝑗 (𝑅𝑛𝑖,𝑗+1 − 2𝑅𝑛𝑖,𝑗 + 𝑅𝑛𝑖,𝑗−1) − 𝑃𝑛𝑖,𝑗 (𝑅𝑛𝑖,𝑗+1 − 𝑅𝑛𝑖,𝑗−1)2
2 (ℎ𝑅𝑛𝑖,𝑗)2 ;
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𝑉𝑛𝑖,𝑗 = (𝑄𝑛𝑖+1,𝑗 − 𝑄𝑛𝑖−1,𝑗) 𝑅𝑛𝑖,𝑗 (𝑅𝑛𝑖+1,𝑗 − 𝑅𝑛𝑖−1,𝑗) + 4𝑄𝑛𝑖,𝑗𝑅𝑛𝑖,𝑗 (𝑅𝑛𝑖+1,𝑗 − 2𝑅𝑛𝑖,𝑗 + 𝑅𝑛𝑖−1,𝑗) − 𝑄𝑛𝑖,𝑗 (𝑅𝑛𝑖+1,𝑗 − 𝑅𝑛𝑖−1,𝑗)2
2 (ℎ𝑅𝑛𝑖,𝑗)2

+ (𝑄𝑛𝑖,𝑗+1 − 𝑄𝑛𝑖,𝑗−1) 𝑅𝑛𝑖,𝑗 (𝑅𝑛𝑖,𝑗+1 − 𝑅𝑛𝑖,𝑗−1) + 4𝑄𝑛𝑖,𝑗𝑅𝑛𝑖,𝑗 (𝑅𝑛𝑖,𝑗+1 − 2𝑅𝑛𝑖,𝑗 + 𝑅𝑛𝑖,𝑗−1) − 𝑄𝑛𝑖,𝑗 (𝑅𝑛𝑖,𝑗+1 − 𝑅𝑛𝑖,𝑗−1)2
2 (ℎ𝑅𝑛𝑖,𝑗)2 ;

𝑅𝑛𝑖,𝑗 = 𝑃𝑛𝑖,𝑗 + 𝑄𝑛𝑖,𝑗.
(17)

Here 𝐹(𝑃, 𝑄, 𝑁, 𝐶), 𝐺(𝑃, 𝑄, 𝑁, 𝐶), and 𝐻(𝑃, 𝑄, 𝑁, 𝐶) are
given by

𝐹 (𝑃, 𝑄, 𝑁, 𝐶) = 𝑔 (𝐶) 𝑃 (𝑃 + 𝑚) (1 − 𝑃 − 𝑄 − 𝑁)
− 𝑓1 (𝐶) 𝑃 + 𝑓2 (𝐶) 𝑄 − 𝑓3 (𝐶) 𝑃,

𝐺 (𝑃, 𝑄, 𝑁, 𝐶) = 𝑓1 (𝑐) 𝑃 − 𝑓2 (𝑐) 𝑄 − ℎ (𝑐) 𝑄,
𝐻 (𝑃, 𝑄, 𝑁, 𝐶) = ℎ (𝑐) 𝑄 + 𝑓3 (𝑐) 𝑃.

(18)

The initial conditions are set as follows:

𝑝 (𝑥, 𝑦, 0) = 𝑒(−0.01(𝑥−100)2−0.01(𝑦−100)2),
𝑞 (𝑥, 𝑦, 0) = 𝑛 (𝑥, 𝑦, 0) = 0,
𝑐 (𝑥, 𝑦, 0) = 1.

(19)

4.1. Allee Effect. It is now well known that the growth curves
for multicellular spheroids are characterized by doubling
time which decreases with increasing growth until a stable
saturation was attained ([7]). However, the original model
proposed in ([32]) does not support this behavior. The
solutions exhibit travelling wave solutions and the tumor
continues to grow outward. In this section, we show that
Allee effect plays an important role in the growth of
avascular tumor. Essentially, as the density of proliferat-
ing cells drops, the weak Allee effect further slows down
its growth, which overall slows down the growth of the
tumor.

In Figure 6, we compare typical profiles of prolif-
erating cells, quiescent cells, and necrotic cells at 𝑡 =20. Starting with the same initial data, both models
exhibit three layers of different cells, with a necrotic core
inside. With Allee effect, the tumor size is significantly
reduced.

Figure 7 shows individual profiles for proliferating cells,
quiescent cells, and necrotic cells without Allee effect at time𝑡 = 20.

In Figure 8, we show how the strength of Allee effect
impacts the size of the tumor. Figure 8(a) shows the density of
proliferating cells at 𝑡 = 20 without Allee effect. Figure 8(b)
shows the density of proliferating cells at 𝑡 = 20 with weak
Allee effect (𝑚 = 0.4). When the strength of Allee effect is
stronger (𝑚 = 0.1), there is a significant reduction in tumor
size as shown in Figure 8(c).

Figure 9 shows the impact of Allee effect on the profile of
necrotic core.

In Figure 10, we study the impact of Allee effect on
the size of the tumor at different time. We locate the peak
of the proliferating cell density and use its position to
estimate the radius of the tumor. The results are shown in
Figure 10. We note that the radius of tumor grows linearly
without Allee effect. It is significantly reduced when weak
Allee effect is present. When the strength of Allee effect
is stronger, however, the radius grows exponentially at the
very beginning, then quickly becomes linearly, and eventually
reaches a plateau.

4.2. Impact of Apoptotic Cell Death Rate. This section con-
siders the effect of cell death from both the quiescent cells
(necrosis) and proliferating cells (apoptosis). Comparing to
small apoptosis rate (𝑘𝑁 = 0.01), we increase this rate to𝑘𝑁 = 0.1. The profiles of different tumor cells at different
times are shown in Figure 11. Higher level of apoptosis leads
to fewer quiescent cells and more necrotic cells. The rim of
proliferating cells still remains on the boundary. A closer
look at the concentration of nutrient reveals that a higher
level of apoptosis leads to higher nutrient concentration at
the center of the spheroid. This is due to the fact that a
higher level of apoptosis increases the amount of necrotic
cells at the center, thus reducing the amount of viable
cells.

4.3. Impact of Proliferation Rate. In this section, we simulate
the system with a smaller proliferation rate 𝛽 = 0.4 and a
larger proliferation rate 𝛽 = 0.6. A larger proliferation rate
leads to a higher density in proliferating cells which will also
lead to more quiescent cells and necrotic cells. The result is
shown in Figure 12. For a better illustration, please see the
heat map in Figure 13.

4.4. Impact of Oxygen Degradation Rate. To study the effects
of oxygen on the growth of the avascular tumor, we compare
tumor cell density profiles at different oxygen degradation
rate at 𝑘1 = 0.03 and 𝑘1 = 0.15 at time 𝑡 = 20. The spreading
speed of the tumor increases as the degradation rate gets
higher. At 𝑡 = 20, the radius of the tumor is estimated to
be 27 when 𝑘1 = 0.03, comparing to 30 when 𝑘1 = 0.15
(Figure 14). As the degradation rate of oxygen increases, we
also notice a significant reduction on necrotic region. For a
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Figure 6: Impact of Allee effect: blue profile represents the density of the necrotic core; red profile represents the density of quiescent cells;
the yellow profile represents the density of the proliferating rim.
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Figure 7: Typical profile of proliferating cells, quiescent cells, and necrotic cells without Allee effect at 𝑡 = 20.
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Figure 8: Density of proliferating cells without Allee effect, with weak Allee effect (𝑚 = 0.4), and with stronger Allee effect (𝑚 = 0.1) at𝑡 = 20.
better illustration, please see the heat map of all the cells in
Figure 15.

4.5. Impact of Critical Oxygen Level. In this section we
observe a very important relationship between the growth

rate of the tumor and the critical oxygen level 𝐶𝑐𝑟𝑖𝑡1 for
proliferation. To study the impact of critical oxygen level
on the growth of the tumor, we calculate the tumor radius
at 𝑡 = 20 for different critical values. The result is shown
in Figure 16. The simulations show that the tumor growth
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Figure 9: Density of necrotic cells without Allee effect, with weak Allee effect (𝑚 = 0.4), and with stronger Allee effect (𝑚 = 0.1). 𝑡 = 20.
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Figure 12: Impact of proliferation rate: (a) 𝛽 = 0.4, (b) 𝛽 = 0.5, and (c)𝛽 = 0.6. For all three simulations, 𝑡 = 20.
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Figure 13: Heat map of cell densities at different proliferating rates: the top row corresponds to the standard rate at 𝛽 = 0.4; the bottom row
corresponds to a higher proliferating rate at 𝛽 = 0.6.
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Figure 14: Impact of oxygen degradation rate on the growth of the tumor at 𝑡 = 20: (a) 𝑘1 = 0.15; (b) 𝑘1 = 0.03.



Journal of Applied Mathematics 11

20
40
60
80

100
120
140
160
180
200

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

(a) Proliferating cells

20
40
60
80

100
120
140
160
180
200

0.02

0.04

0.06

0.08

0.1

0.12

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

(b) Quiescent cells

20
40
60
80

100
120
140
160
180
200 0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

(c) Necrotic cells

20
40
60
80

100
120
140
160
180
200

0.005

0.01

0.015

0.02

0.025

0.03

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

(d) Proliferating cells

20
40
60
80

100
120
140
160
180
200 0.005

0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

(e) Quiescent cells

20
40
60
80

100
120
140
160
180
200

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

(f) Necrotic cells

Figure 15: Heat map of cell densities at different oxygen degradation rates: the top row corresponds to the standard rate at 𝑘1 = 0.15; the
bottom row corresponds to a lower degradation rate at 𝑘1 = 0.03.
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Figure 16: Dependence of tumor radius on critical oxygen concentration 𝑐𝑐𝑟𝑖𝑡1 for proliferation at time 𝑡 = 20 for the standard set of
parameters.

speed decreases dramatically as the critical oxygen level
increases.

4.6. Impact of Crowding Factor 𝛼. This section compares the
growth of the tumor layers for different crowding factors. A
larger crowding factor 𝛼, i.e., increasing the cell crowding,
lowers the availability of oxygen. As a result, the tumor
has a smaller density of proliferating cell and quiescent cell.
The necrotic core of the tumor, however, becomes denser.
Figure 17 shows the tumor profiles at 𝑡 = 20 for 𝛼 = 0.1 and𝛼 = 0.9, respectively.
5. Summary and Discussions

This work is the first 2D mathematical model that incor-
porates Allee effect in the growth of avascular tumor. In

the present paper we study the impact of various parame-
ters on tumor progression. This work further expands our
understanding of the process of avascular tumor growth by
considering weak Allee effect and apoptosis as an additional
mechanism of cell death. The extension to 2 spatial dimen-
sions allows a more precise description of the processes of
avascular tumor growth. One of our main findings is that
weakAllee effectmay lead to a plateau size. Another finding is
that apoptosis increases the size of necrotic core and reduces
the amount of viable cells. Additional numerical findings
can be summarized as follows: (a) Large proliferation rate
increases the overall size of tumor. (b) Large degradation rate
of oxygen significantly reduces the size of necrotic region.
(c) Increasing the critical oxygen concentration reduces the
growth rate of the tumor. We point out that our aim in this
work is not to propose completely newmathematical models,
but to investigate two new mechanisms (Allee effect and
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Figure 17: Impact of crowding factor (𝛼 = 0.1 vs 𝛼 = 0.9) on the growth of tumor cells, t=20.

apoptosis) through numerical simulations of Owen-Sherratt
model. It is surely more realistic to consider the spheroid in
3D. But the main ingredient of the current research relies
on the assumption that the nutrient reaches the core of
the avascular tumor much faster than the reaction time of
proliferating cells, etc. For 3D spheroid, this assumption no
longer holds.

The impact of weakAllee effect on the growth of avascular
tumors is investigated in this article. The understanding
of this early stage is relevant to progression, relapse, and
metastasis. A model that considers weak Allee effect may
help to improve the predictions of tumor growth and relapse
dynamics.
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