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In this paper, an initial value method for solving a weakly coupled system of two second-order singularly perturbed Convection–
diffusion problems exhibiting a boundary layer at one end is proposed. In this approach, the approximate solution for the given 
problem is obtained by solving, a coupled system of initial value problem (namely, the reduced system), and two decoupled initial 
value problems (namely, the layer correction problems), which are easily deduced from the given system of equations. Both the 
reduced system and the layer correction problems are independent of perturbation parameter, �. �ese problems are then solved 
analytically and/or numerically, and those solutions are combined to give an approximate solution to the problem. Further, error 
estimates are derived and examples are provided to illustrate the method.

1. Introduction

Singular perturbation problems (SPPs) arise most frequently 
in diversified fields of applied mathematics. For instance, in 
fluid mechanics, elasticity, aerodynamics, quantum mechan-
ics, chemical-reactor theory, oceanography, meteorology, 
modeling of semiconductor devices, and many others in the 
area. A well known fact is that, the solutions of such problems 
have a multiscale character, i.e., there are thin transition lay-
er(s) where the solution varies very rapidly, while away from 
the layer(s) the solution behaves regularly and varies slowly. 
�is leads to boundary and/or interior layer(s) in the solution 
of the problems. For a detailed discussion on the analytical 
and numerical treatment of SPPs one can refer the books of 
Miller et al. [1], O’Malley [2] and Roos et al. [3].

Due to the presence of the layer regions, it has been shown 
that the classical numerical methods fails to produce good 
approximations for singular perturbation problems (SPPs). In 
fact, some numerical techniques employed for solving sec-
ond-order singularly perturbed boundary value problem 
(SPBVPs) are based on the idea of replacing this problems by 
suitable initial value problems (IVPs). �e reason for that is, 
the numerical treatment of a boundary value problem is much 

more demanding than the treatment of the corresponding 
IVPs. �ere are different initial value methods in the literature 
of SPPs developed for solving SPBVPs, for the detail discus-
sions of such methods one can refer the papers [4–8] and the 
references there in.

In the past few decades, a considerable amount of works 
have been reported in the literature of SPPs. However, most of 
the works connected with the computational aspects are con-
fined to second-order equation. Only few results are reported 
for higher order and systems of equations. �e systems of SPPs 
have applications in electro analytical chemistry, predator prey 
population dynamics, modeling of optimal control situations 
and resistance-capacitor electrical circuits [9]. In recent years, 
few scholars developed non-classical methods for different 
classes of systems of singularly perturbed differential equations. 
A class of systems of singularly perturbed reaction-diffusion 
equations have been examined by the authors in [10, 11–14]. 
In the papers [15, 16], a class of strongly coupled systems of 
singularly perturbed convection–diffusion equations are exam-
ined. �e scholars in [17–21], considered weakly coupled  
systems of singularly perturbed convection–diffusion equa-
tions with equal or different diffusion parameters. A brief sur-
vey of article on the current progress about the numerical 
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treatment of systems of singularly perturbed differential equa-
tions is also discussed in [22]. However, most of the methods 
developed for systems of singularly perturbed problems focus 
on fitted mesh method, so it is natural to look for an alternative 
approach for such problems.

In this paper, an initial value method for solving a weakly 
coupled system of two second-order singularly perturbed con-
vection–diffusion equations exhibiting a boundary layer at one 
end is proposed. �e technique, used in this work, is the careful 
factorization of original problem into a system of IVPs and two 
explicit IVPs which are independent of perturbation parameter. 
First, a system of IVPs is obtained by putting the perturbation 
parameter to zero, namely the reduced system, which corre-
sponds to the outer solution. Next, using reduction of order 
together with stretching of variable gives two decoupled IVPs, 
namely the boundary layer correction problems, which corre-
sponds to the inner solution. And then, the reduced system is 
solved numerically using fourth-order Runge–Kutta method, 
whereas, the boundary layer correction problems, are solved ana-
lytically. Finally, combining the above two solutions we obtain an 
approximation for the original problem. In addition, error esti-
mates are derived and examples are provided to illustrate the 
method.

2. Statement of the Problem

Consider the problem of finding �푦1, �푦2 ∈ �퐶0(Ω) ∩ �퐶2(Ω) such 
that

with the boundary conditions

where Ω = (0, 1), Ω = [0, 1] and �푦 = (�푦1, �푦2)�푇, �1, �2, �1 and �2 
are given constants, and 0 < �휀 ≪ 1 is the singular perturbation 
parameter. �e coefficient functions are taken to be sufficiently 
smooth on Ω and satisfying the following conditions:

Under these assumptions the system (1a)–(2b) has a unique 
solution �푦(�푥) which exhibits a boundary layer of width �푂(�휀) 
on the le� side (�푥 = 0) of the underlying interval. �e case �푎�(�푥) ≤ �훼� < 0 for �푖 = 1, 2, can be put in to (1a) and (1b) by the 
change of independent variable from � to 1 − �푥.

�e above coupled system of Equations (1a)–(2b) can also 
be written in vector form as

(1a)
�퐿1�푦 ≡ −�휀�푦�耠�耠

1 (�푥) − �푎1(�푥)�푦�耠
1(�푥) + �푏11(�푥)�푦1(�푥)+ �푏12(�푥)�푦2(�푥) = �푓1(�푥), ∀�푥 ∈ Ω,

(1b)
�퐿2�푦 ≡ −�휀�푦�耠�耠

2 (�푥) − �푎2(�푥)�푦�耠
2(�푥) + �푏21(�푥)�푦1(�푥)+ �푏22(�푥)�푦2(�푥) = �푓2(�푥), ∀�푥 ∈ Ω,

(2a)�푦1(0) = �푝1, �푦1(1) = �푞1,
(2b)�푦2(0) = �푝2, �푦2(1) = �푞2,

(3a)�푎1(�푥) ≥ �훼1 > 0, �푎2(�푥) ≥ �훼2 > 0,

(3b)
�푏11(�푥) + �푏12(�푥) ≥ �훽1 > 0, �푏22(�푥) + �푏21(�푥) ≥ �훽2 > 0, ∀�푥 ∈ Ω,

(3c)�푏12(�푥) ≤ 0, �푏21(�푥) ≤ 0.

with the boundary conditions

where

Remark 1.  In this paper, we consider only the case where 
there is one boundary layer at the le� end of the interval. 
�e case when the layer occurs at right end, can be analyzed 
similarly.

Notations. Let �푦 : �퐷 → R, the appropriate norm for studying 
the convergence of the approximate solution to the exact solu-
tion is the maximum norm �儩�儩�儩�儩�푦

�儩�儩�儩�儩�퐷 = max�푥∈�퐷
�儨�儨�儨�儨�푦(�푥)

�儨�儨�儨�儨. In case of 
vectors �푦 = (�푦1, �푦2)�푇, we define 

�roughout this paper, � (sometimes sub-scripted) denotes 
generic positive constants independent of the singular pertur-
bation parameter � and in the case of discrete problems, also 
independent of the mesh parameter �, these constants may 
assume different values but remains to be constant.

3. Analytic Results

In this section, a maximum principle, a stability result, and 
estimates of the derivatives of the system of Equations (1a)–
(2b) are presented. First, we consider the following property 
of the operators �1 and �2.

Lemma 2 (Maximum principle).  Assume that �휋(�푥) is any 
sufficiently smooth function such that �휋(0) ≥ 0, �휋(1) ≥ 0 and �퐿1�휋(�푥) ≥ 0, �퐿2�휋(�푥) ≥ 0 in Ω, then �휋(�푥) ≥ 0 in Ω.

Proof.  Let �∗ and �∗ be arbitrary points in (0, 1) such that �휋1(�푥∗) = min�푥∈Ω{�휋1(�푥)} and �휋2(�푦∗) = min�푥∈Ω{�휋2(�푥)}. 
Without loss of generality, we assume that �휋1(�푥∗) ≤ �휋2(�푦∗) 
and suppose �휋1(�푥∗) < 0. Clearly �푥∗ ∉ {0, 1} and �휋�耠

1(�푥∗) = 0, �휋�耠�耠
1 (�푥∗) ≥ 0. Moreover,

(3d)

L�푦(�푥) = (−�휀 �푑2�푑�푥2 0
0 −�휀 �푑2�푑�푥2

)�푦(�푥) − �퐴(�푥)�푦�耠(�푥) + �퐵(�푥)�푦(�푥)
= �푓(�푥), ∀�푥 ∈ Ω,

(3e)�푦(0) = (�푝1�푝2
), �푦(1) = ( �푞1�푞2 ),

(3f)
�푦(�푥) = (�푦1(�푥)�푦2(�푥) ), �퐴(�푥) = ( �푎1(�푥) 00 �푎2(�푥) ),
�퐵(�푥) = ( �푏11(�푥) �푏12(�푥)�푏21(�푥) �푏22(�푥) ) �푓(�푥) = (�푓1(�푥)�푓2(�푥) ).

(3g)
�儨�儨�儨�儨�푦
�儨�儨�儨�儨 = (�儨�儨�儨�儨�푦1

�儨�儨�儨�儨,
�儨�儨�儨�儨�푦2

�儨�儨�儨�儨)
�푇 �儩�儩�儩�儩�푦

�儩�儩�儩�儩�퐷 = max
�푥∈�퐷

{�儩�儩�儩�儩�푦1
�儩�儩�儩�儩�퐷,

�儩�儩�儩�儩�푦2
�儩�儩�儩�儩�퐷}.

(4)

�퐿1�휋(�푥∗) = −�휀�휋�耠�耠
1 (�푥∗) − �푎1(�푥∗)�휋�耠

1(�푥∗)
+ �푏11(�푥∗)�휋1(�푥∗) + �푏12(�푥∗)�휋2(�푥∗)

= −�휀�휋�耠�耠
1 (�푥∗) + (�푏11(�푥∗) + �푏12(�푥∗))�휋1(�푥∗)

+ (�휋2(�푥∗) − �휋1(�푥∗))�푏12(�푥∗) < 0,
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which is a contradiction. It follows that our assumption �휋1(�푥∗) < 0 is wrong, so that �휋1(�푥∗) ≥ 0. Similarly, �퐿2�휋(�푥) can 
be dealt. Hence, �휋(�푥) ≥ 0 in Ω.

An immediate consequence of the maximum principle is 
the following stability result.

Lemma 3 (Stability result).  If �푦1, �푦2 ∈ �퐶0(Ω) ∩ �퐶2(Ω),  then 
for �푖 = 1, 2,

where �훽 = min{�훽1, �훽2}.
Proof.  Define two barrier functions �휑± = (�휑±

1 , �휑±
2 )�푇 as

where �푒 = (1, 1)� is the unit column vector and 
�퐶 = max {�儩�儩�儩�儩�푦(0)

�儩�儩�儩�儩,
�儩�儩�儩�儩�푦(1)

�儩�儩�儩�儩} + (1/�훽)�儩�儩�儩�儩�儩�푓
�儩�儩�儩�儩�儩.

Clearly, �휑±(0) ≥ 0 and �휑±(1) ≥ 1.
Also

Similarly, it can be proved that �퐿1�휑±(�푥) ≥ 0. �erefore, by the 
maximum principle, we obtain �휑±(�푥) ≥ 0 for all �푥 ∈ Ω, which 
gives the required estimate.�  □

Now we give bounds on the derivatives of the exact solu-
tion �푦(�푥) for system (1a)–(2b).

Lemma 4.  Let �푦(�푥) be the solution of (1a)–(2b), then ∀�푥 ∈ Ω 
and for �푘 = 1, 2,

Proof.  By following the approach used in the proof of 
�eorem 2 of [19] and the technique from [23], we can easily 
derive this Lemma. � □

�e solution �푦(�푥) of the problem (1a)–(2b) can be decom-
posed into smooth and singular components v and � respec-
tively, as

where v = (v1, v2)�푇 and �푤 = (�푤1, �푤2)�푇. Further, the regular 
component can be written in the form of v = �0 + ��1 + �2�2, 
where �푢0 = (�푢01, �푢02)�푇 is the solution of the following system

(5)
�儨�儨�儨�儨�푦�(�푥)

�儨�儨�儨�儨 ≤ max {�儩�儩�儩�儩�푦(0)
�儩�儩�儩�儩,
�儩�儩�儩�儩�푦(1)

�儩�儩�儩�儩} + 1
�훽
�儩�儩�儩�儩�儩�푓

�儩�儩�儩�儩�儩, ∀�푥 ∈ Ω,

(6)�휑±(�푥) = �퐶�푒 ± �푦(�푥),

(7)

�퐿1�휑±(�푥) = −�휀(�휑±
1 (�푥))�耠�耠 − �푎1(�푥)(�휑±

1 (�푥))�耠
+ �푏11(�푥)�휑±

1 (�푥) + �푏12(�푥)�휑±
2 (�푥)

= �퐶(�푏11(�푥) + �푏12(�푥)) ± �퐿1�푦(�푥) ≥ �훽1�퐶 ± �푓1(�푥)≥ �훽max{‖�푦(0)‖, ‖�푦(1)‖} + ‖�푓1‖ ± �푓1(�푥) ≥ 0.

(8)

�儨�儨�儨�儨�儨�푦(�푘)
1 (�푥)�儨�儨�儨�儨�儨 ≤ �퐶[1 + (�휀)−�푘exp(−�훼1�푥�휀 )],

�儨�儨�儨�儨�儨�푦(�푘)
2 (�푥)�儨�儨�儨�儨�儨 ≤ �퐶[1 + (�휀)−�푘exp(−�훼2�푥�휀 )].

(9)�푦(�푥) = v(�푥) + �푤(�푥),

(10)
− �푎1(�푥)�푢�耠

01(�푥) + �푏11(�푥)�푢01(�푥) + �푏12(�푥)�푢02(�푥) = �푓1(�푥),− �푎2(�푥)�푢02(�푥) + �푏21(�푥)�푢01(�푥) + �푏22(�푥)�푢02(�푥) = �푓2(�푥),�푢01(1) = �푞1 and �푢02(1) = �푞2.

and �푢1 = (�푢11, �푢12)�푇 is the solution of the following system

and �푢2 = (�푢21, �푢22)�푇 is the solution of the following system

where �1 and �2 are constants to be chosen such that ���������� ≤ �, 
for �푖 = 1, 2. �us the regular component v is the solution of 

and the singular component w is the solution of 

�e following lemma provides the bound on the derivatives 
of the regular and singular components of the solution �.

Lemma 5.  For 0 ≤ �푘 ≤ 2 the smooth component v and the 
singular component � and their derivatives satisfy the bounds:

respectively.

Proof.  Using appropriate barrier functions, applying Lemma 
2 and adopting the method of proof used in [[5] page 44], the 
present Lemma can be proved.

4. Description of the Method

In this section, we will obtain the solution of the (1a)–(2b) as 
a combination of two solutions: outer solution and inner 
solution.

4.1. Outer Solution.  Let �푢0(�푥) = (�푢01, �푢02)�푇, �푢0�푖 ∈ �퐶1(Ω)∩�퐶0(Ω) for �푖 = 1, 2, be the solution of the reduced problem of 
(1a)–(2b) given by

Since, the degenerate equation does not satisfy the condition 
at �푥 = 0, therefore, its contribution to the solution of (1a)–(2b) 
is for those values of � which are away from �푥 = 0. �e problem 
(17) is therefore termed as outer problem.

For the exact solution of the reduced problem the follow-
ing theorem gives an error bound.

(11)
−�푎1(�푥)�푢�耠

11(�푥) + �푏11(�푥)�푢11(�푥) + �푏12(�푥)�푢12(�푥) = �푢�耠�耠
01(�푥),−�푎2(�푥)�푢�耠

12(�푥) + �푏21(�푥)�푢11(�푥) + �푏22(�푥)�푢12(�푥) = �푢�耠�耠
02(�푥),�푢11(1) = 0 �푎�푛�푑 �푢12(1) = �푞2,

(12)

−�휀�푢�耠�耠
21(�푥) − �푎1(�푥)�푢�耠

21(�푥) + �푏11(�푥)�푢21(�푥) + �푏12(�푥)�푢22(�푥) = �푢�耠�耠
11(�푥),−�휀�푢�耠�耠

22(�푥) − �푎2(�푥)�푢�耠
22(�푥) + �푏21(�푥)�푢21(�푥) + �푏22(�푥)�푢22(�푥) = �푢�耠�耠

12(�푥),�푢21(0) = �푟1, �푢22(0) = �푟2, �푢21(1) = 0 and �푢22(1) = 0, ,

(13)Lv(�푥) = �푓(�푥), v(1) = �푞, v(0) suitablychosen.

(14)L�푤(�푥) = 0, �푤(0) = �푝 − v(0), �푤(1) = 0.

(15)

�儨�儨�儨�儨�儨�휈�푘
�푖 (�푥)�儨�儨�儨�儨�儨 ≤ �퐶[1 + (�휀)2−�푘exp(−�훼�푖�푥�휀 )], ∀�푥 ∈ Ω, �푓�표�푟�푖 = 1, 2,

(16)
�儨�儨�儨�儨�儨�푤�푘

�푖 (�푥)�儨�儨�儨�儨�儨 ≤ �퐶(�휀)−�푘exp(−�훼�푖�푥�휀 ), ∀�푥 ∈ Ω�푓�표�푟�푖 = 1, 2,

(17)

−�푎1(�푥)�푢01
�耠 (�푥) + �푏11(�푥)�푢01(�푥) + �푏12(�푥)�푢02(�푥) = �푓1(�푥),−�푎2(�푥)�푢02
�耠 (�푥) + �푏21(�푥)�푢01(�푥) + �푏22(�푥)�푢02(�푥) = �푓2(�푥),�푢01(1) = �푞1 �푢02(1) = �푞2.
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Its easy to see that �휑±
�푖 ∈ �퐶1(Ω) ∩ �퐶0(Ω) further,

for an appropriate choice of �1, and

next, for the operator �1 we have

(20)
�휑±
�푖 (0) = �퐶1�휀 + �퐶1 ± (�푦�푖(0) − �푢0�푖(0))

≥ �퐶1 ± (�푦�푖(0) − �푢0�푖(0)) ≥ 0,

(21)�휑±
�푖 (1) = �퐶1�휀(12) + �퐶1exp(−�훼�휀 ) ± (�푦�푖(1) − �푢0�푖(1))

= �퐶1((12)�휀 + exp(−�훼�휀 )) ± (�푞�푖 − �푞�푖) ≥ 0,

(22)

�퐿1�휑±(�푥) = −�휀(�휑±
1 (�푥))�耠�耠 − �푎1(�푥)(�휑±

1 (�푥))�耠 + �푏11(�푥)�휑±
1 (�푥) + �푏12(�푥)�휑±

2 (�푥)
= �퐶1�휀( 1

2�푎1 + (�푏11 + �푏12)(1 − �푥
2)) + �퐶1(�훼2

�휀 + �푎1(�푥)�훼�휀 + �푏11 + �푏12)exp(−�훼�푥�휀 ) ± �퐿1(�푦(�푥) − �푢0(�푥))
≥ �퐶1�휀( 1

2�훼1
+ 1
2�훽1

) + �퐶1( �훼
�휀(�푎1(�푥) − �훼) + �훽1)exp(−�훼�푥�휀 ) ± −�휀�푢�耠�耠

01(�푥)
≥ �퐶1�휀(12(�훼1 + �훽1)) + �퐶1( �훼

�휀(�훼1 − �훼) + �훽1)exp(−�훼�푥�휀 ) ∓ �휀�푢�耠�耠
01(�푥)

≥ �퐶2�휀 ∓ �휀�푢�耠�耠
0 (�푥) = �휀(�퐶2 ∓ �푢�耠�耠

01(�푥)) ≥ 0, �푠�푖�푛�푐�푒 �儨�儨�儨�儨�푢�耠�耠
01(�푥)�儨�儨�儨�儨 ≤ �퐶,

Theorem 6.  Let �푦(�푥) be the solution of (1a)–(2b) and �푢0(�푥) 
be its reduced problem solution defined by (17). �en

where �훼 = min{�훼1, �훼2}.
Proof.  Consider the following barrier function �휑± = (�휑±

1 , �휑±
2 )�푇, 

where

(18)

�儨�儨�儨�儨�푦�푖(�푥) − �푢0�푖(�푥)�儨�儨�儨�儨 ≤ �퐶(�휀 + exp(−�훼�푥�휀 )), ∀�푥 ∈ Ω �푓�표�푟 �푖 = 1, 2.

(19)

�휑±
�푖 (�푥) = �퐶1�휀(1 − �푥

2) + �퐶1exp(−�훼�푥�휀 )
± (�푦�푖(�푥) − �푢0�푖(�푥)), �푥 ∈ Ω, �푖 = 1, 2.

for an appropriate choice of �2. Similarly, we can prove that �퐿2�휑±(�푥) ≥ 0, for all �푥 ∈ Ω. �erefore, from the maximum 
principle of Lemma 2, we obtain �휑±

�푖 (�푥) ≥ 0, ∀�푥 ∈ Ω and for �푖 = 1, 2. Hence the proof of the theorem.�  □

Remark 7.  From the above theorem, it is clear that the 
solution � of problem (1a)–(2b) exhibits a strong boundary 
layer at �푥 = 0 and further away from the boundary layer 
region and in particular on [�푘�휀, 1], where �푘 ≥ −ln�휀/�훼, for 
sufficiently small values of �, we have.

For the numerical solution of the reduced problem (17) 
we employ fourth-order Runge–Kutta method for system. 
Suppose �푈0 = (�푈01, �푈02) be the numerical solution of the 
reduced problem obtained from fourth-order Runge–Kutta 
method, then the maximum error becomes

where ℎ = 1/�푁 is the equal mesh spacing of the domain of the 
problem.

4.2. Inner Solution.  To obtain the inner solution for (1a)–
(2b) we will use reduction of order together with streching 
of variable as follows:

First we rewrite the given problem (1a) for �푖 = 1, 2 equiv-
alently as

where

(23)�����푦�푖(�푥) − �푢0�푖(�푥)���� ≤ �퐶�휀, ∀�푥 ∈ Ω and for �푖 = 1, 2.

(24)

������푢0�푖(�푥�푗) − �푈0�푖(�푥�푗)
����� ≤ �퐶ℎ4, for�푗 = 0, 1, . . . , �푁 and for �푖 = 1, 2,

(25)−�휀�푑2�푦�푖�푑�푥2 − �푑
�푑�푥 (�푎�푖(�푥)�푦�푖(�푥)) = �퐹�푖(�푥, �푦1, �푦2), �푥 ∈ Ω,

(26)�퐹�푖(�푥, �푦1, �푦2) = �푓�푖(�푥) − �푎�耠�푖 (�푥)�푦�푖(�푥) −
2∑

�푗=1
�푏�푖�푗(�푥)�푦�푗(�푥).

From �eorem 6 that the solution �푢0(�푥) satisfies (1a)–(2b) on 
most part of the interval [0, 1] and away from �푥 = 0. �us by 
replacing the solution �푦(�푥) by �푢0(�푥) on the right part of (25), 
we obtain an asymptotically equivalent approximation as:

where

Integrating both sides of (27) with respect to �, gives

where

Using the reduced problem (16) in the above integral, yields

�en, substituting this in to (28), gives us

(27)

−�휀�푑2�푦�푖�푑�푥2 − �푑
�푑�푥 (�푎�푖(�푥)�푦�푖(�푥)) = �퐹�푖(�푥, �푢01, �푢02) + �푂(�휀), �푥 ∈ Ω,

(28)
�퐹�푖(�푥, �푢01, �푢02) = �푓�푖(�푥) − �푎�耠�푖 (�푥)�푢0�푖(�푥) −

2∑
�푗=1

�푏�푖�푗(�푥)�푢0�푗(�푥).

(29)

−�휀�푑�푦�푖�푑�푥 − �푎�푖(�푥)�푢(�푥) = ∫�퐹�푖(�푥, �푢01, �푢02)�푑�푥 + �푂(�휀), �푥 ∈ [0, 1],

(30)

∫�퐹�푖(�푥, �푢01, �푢02)�푑�푥 = ∫(�푓�푖(�푥) − �푎�푖�耠(�푥)�푢0�푖(�푥) −
2∑

�푗=1
�푏�푖�푗(�푥)�푢0�푗(�푥))�푑�푥.

(31)

∫�퐹�푖(�푥, �푢01, �푢02)�푑�푥 = ∫(�푓�푖(�푥) − �푎�푖�耠(�푥)�푢0�푖(�푥) −
2∑

�푗=1
�푏�푖�푗(�푥)�푢0�푗(�푥))�푑�푥

= ∫(−�푎�푖�耠(�푥)�푢0�푖(�푥) − �푎�푖(�푥)�푢0�푖
�耠(�푥))�푑�푥

= −∫ �푑
�푑�푥(�푎�푖(�푥)�푢0�푖(�푥))�푑�푥 = −�푎�푖(�푥)�푢0�푖(�푥) + �푘�푖.

(32)−�휀�푑�푦�푖�푑�푥 − �푎�푖(�푥)�푦�푖(�푥) = −�푎�푖(�푥)�푢0�푖(�푥) + �푘�푖 + �푂(�휀),
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Theorem 8.  Let �푦(�푥) be the solution of the problem (1a)–(2b) 
given by (27) and �푌(�푥) = (�푌1(�푥), �푌2(�푥))�푇 be its approximate 
then

where ℎ is the equal mesh spacing for the domain of the 
problem.

Proof.  Assume that �0 be the numerical solution of the 
outer problem determined by making use of the Runge–
Kutta method and � be the solution of the inner problem 
whose le� boundary conditions are affected by �0, such that �푌 = �푈0 +�푊 is the approximation for the exact solution of 
(1a)–(2b) given by �푦 = �푢0 + �푤 + �퐶1�휀. Now using (17) and 
(27), we obtain,

for an appropriate choice of �.
�erefore, we can conclude that ������푦(�푥) − �푌(�푥)����� = �푂(�휀 + ℎ4), ∀�푥 ∈ Ω.�  □

5. Test Problems and Numerical Results

To demonstrate the efficiency and applicability of the pro-
posed method we considered the following two test 
problems:

Example 9.  Consider the following boundary value problems 
for the systems of convention–diffusion equations on (0, 1):

�e exact solution of this problem is

(40)
������푦(�푥) − �푌(�푥)����� = �푂(�휀 + ℎ4), ∀�푥 ∈ Ω,

(41)

�儩�儩�儩�儩�儩�푦(�푥) − �푌(�푥)�儩�儩�儩�儩�儩 = �儩�儩�儩�儩�儩(�푢0 + �푤 + �퐶1�휀) − (�푈0 +�푊)�儩�儩�儩�儩�儩
= �儩�儩�儩�儩�儩(�푢0 − �푈0) + (�푝 − �푢0(0) − �푝 + �푈0(0))
⋅ exp (−�푎(0)�푥/�휀) + �퐶1�휀

�儩�儩�儩�儩
= �儩�儩�儩�儩�儩�儩�儩(�푢0 − �푈0) − (�푢0(0) − �푈0(0))

⋅ exp (−�푎(0)�푥/�휀) + �퐶1�휀
�儩�儩�儩�儩�儩�儩�儩

≤ �儩�儩�儩�儩�儩�퐶2ℎ4(1 − exp (−�푎(0)�푥/�휀)) + �퐶1�휀
�儩�儩�儩�儩�儩

≤ �퐶(�휀 + ℎ4),

(42)
−�휀�푦�耠�耠

1 (�푥) − �푦�耠
1(�푥) + 4�푦1(�푥) − �푦2(�푥) = 4,−�휀�푦�耠�耠

2 (�푥) − �푦�耠
2(�푥) − �푦1(�푥) + 4�푦2(�푥) = 2,�푦1(0) = 1, �푦1(1) = 0, �푦2(0) = 1, �푦2(1) = 0.

(43)

�푦1(�푥) = 65 − [ 1
exp (�푚1) − exp (�푚2)] exp (�푚1�푥)

+ [ 1
exp (�푚1) − exp (�푚2)] exp (�푚2�푥)

− 15[ 1 − exp (�푚4)
exp (�푚3) − exp (�푚4)] exp (�푚3�푥)

− 15[ exp (�푚3) − 1
exp (�푚3) − exp (�푚4)] exp (�푚4�푥)

where �1 and �2 are integration constants. In order to deter-
mine ��’s, we introduce the condition that the reduced equa-
tions of (32) should satisfy the boundary condition at �푥 = 1. 
�us, we get �푘1 = �푘2 = 0.

Hence, by substituting �푘1 = �푘2 = 0 in (32), a first-order 
initial value problem which is asymptotically equivalent to the 
second-order system of boundary value problems (1a)–(2b) 
is obtained, and written as:

Next, to compute the solution for the layer part, a new inner 
variable is introduced by stretching the spatial coordinate �, as

Using this stretching transformation in to (33), we obtain

In spite of the simplification, these equations remains first-or-
der differential equation and also regularly perturbed. �us, 
for �휀 = 0, (24) becomes

�ese are differential equation for the solution of the layer 
regions. Moreover, the solutions of (36) are supposed to coun-
ter act for the fact that the solutions of the reduced problem 
do not satisfy the boundary condition at �푥 = 0.

Further, using the substitutions, �푊�푖(�푡) = �푤�푖(�푡) − �푢0�푖(0) in 
to (36), we obtain the following boundary layer correction 
problems

Since these equations are separable linear initial value prob-
lems with constant coefficients which can easily be solved 
analytically, thus and gives

Finally, from standard singular perturbation theory it follows 
that the solution of the (33) admits the representation in terms 
of the solutions of the reduced problem (16) and boundary 
layer correction problem (38), which approximates the solu-
tion of the system (1a)–(2b); that is,

�e numerical error of the present method has two sources: 
one from the asymptotic approximation of the modified prob-
lem (33) and the other from the numerical approximation of 
the reduced system (16). We can summarize the results of this 
section in the form of the following theorem.

(33)
{{{
�휀 �푑�푤�

�푑�푥 + �푎�푖(�푥)�푤�푖(�푥) = �푎�푖(�푥)�푢0�푖(�푥), for �푖 = 1, 2,
with an initial conditions,�푤1(0) = �푝1, �푤2(0) = �푝2.

(34)�푡 = �푥
�휀 ⇒ �푥 = �휀�푡 and �푑�푡

�푑�푥 = 1
�휀 .

(35)
�푑�푤�푖�푑�푡 + �푎�푖(�휀�푡)�푤�푖 = �푎�푖(�휀�푡)�푢0�푖(�휀�푡).

(36)
�푑�푤�푖�푑�푡 + �푎�푖(0)�푤�푖 = �푎�푖(0)�푢0�푖(0).

(37)

�푑�푊�푖�푑�푡 + �푎�푖(0)�푊�푖 = 0, with �푊�푖(0) = �푝�푖 − �푢0�푖(0), for �푖 = 1, 2,

(38)�푊�푖(�푥�휀 ) = [�푝�푖 − �푢0�푖(0)]exp(−�푎�푖(0)�푥�휀 ), for �푖 = 1, 2.

(39)

�푦�푖(�푥) = �푢0�푖(�푥) + �푤�푖(�푥) + �푂(�휀) = �푢0�푖(�푥) + �푊�푖(�푥�휀 ) + �푂(�휀),
�푦�푖(�푥) = �푢0�푖(�푥) + [�푝�푖 − �푢0�푖(0)]exp(−�푎�푖(0)�푥�휀 ) + �푂(�휀),
∀�푥 ∈ Ω and for �푖 = 1, 2.
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Table 1: Maximum point wise error ��푁
�휀,1, for the solution �1 of Example 9.

�↓ �푁 = 64 �푁 = 128 �푁 = 256 �푁 = 512 �푁 = 1024

10−1 1.001�퐸 − 01 1.001�퐸 − 01 1.001�퐸 − 01 1.001�퐸 − 01 1.001�퐸 − 01

10−2 1.366�퐸 − 02 1.366�퐸 − 02 1.366�퐸 − 02 1.366�퐸 − 02 1.366�퐸 − 02

10−3 1.426�퐸 − 03 1.426�퐸 − 03 1.426�퐸 − 03 1.426�퐸 − 03 1.426�퐸 − 03

10−4 1.432�퐸 − 04 1.433�퐸 − 04 1.433�퐸 − 04 1.433�퐸 − 04 1.433�퐸 − 04

10−5 1.429�퐸 − 05 1.433�퐸 − 05 1.434�퐸 − 05 1.434�퐸 − 05 1.434�퐸 − 05

10−6 1.395�퐸 − 06 1.431�퐸 − 06 1.433�퐸 − 06 1.434�퐸 − 06 1.434�퐸 − 06

10−7 1.358�퐸 − 07 1.410�퐸 − 07 1.432�퐸 − 07 1.433�퐸 − 07 1.410�퐸 − 07

10−8 2.393�퐸 − 08 1.280�퐸 − 08 1.495�퐸 − 08 1.508�퐸 − 08 1.509�퐸 − 08

Table 2: Maximum point wise error ��푁
�휀,2, for the solution �2 of Example 9.

�↓ �푁 = 64 �푁 = 128 �푁 = 256 �푁 = 512 �푁 = 1024

10−1 6.133�퐸 − 02 6.133�퐸 − 02 6.133�퐸 − 02 6.133�퐸 − 02 6.133�퐸 − 02

10−2 7.848�퐸 − 03 7.848�퐸 − 03 7.848�퐸 − 03 7.848�퐸 − 03 7.848�퐸 − 03

10−3 8.119�퐸 − 04 8.119�퐸 − 04 8.119�퐸 − 04 8.119�퐸 − 04 8.119�퐸 − 04

10−4 8.148�퐸 − 05 8.147�퐸 − 05 8.147�퐸 − 05 8.147�퐸 − 05 8.147�퐸 − 05

10−5 8.152�퐸 − 06 8.150�퐸 − 06 8.150�퐸 − 06 8.150�퐸 − 06 8.150�퐸 − 06

10−6 8.171�퐸 − 07 8.152�퐸 − 07 8.151�퐸 − 07 8.151�퐸 − 07 8.151�퐸 − 07

10−7 8.462�퐸 − 08 8.159�퐸 − 08 8.149�퐸 − 08 8.148�퐸 − 08 8.148�퐸 − 08

10−8 1.746�퐸 − 08 8.996�퐸 − 09 8.842�퐸 − 09 8.835�퐸 − 09 8.835�퐸 − 09

Table 3: Maximum point wise error ��푁
�휀,1, for the solution �1 of Example 10.

�↓ �푁 = 8 �푁 = 16 �푁 = 32 �푁 = 64 �푁 = 128

2−1 8.339�퐸 − 06 4.267�퐸 − 07 2.409�퐸 − 08 1.433�퐸 − 9 8.734�퐸 − 11

2−2 7.914�퐸 − 06 4.018�퐸 − 07 2.260�퐸 − 08 1.343�퐸 − 9 8.181�퐸 − 11

2−4 7.743�퐸 − 06 3.919�퐸 − 07 2.207�퐸 − 08 1.310�퐸 − 9 7.975�퐸 − 11

2−6 7.743�퐸 − 06 3.918�퐸 − 07 2.207�퐸 − 08 1.310�퐸 − 9 7.975�퐸 − 11

2−8 7.743�퐸 − 06 3.918�퐸 − 07 2.207�퐸 − 08 1.310�퐸 − 9 7.975�퐸 − 11

2−12 7.743�퐸 − 06 3.918�퐸 − 07 2.207�퐸 − 08 1.310�퐸 − 9 7.975�퐸 − 11

2−16 7.743�퐸 − 06 3.918�퐸 − 07 2.207�퐸 − 08 1.310�퐸 − 9 7.975�퐸 − 11

2−20 7.743�퐸 − 06 3.918�퐸 − 07 2.207�퐸 − 08 1.310�퐸 − 9 7.975�퐸 − 11

2−24 7.743�퐸 − 06 3.918�퐸 − 07 2.207�퐸 − 08 1.310�퐸 − 9 7.975�퐸 − 11

Table 4: Maximum point wise error ��푁
�휀,2, for the solution �2 of Example 10.

�↓ �푁 = 8 �푁 = 16 �푁 = 32 �푁 = 64 �푁 = 128

2−1 9.740�퐸 − 07 4.915�퐸 − 08 2.771�퐸 − 09 1.643�퐸 − 10 9.995�퐸 − 12

2−2 9.829�퐸 − 07 4.973�퐸 − 08 2.824�퐸 − 09 1.678�퐸 − 10 1.022�퐸 − 11

2−4 9.833�퐸 − 07 4.977�퐸 − 08 2.828�퐸 − 09 1.680�퐸 − 10 1.024�퐸 − 11

2−6 9.833�퐸 − 07 4.977�퐸 − 08 2.828�퐸 − 09 1.680�퐸 − 10 1.024�퐸 − 11

2−8 9.833�퐸 − 07 4.977�퐸 − 08 2.828�퐸 − 09 1.680�퐸 − 10 1.024�퐸 − 11

2−12 9.833�퐸 − 07 4.977�퐸 − 08 2.828�퐸 − 09 1.680�퐸 − 10 1.024�퐸 − 11

2−16 9.833�퐸 − 07 4.977�퐸 − 08 2.828�퐸 − 09 1.680�퐸 − 10 1.024�퐸 − 11

2−20 9.833�퐸 − 07 4.977�퐸 − 08 2.828�퐸 − 09 1.680�퐸 − 10 1.024�퐸 − 11

2−24 9.833�퐸 − 07 4.977�퐸 − 08 2.828�퐸 − 09 1.680�퐸 − 10 1.024�퐸 − 11
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where ��푁
�푖,�푗 and �2�푁

�푖,�푗  denotes the ��푡ℎ and 2�푖�푡ℎ components of the 
numerical solutions obtained by using � and 2�푁 meshes 
points, respectively. Tables 3 and 4 display, respectively, the 
maximum point-wise errors for �1 and �2 for different values 
of � and �. Figure 2 represents the numerical solutions of 
Example 10, for �푁 = 1024 and �휀 = 0.05.

6. Discussion

In this paper, an initial value method for solving a weakly 
coupled system of two linear second-order singularly per-
turbed convection–diffusion equations exhibiting a boundary 
layer at one end is proposed. �e method is some how similar 
to the asymptotic expansion methods, but differs in detail. 
�e approximate solution of the given problem is obtained 
by solving a coupled system of initial value problem (namely, 
the reduced system) and two decoupled initial value problems 
with constant coefficients (namely, the layer correction prob-
lems), which are easily deduced from the the original prob-
lem. Both the reduced system and the layer correction 
problems are independent of perturbation parameter, � and 
therefore, we get easily the numerical solution by solving the 
reduced system using fourth-order Runge–Kutta method and 
solving the layer correction problems analytically. �e 
method is simple to apply, very easy to implement on a com-
puter and offers a relatively simple tool for obtaining approx-
imate solution.

We have implemented the method on two test problems 
to illustrate the theoretical results, and presented the compu-
tational results for different values of � and � in Tables 1–4 
and Figures 1 and 2. From the results it is observed that, for 
very small � the present method approximates the exact solu-
tion of the problems very well.

(47)�퐷�푁
�휀,�푖 = max

0≤�푗≤�푁

������푌�푁
�푖,�푗 − �푌2�푁

�푖,�푗
�����, for �푖 = 1, 2,

where,
�푚1 = (−1 + √1 + 12�휀)/2�휀, �푚2 = (−1 − √1 + 12�휀)/2�휀, �푚3 =(−1 + √1 + 20�휀)/2�휀 and �푚4 = (−1 − √1 + 20�휀)/2�휀.

Since the exact solution is known, we calculate maximum 
point wise error by 

where ��(��) is the exact solution and ��푁
�푖,�푗 is the numerical 

solution obtained by using � mesh intervals. Tables 1 and 2 
display, respectively, the maximum point-wise errors for �1 
and �2 for different values of � and �. �e plots of the exact 
and the approximate solution components for �푁 = 1024 and �휀 = 0.01 are shown in Figure 1.

Example 10.  Consider the following boundry value problems 
for the systems of convention–diffusion equations on(0,1): (0, 1):

Since the exact solution is not known, we calculate maxi-
mum point wise error by using the double mesh principle 
defined by

(44)

�푦2(�푥) = 45 − [ 1
exp (�푚1) − exp (�푚2)] exp (�푚1�푥)

+ [ 1
exp (�푚1) − exp (�푚2)] exp (�푚2�푥)

+ 15[ 1 − exp (�푚4)
exp (�푚3) − exp (�푚4)] exp (�푚3�푥)

+ 15[ exp (�푚3) − 1
exp (�푚3) − exp (�푚4)] exp (�푚4�푥),

(45)�퐸�푁
�휀,�푖 = max

0≤�푗≤�푁

������푦�푖(�푥�푗) − �푌�푁
�푖,�푗
�����, for �푖 = 1, 2,

(46)

− �휀�푦�耠�耠
1 (�푥) − (1 + �푥2)�푦�耠

1(�푥) + (4 + sin�푥)�푦1(�푥) − 2�푦2(�푥) = exp(�푥),
− �휀�푦�耠�耠

2 (�푥) − (2 + �푥)�푦�耠
2(�푥) − �푦1(�푥) + (2 + cos�푥)�푦2(�푥) = �푥2,

with�푦1(0) = 3, �푦1(1) = 1, �푦2(0) = 3, �푦2(1) = 1.
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Figure 1: Plot of the exact and approximate solutions of Example 9 
for �휀 = 0.01 and �푁 = 1024.
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Figure 2:  Plot of the solutions of Example 10 for �휀 = 0.05 and �푁 = 1024.
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