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This paper is aimed at presenting thermal slip flow driven by oscillatory pressure gradient in a deformable microchannel of elliptic
cross-section. The fully developed flow of Newtonian fluid is considered, and Navier slip is applied on the boundary. The boundary
value problem is formulated and applied to the coronary blood flow-heat transfer phenomenon during thermotherapy treatment.
Its semianalytical solutions of velocity and temperature fields are carried out by the Ritz method. The effects of oscillatory wall and
slip length on velocity and temperature fields of blood are investigated.

1. Introduction

Experimental and numerical studies related to heat transfer
and flow characteristics of fluid in an oscillating body are of
great interest during the last few decades due to a wide range
of engineering and physiological applications, namely, fuel
pump in the aircraft fuel system, electric centrifugal pumps,
pulsatile blood flow through large arteries, and gas exchange
in human lung during high-frequency oscillatory ventilation.

Oscillatory flows of fluids have attracted several researchers
in the literature. Experimentally, numerous devices have
been set up for studying such flow driven by either a pressure
drop or a volumetric pump. Some devices include a Starling
resistor fixed between two rigid tubes and placed inside a
pressure chamber [1] and a low-speed recirculating water
channel with a hydrogen-bubble-generating device [2].
These studies conducted in experimental models at different
operating conditions have provided invaluable information
on the main characteristics of oscillatory flows such as drag
reduction effects, wall-shear stress reduction, transitional
Reynolds number, velocity timescales, and pressure fields.

Due to limitation of experimental models, a number of
numerical investigations have been carried out with an aim
to better understanding the effects of wall oscillation on the
channel flow of a fluid. In literature, the governing equations
of the oscillatory flow of fluid in the duct with oscillating wall
are the continuity equation and the Navier-Stokes equations
subject to either no-slip or slip boundary condition. Various
studies considered two-dimensional oscillating flow in the
duct with fully oscillating wall [3–9], partially oscillating wall
[10, 11], and stretching sheet [12]. Three different directions
of wall oscillation including the transverse (axial), vertical
(radial), and both directions have been applied to the model.

For transverse oscillation of the wall, either fully or par-
tially oscillatory wall has been investigated. Quadrio and
Sibilla [3] applied a direct numerical simulation (DSN) to
simulate turbulent flow in a pipe oscillating around the lon-
gitudinal axis. The effect of drag reduction was concerned
due to the reference turbulent flows in a fixed pipe and a
steadily rotating pipe. The maximum amount of drag reduc-
tion may be induced by the oscillating pipe. Xu and Huang
[4] studied the impact of spanwise oscillating wall in the first
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two periods of oscillation on the turbulent plane channel flow
at low Reynolds number using DSN. The periodic conditions
in spanwise and streamwise directions were used, and no slip
condition was imposed at the wall. Thomas et al. [5] applied a
perturbation method to study the flow velocity and power
requirements for fluid movement near oscillating wavy walls
in transverse direction. It indicated that the more oscillating
frequency of the wavy wall was, the faster the fluid oscillation
and the more power requirements. Whittaker et al. [6] exam-
ined the energetic flow through a flexible tube in axial direc-
tion to determine the case of self-excited oscillations by
investigating the effect of wall oscillation with varying a small
amplitude and evaluating the energy budget.

In the case of partially transverse oscillation of the wall,
Mateescu and Venditti [10] analysed the unsteady confined
viscous flows with time variations of inflow velocities and par-
tially transverse oscillation of the lower wall. The finite differ-
ence method was applied to the problem. They reported that
the Reynolds number, oscillating frequency, and amplitude
of the inflow velocity influenced on the formation of the flow
separation regions. Yudhistira and Skote [11] presented a DSN
to analyse the effect of a partially oscillating wall in the span-
wise direction on the turbulent boundary layer. The flow char-
acteristics including drag reduction and spatial development
of drag reduction were related to the previous experiments.

The effects of wall oscillation in the radial direction have
also been considered to analyse the drag reduction. Espin
and Papageorgiou [7] investigated the stability of viscous
pressure-driven flows in the channel with vertically oscillating
walls and determined the numerical solutions for the Reynolds
number ranges as an increase of wall oscillations amplitude.
Shupti et al. [8] studied the two-dimensional pulsatile flow of
blood through a stenosed artery which was assumed to be
moving sinusoidally in the cross-section direction. The com-
putational domain where a cosine-shaped aneurysm occurring
after an appearance of a cosine-shaped stenosis causes the var-
iation of the height of the domain. Blyth et al. [9] investigated
the effect of wall amplitude and Reynolds number on an axi-
symmetric flow of a viscous incompressible fluid driven by a
time-periodic wall motion of a cylindrical solid tube. By intro-
ducing a time-dependent stream function, the governing
equations subject to the no-slip condition in the stream func-
tion vorticity form were solved in cylindrical polar coordi-
nates. The results indicate that flow dynamics depend on the
Reynolds number and the wall amplitude. A small or an inter-
mediate value of the wall amplitude leads to quasiperiodic
fields in time, and the flow field is time periodic at a large wall
amplitude as an increase of Reynolds number. Adesanya and
Makinde [13] investigated the effect of wall slip on two-
dimensional oscillatory flow of an incompressible viscous fluid
through a channel of nonuniform wall temperature filled with
a porous medium. In the last decade, heat transfer and fluid
flow in the channel with oscillating wall have attracted too
many researchers. Umuvathi et al. [14] determined the
unsteady oscillatory flow and heat transfer in a horizontal
channel filled with composite porous medium. Jha and Aji-
bade [15, 16] presented a free convective oscillatory flow of
an incompressible viscous fluid between two periodically
heated infinite vertical parallel plates and carried out some

interesting results on the free convective oscillatory flows with
given the time-dependent boundary conditions. Abdul-
Hakeem and Sathiyanathan [17] derived analytical solutions
of velocity and temperature fields for two-dimensional oscilla-
tory flow of an incompressible viscous fluid on free convective
radiation through a highly porous medium bounded by an
infinite vertical plate. Sobh [18] used perturbation technique
to study the peristaltic slip flow of viscoelastic fluid with heat
and mass transfer in a uniform tube. The model is considered
as the chyme movement in the small intestine. The analytic
solutions show that the velocity, pressure gradient, tempera-
ture profile, and concentration field depend on the combined
effect of slip parameter, heat, and mass transfer.

Various problems have been carried out to study the
effects of slip flow and heat transfer in the channel but
excluding the oscillating wall. Wiwatanapataphee et al. [19]
studied transient oscillating pressure-driven slip flow and
heat transfer in a microchannel of elliptic cross-section using
the Ritz method. The results show the effects of the slip
length and the aspect ratio of the microchannel on the veloc-
ity and temperature distribution. Mohyud-Din et al. [20]
studied the effects of velocity and temperature slip of nano-
fluid in diverging and converging channels using variation
iteration and variation of parameter methods. However, a
few attempts have studied the pulsatile flow in the channel
with wall oscillation in the radial direction, and most studies
have ignored the slip condition, the oscillatory nature of the
pressure gradient, and the heat transfer in the flow channel.

Recently, there has been considerable interest in develop-
ing sound and faithful thermal slip flow models that describe
the coronary blood flow-heat transfer phenomenon during
thermotherapy treatment. In the cancer treatment process,
temperatures within a range of 42°C to 45°C can kill tumour
cells without affecting normal tissue. As thermal therapy can
cause improper blood flow and blood clots, understanding
the complex phenomena of blood flow and heat transfer in
a human coronary artery with oscillatory wall is important
for the most efficacious treatment. This paper presents the
driven pressure fluid flow and heat transfer in an elliptical
channel with the oscillatory wall to predict the behaviour of
circulatory flows inside the coronary arteries. Effects of oscil-
lation amplitude and slip length on the velocity and temper-
ature fields are investigated. The results are compared with
existing ones available in the literature.

2. Governing Equations

In this section, we propose a mathematical model to study
the behaviour of slip flow and heat transfer in an elliptical
channel with the oscillating wall. Based on the assumption
of fully developed flow, the problem is thus governed by the
following boundary value problem (BVP) consisting of the
system of the Navier-Stokes equations (1) and energy equa-
tion (2) subject to the initial condition (3) and the boundary
conditions (4) and (5).

Navier-Stokes equation:

μ∇2u∗ − ρ
∂u∗

∂t
= ∂p
∂z

: ð1Þ
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Energy equation:

k∇2T∗ − ρcp
∂T∗

∂t
+ u∗

∂T∗

∂z

� �
= qp: ð2Þ

Initial condition:

T∗ 0, 0, z, 0ð Þ = T0: ð3Þ

Boundary conditions:

u∗ − uwall = −β
∂u∗

∂n , ð4Þ

h∞ T∗ − T∞ð Þ = −k
∂T∗

∂n , ð5Þ

where u∗ ≡ u∗ðt, x, y, zÞ and T∗ ≡ T∗ðt, x, y, zÞ are, respec-
tively, the velocity field and temperature field of fluid; p is
the pressure; ρ, μ, k, and cp are, respectively, the density,
viscosity, thermal conductivity, and specific heat of fluid; qp
is the heat flux; β and uwall, represent, respectively, the slip
length and tangential velocity of the wall; h∞ denotes the
coefficient of convective heat transfer; and T∞ is the uniform
external temperature.

We also consider no swirling flow with pressure variation
in the flow direction [19], i.e.,

∂u∗

∂z
= 0, ð6Þ

qp =
q
�p

∂p
∂t

+ u∗
∂p
∂z

� �
, ð7Þ

where �p is an average pressure.
In this study, the pressure gradient is prescribed by equa-

tion (8) based on the wall deformation, i.e.,

∂p
∂z

= −p0 a t, ω, γð Þ − a0ð Þ + b t, ω, γð Þ − b0ð Þ½ �, ð8Þ

where aðt, ω, γÞ and bðt, ω, γÞ are semimajor and minor axes
of the channel cross-section which are functions of frequency
ðωÞ, amplitude of oscillation ðγÞ, and time ðtÞ, and p0, a0, and
b0 are constants.

Substituting equations (7) and (8) into the system of
equations (1) and (2) yields the following BVP:

μ∇2u − ρ
∂u
∂t

= −2p0γ cos ωt, ð9Þ

k∇2T∗ − ρcp
∂T∗

∂t
+ u

∂T∗

∂z

� �
= 2qγp0

�p
zω sin ωt − u cos ωtð Þ,

ð10Þ
subject to the initial condition (3), the boundary conditions
(5), and

u − uwall + β
∂u
∂n = 0: ð11Þ

In equation (9), u ≡ uðt, x, yÞ is the function of x, y, and t.
To determine the wall velocity ðuwallÞ, we consider the sinu-
soidal movement of the channel in the cross-stream direc-
tion. Let the variations in equation (11) of the semimajor
and semiminor axes define, respectively, by

a t, ω, γð Þ = a0 + γ cos ωt,
b t, ω, γð Þ = b0 + γ cos ωt:

ð12Þ

By parametric equation of an ellipse, we have, on its
perimeter,

x = a t, ω, γð Þ cos ψ,
y = b t, ω, γð Þ sin ψ,

ð13Þ

where 0 ≤ ψ ≤ 2π.
Thus, the wall velocity uwall can be determined by

uwall =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
dt

� �2
+ dy

dt

� �2
s

= γω sin ωt: ð14Þ

3. Ritz Method

To apply the Ritz method for solving the above BVP (9), (10),
(11), we firstly approximate the solution function of u and T∗

in the following forms [19]:

u ≡ u t, x, yð Þ = v x, yð Þeiωt , ð15Þ

T∗ ≡ T∗ t, x, y, zð Þ = h x, yð Þ T∞ + T0 − T∞ð Þe− αz/�uð Þ+λtð Þ
h i

,

ð16Þ
where �u ≡ �uðtÞ is the mean velocity, α ≡ αðt, ω, γÞ = 4h∞/
ðρcpDhðt, ω, γÞÞ, and λ ≡ λðt, ω, γÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh∞Aðt, ω, γÞÞ/cp

q
in

which Aðt, ω, γÞ is the cross-section area depending on ω, γ,
and t, and Dhðt, ω, γÞ is a hydraulic diameter determined by

Dh t, ω, γð Þ = 4a t, ω, γð Þb t, ω, γð Þ 64 − 16H2� �
a t, ω, γð Þ + b t, ω, γð Þð Þ 64 − 3H4� � , ð17Þ

with

H t, ω, γð Þ = a t, ω, γð Þ − b t, ω, γð Þ
a t, ω, γð Þ + b t, ω, γð Þ : ð18Þ

In equation (15), x and y varies over time and we assume
that rates of change of the x and y coordinates with respect to
t at the center ðx, yÞ = ð0, 0Þ are fixed, i.e., dx0/dt = dy0/dt = 0
and the rates of change of the x and y coordinates with
respect to t on the boundary wall are defined by dxw/dt = −
γω sin ωt cos ψ and dyw/dt = −γω sin ωt sin ψ. Then, the
rates of change of the x and y coordinates with respect to t
in the fluid domain can be expressed as
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dx
dt

= −γω sin ωt cos ψð Þx
a t, ω, γð Þ cos ψ , ð19Þ

dx
dt

= −γω sin ωt sin ψð Þy
b t, ω, γð Þ sin ψ

: ð20Þ

From equation (15), we obtain

∂u
∂t

= v x, yð Þiωeiωt − γωeiωt sin ωt

� x
a t, ω, γð Þ

∂v
∂x

+ y
b t, ω, γð Þ

∂v
∂y

� �
:

ð21Þ

In equation (16), two parameters including α = αi and
λ = λi are fixed. We then obtain

∂T∗

∂t
= −λ + αz

�u2
d�u
dt

� �
T0 − T∞ð Þe− α/�uð Þz+λtð Þh x, yð Þ

+ T∞ + T0 − T∞ð Þe− α/�uð Þ+λtð Þ
� � dh

dt
,

ð22Þ

where dh/dt is the rate of change of thermal parameter.
Substituting equations (15), (16), (17), (18), (19), (21),

(22) into equations (9) and (10), we obtain

∂2v
∂x2

+ ∂2v
∂y2

−
ρ

μ

�
iωv − γω sin ωt

�
x

a t, ω, γð Þ
∂v
∂x

+ y
b t, ω, γð Þ

∂v
∂y

��
+ 2γp0e−iωt cos ωt

μ
= 0,

ð23Þ

∂2h
∂x2

+ ∂2h
∂y2

+ g t, x, y, zð Þh − f t, x, y, zð Þ = 0, ð24Þ

subject to initial condition hð0, 0, z, 0Þ = 1 and two boundary
conditions

∂v
∂n = γωe−iωt sin ωt − v

β
, ð25Þ

−k
∂h
∂n = h∞ h − T∞ð Þ

T∞ + T0 − T∞ð Þe− α/�uð Þz+λtð Þ : ð26Þ

In equation (24), gðt, x, y, zÞ and f ðt, x, y, zÞ are
defined by

g t, x, y, zð Þ = α/�uð Þ2 + δ λ − αz/�uð Þ2 d�u/dtð Þ + αu/�u
� �	 


T0 − T∞ð Þe− αz/�uð Þ+λtð Þ

T∞ + T0 − T∞ð Þe− α/�uð Þz+λtð Þ ,

f t, x, y, zð Þ = 2γqp0
k�p

zω sin ωt − u cos ωt
T∞ + T0 − T∞ð Þe− αz/�uð Þ+λtð Þ

� �
+ δ

dh
dt

,

ð27Þ

where δ = ρcp/k.
To simplify the problem, we consider the flow at a cross-

section z = zn, and t = tn at instant time. We then solve the

BVP (23), (24), (26) for functions vðtn, x, yÞ and hðtn, x, y,
znÞ by applying the quadratic minimization such that

min J = 1
2B w,wð Þ − F, ð28Þ

where Bðw,wÞ and F are, respectively, bilinear and linear
forms [21].

Hence, the BVP (23), (24), (26) is equivalent to the fol-
lowing system

Iv =
1
β

ð
∂Ω
v2 − vγωe−iωtn sin ωtnds +

ð
Ω

∂v
∂x

� �2
+ ∂v

∂y

� �2

+ iωρv2

μ
−
vργω sin ωtn

μ

x
a tn, ω, γð Þ

∂v
∂x

+ y
b tn, ω, γð Þ

∂v
∂y

� �

−
4vγp0e−iωtn cos ωtn

μ
dΩ = 0,

ð29Þ

Ih =
h∞
k

ð
∂Ω
h2 −

T∞h

T∞ + T0 − T∞ð Þe −αzn/�uð Þ−λtn
ds +

ð
Ω

∂h
∂x

� �2

+ ∂h
∂y

� �2
− gn tn, x, y, znð Þh2 + 2f n tn, x, y, znð ÞhdΩ = 0,

ð30Þ
where

Ω ≡Ωt x, y, ω, γð Þ = x, yð Þ ∣ x2

a2 tn, ω, γð Þ + y2

b2 tn, ω, γð Þ
≤ 1

( )
,

∂Ω ≡ ∂Ωt x, y, ω, γð Þ = x, yð Þ ∣ x2

a2 tn, ω, γð Þ + y2

b2 tn, ω, γð Þ = 1
( )

:

ð31Þ

We now approximate functions vðx, yÞ and hðx, yÞ as a
linear combination of N known functions ϕiðx, yÞ and φi
ðx, yÞ as follows:

v ≡ v x, yð Þ = 〠
N

i=1
ciϕi x, yð Þ, ð32Þ

h ≡ h x, yð Þ = 1 + 〠
N

i=1
diφi x, yð Þ, ð33Þ

with

ϕi x, yð Þ = 1, x2, y2, x4, x2, y2, y4, x2y4, x4y2, y6,⋯
� �

,

φi x, yð Þ = xy, x2, y2, x4, x2, y2, y4, x2y4, x4y2, y6,⋯
� �

:

ð34Þ

Substituting equation (32) into equation (29) and
imposing ∂Iv/∂ci = 0ði = 1,⋯,NÞ yield the following linear
system of equations:
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〠
N

j=1
cj Aij + Ab

ij

� �
= Ci + Cb

i , i = 1,⋯,N , ð35Þ

with

Aij =
ð
Ω

ϕixϕjx + ϕiyϕjy +
iωρ
μ

ϕiϕ j −
ργω sin ωtn

μ

�
�

x
a tn, ω, γð Þϕiϕjx +

y
b tn, ω, γð Þ ϕiϕjy

�
dΩ,

Ab
ij =

1
β

ð
∂Ω
ϕiϕ jds,

Ci =
4γp0e−iωtn cos ωtn

μ

ð
Ω

ϕidΩ,

Cb
i =

γωe−iωtn sin ωtn
β

ð
∂Ω
ϕids:

ð36Þ

Similarly, substituting equation (33) into equation (30)
and setting ∂Ih/∂di = 0ði = 1,⋯,NÞ give

〠
N

j=1
dj Bij + Bb

ij

� �
=Di +Db

i , i = 1,⋯,N , ð37Þ

with

Bij =
ð
Ω

φixφjx + φiyφjy − gnφiφjdΩ,

Bb
ij =

h∞
k

ð
∂Ω
φiφjds,

Di =
ð
Ω

2gnφi − 2f nφidΩ,

Db
i = −

h∞
k

ð
∂Ω
2φi −

T∞φi

T∞ + T0 − T∞ð Þe −α/�uð Þzn−λtn
ds:

ð38Þ

The problem is thus reduced to find the coefficients cj and
dj by solving the following linear systems (35) and (37).
Finally, the velocity and temperature fields are expressed by

u ≡ℜ eiωtn 〠
N

j=1
cjϕ j x, yð Þ

 !
,

T∗ = 1 +ℜ〠
N

j=1
djφj x, yð Þ

 !
T∞ + T0 − T∞ð Þe −α/�uð Þzn−λtn
� �

:

ð39Þ

4. Numerical Examples

To describe the effect of wall deformation on the slip flows
and heat transfer in the microchannel, we choose the compu-
tational domain of a coronary artery with the elliptical cross-
section having the lengths of major semiaxis aðt, ω, γÞ and

minor semiaxis bðt, ω, γÞ as given in Table 1. The average
lengths of major/minor semiaxes depend on the variation
of the hydraulic diameter Dh of the ellipse. In this study,
Dh between 0.108 cm and 0.231 cm corresponding to the typ-
ical size of the coronary artery [22] and oscillation frequency
and period corresponding to human heartbeat pattern are
chosen. However, owing to the lack of data, we could not find
realistic values of oscillation amplitude γ and slip length β.

Heartbeat induces the oscillatory pressure gradient of
blood and oscillating movement of the coronary arterial wall.
To study oscillatory blood flow, blood is assumed to be an
incompressible Newtonian fluid having the properties as
shown in Table 2.

Figure 1 represents variations of radial wall and pressure
gradient obtained from the model with wall oscillation for
oscillation amplitude γ = 0:03 cm and frequency ω = 5π/2.
It is noted that the wall is expanding during dp/dz < 0, and
the wall is contracting during dp/dz > 0. At the time in which
the highest negative pressure gradient exists ðdp/dz = −2:4Þ,
expansion of major/minor axes is the biggest, i.e., a = 0:13
cm and b = 0:105 cm. On the other hand, at the time in which
the highest positive pressure gradient exists ðdp/dz = 2:4Þ,
contraction of major/minor axes is the smallest, i.e., a =
0:07 cm and b = 0:045 cm.

Table 1: Computational domain.

Parameter Notation Value Unit

Average major semiaxis a0 0.1 cm

Average minor semiaxis b0 0.075 cm

Amplitude of oscillation γ [0.01, 0.05] cm

Frequency ω
2π
τ

Period of radial
oscillation of channel

τ 0.8 s

Slip length β [0.005, 0.07]

Table 2: Fluid properties [19].

Parameter Notation Value Unit

Density ρ 1.05 g/cm3

Dynamic viscosity μ 0.04 Poise

Thermal conductivity k 1:43 × 10−3 cal/(s·cm·°C)
Specific heat capacity cp 0.86 cal/(g·°C)
Temperature T0 37 °C

T∞ 42 °C

Heat transfer coefficient h∞ 5:49 × 10−5 cal/(s·cm2·
°C)

Heat flux parameter q 0.1 W/cm2

Average pressure �p 100 mmHg

Model parameter p0 40

Rate of change of thermal
parameter

dh
dt

1 × 10−3

5Journal of Applied Mathematics



Figure 2 illustrates the axial velocity in the first full wave
cycle for a0 = 0:1 cm, a0 = 0:075 cm, oscillation amplitude
γ = 0:3 cm, frequency ω = 5π/2, and a slip length β = 0:05.
The velocity decreases during periods of wall expansion,
t ∈ ½0, 0:2Þ, and wall contraction, t ∈ ½0:4, 0:6Þ, but increases
during periods of wall expansion, t ∈ ð0:6, 0:8� and wall
contraction, t ∈ ð0:2, 0:4�. Effect of oscillatory wall motion
and compliance on flow pattern have been observed in
flow channel.

To examine the effect of oscillation wall and slip length
on the temperature field, we plot the temperature profiles
and its contour on the cross-section z = 5 cm at the 30th wave
cycle. In Figure 3, it is observed that temperature varies
between 0.1 and 1.05°C at the 30th wave cycle for the slip
length of 0.05 and oscillation amplitude of 0.03 cm.

As the frequency increases, the wall responds by oscillat-
ing with increasing amplitude. To investigate the impact of
oscillation amplitude, γ, on the velocity and temperature
field, we choose the values of γ between 0.01 and 0.05 cm
and select the investigated point at the center of the elliptical

cross-section ðx, yÞ = ð0, 0Þ. The results indicate that during
the expansion period as shown in Figure 4(a), there is a linear
relationship between oscillation amplitude and velocity uð0,
0, tÞ as the increase of oscillation amplitude rises the velocity
and there is an increase of the velocity during the contraction
period but the fluid moves in the opposite direction as shown
in Figure 4(b). It is noted that an increase of oscillation ampli-
tude rises the highest level of flow pressure gradient and thus
enhancesfluidflow rate. The obtained results are inwell agree-
ment with others [7, 14].

Figure 5 demonstrates the influence of slip length on the
temperature field. Three values of the slip length β including
0.005, 0.05, and 0.07 are chosen for the investigation. The
results show that the temperature increases as the slip length
decreases. It is further to mention that the rise in the slip
length causes the fluid flow to move faster. This induces the
observed decrease in blood temperature. These results agree
with the results obtained by [18]-[20].

Furthermore, we analyse the effect of oscillation ampli-
tude and slip length on the average temperature field by
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varying γ between 0.01 and 0.05 cm and β between 0.005 and
0.07 at three different wave cycles including the 30th, 40th,
and 50th cycles. It is found that the average temperature is
inversely proportional to the oscillation amplitude and the
slip length as shown in Figures 6(a) and 6(b). In addition, it
is observed that the average temperature is higher in the
higher wave cycle.

5. Conclusions

This paper studies the pressure-driven flow of fluid and heat
transfer in an elliptical microchannel with radial oscillatory
wall. Based on the assumption that there is no swirling flow,
wall oscillation and pressure gradient are prescribed, and slip

condition and heat convection are applied on the boundary;
we proposed a mathematical model to investigate the effect
of wall oscillation and slip length on the velocity and temper-
ature field in the coronary artery. The results indicate that the
slip length has a significant effect on blood flow and heat
transfer during thermotherapy treatment. The wall oscilla-
tion also has a primary influence on the blood flow pattern
and temperature distribution in the flow channel.

Data Availability

The data used to support the findings of this study are
included within the supplementary material.
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