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We propose an optimal control strategy by conducting awareness campaigns for diabetics about the severity of complications
of diabetes and the negative impact of an unbalanced lifestyle and the surrounding environment, as well as treatment and
psychological follow-up. Pontryagin’s maximum principle is used to characterize the optimal controls, and the optimality
system is solved by an iterative method. Finally, some numerical simulations are performed to verify the theoretical analysis
using MATLAB.

1. Introduction

Nowadays, diabetes is a chronic disease with a huge burden
affecting individuals. According to theWorld Health Organi-
sation (WHO) [1], diabetes is a disorder characterized by the
presence of problems in the insulin hormone, which natu-
rally results from the pancreas to help the body use glucose
and fat and store some of them. According to the American
Diabetes Association (ADA) [2], diabetes mellitus is a group
of metabolic diseases characterized by hyperglycemia result-
ing from defects in insulin secretion, insulin action, or both.
It is known that the proper level of glucose in the blood after
fasting eight hours should be less than 108mg/dl, while the
borderline is 126mg/dl. If a person’s blood glucose level is
126mg/dL and above, in two or more tests, then that person
is diagnosed with diabetes. Diabetes is divided into several
different types; some more prevalent than others. The most
common type of diabetes in the general population is type
2 diabetes, and type 1 diabetes is more common in children,

and gestational diabetes is a form of diabetes that can occur
during pregnancy. According to the latest statistics from
the International Diabetes Federation (IDF) and as reported
in the 9th edition of the Atlas Diabetes 2017 [3], diabetes is
a constantly growing disease. There are more than 370 mil-
lion people with diabetes worldwide (8.5% of the adult pop-
ulation) and about 463 million people in prediabetes (6.5%
of the adult population), and more than 625 million are
expected to be affected by to 2045.

Today, all countries of the world suffer from the high
number of people with diabetes, which is increasing and
expanding on the extreme level. When it is not treated well,
all types of diabetes can lead to complications in many parts
of the body, leading to an early death. When a diabetic knows
how to control the level of glucose in the blood, this aware-
ness plays a key role in reducing the serious complications
of diabetes. According to IDF statistics, diabetes has serious
and varied complications. For example, the risk of cardiovas-
cular disease. Moreover, more than a third of diabetics have

Hindawi
Journal of Applied Mathematics
Volume 2020, Article ID 1943410, 12 pages
https://doi.org/10.1155/2020/1943410

https://orcid.org/0000-0002-8660-2090
https://orcid.org/0000-0002-4417-8893
https://orcid.org/0000-0003-1887-5350
https://orcid.org/0000-0002-5118-2786
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1943410


retinopathy which is the main cause of vision loss, in addition
to the risk of kidney disease. In addition, the complications of
diabetes are multiple and different depending on the degree
of severity; there are complications that can be treated and
others that have reached critical stages with which treatment
is not beneficial. According to ADA ½20�, diabetes has eco-
nomic and social burdens on the individual and society.

During the last decade, large mathematical models on dia-
betes have been developed to simulate, analyse, and under-
stand the dynamics of a population of diabetics. In a related
research work, Boutayeb and Chetouani [4] and Derouich
et al. [5] introduced a mathematical model for the dynamics
of the population of diabetes. And Kouidere et al. [6] pro-
posed a discrete mathematical model highlighting the impact
of living environment. Also, many researches have focused
on this topic and other related topics ([7–12]).

As we said earlier, diabetes has many complications, and
the nature of these complications are two types: treatable
ones and those that have reached a critical stage which is
impossible to cure completely.

According to IDF [3], diabetes is influenced by a complex
interaction of behavioural, genetic, and socioeconomic fac-
tors; many of which are outside our individual control.

To achieve this objective, we considered a compartment
model that describes the dynamics of a population of diabetics
that is divided into six compartments, i.e., the healthy people
ðHÞ, the prediabetics through genetic factors ðPÞ, the predia-
betics through the negative effect of behavioral factors on dia-
betics patients and others ðEÞ, and ðDÞ diabetics without
complications are those who control blood sugar through diet
and exercise before it is too late, and we divided diabetics with
complications into two parts: CT diabetics with treatable
complication and CS diabetics with serious complications.

We noticed that most of researchers about diabetes and
its complications focused on continuous and discrete time
models and described by differential equations. Recently, more
and more attention has been paid to study the control optimal
(see [13–21] and the references mentioned there).

In this paper, in Section 2, we represent a HPEDCTCS
mathematical model that describes the dynamic of a popula-

tion of diabetics. In Section 3, we presented an optimal con-
trol problem for the proposed model, where we gave some
results concerning the existence and positivity of the opti-
mal control and we characterized the optimal controls used
Pontryagin’s maximum principle. Numerical simulations
through MATLAB are given in Section 4. Finally, we con-
clude the paper in Section 5.

2. A Mathematical Model

We consider a mathematical modelHPEDCTCS that describes
the dynamics of a population of diabetics. We divide the pop-
ulation denoted by N into six compartments.

2.1. Description of the Model. The graphical representation of
the proposed model is shown in Figure 1.

The compartment ðHÞ are healthy people; the compart-
ment H is increased by I (which is the recruitment rate of
healthy people), and this compartment H is decreased by θ1
HðtÞ (the number of prediabetic people through genetic fac-
tor) and also decreased by θ2HðtÞ (the number of predia-
betics through the negative effect of behavioral factors) and
decreased by the amount μ (natural mortality).

dH tð Þ
dt

= I − μ + θ1 + θ2ð ÞH tð Þ: ð1Þ

The compartment ðPÞ are people who are likely to
have diabetes through genetic factors. The compartment
P is increased by θ1HðtÞ. This compartment P is decreased
by the amount μ (natural mortality) and also decreased
by β1PðtÞ (the probability of developing diabetes) and by
β3CTðtÞ (the probability of developing diabetes at stage of
complications).

dP tð Þ
dt

= θ1H tð Þ − μ + β1 + β3ð ÞP tð Þ: ð2Þ
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Figure 1: The dynamics of a population of diabetics.
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Compartment ðEÞ are people who are likely to have dia-
betes through the negative effect of lifestyle or psychological
problem factors and others (these are people at risk of devel-
oping diabetes, such as those who are obese, overweight, ges-
tational diabetes, or due to family and work problems, in
addition to the person without diabetes).The compartment
E increased by θ2HðtÞ and decreased by γEðtÞ (patients
who become diabetics without complications because of the
negative effect of lifestyle) and also decreased by μ (natural
mortality).

dE tð Þ
dt

= θ2H tð Þ − μ + γð ÞE tð Þ: ð3Þ

Compartment ðDÞ is the number of diabetics without
complications. The compartment DðtÞ increased by the
amount β1PðtÞ and by the amount γEðtÞ. This compartment
D is decreasing by μ (natural mortality) and α1 (the rate of
negative impact of ordinary people on diabetics without
complications through improper nutrition, or practical or
family social problems) and also decreased by β2DðtÞ (the
probability of a diabetic person developing a complication)
and also decreased by η2DðtÞ(the number of diabetics whose
serious complications because of a sudden shock).

dD tð Þ
dt

= β1P tð Þ + γE tð Þ − α1
D tð ÞE tð Þ

N
− μ + β2 + η2ð ÞD tð Þ:

ð4Þ

Compartment ðCTÞ is the number of diabetics with
treatable complications. The compartment CT increased by
β3PðtÞ and byβ2DðtÞ and also increased by α1 and and
decreased by α2 (the rate negative impact of ordinary people
on diabetics with treatable complications through improper
nutrition, or practical or family social problems) and
decreased by η1CTðtÞ (the number of people developing of
diabetics with complications can be treated to serious com-
plications) and also by μ (natural mortality)

dCT tð Þ
dt

= β3P tð Þ + β2D tð Þ + α1
D tð ÞE tð Þ

N

− α2
CT tð ÞE tð Þ

N
− μ + η1ð ÞCT tð Þ:

ð5Þ

Compartment ðCSÞ is the number of diabetics with seri-
ous complications, they are the diabetics who have serious
complications such as retinopathy or renal failure. The com-
partment CS =CSðtÞ increased by η2DðtÞ and also by η1CTðtÞ
and by α2: This compartment CS decreased by δ (mortality
rate due to complications) and also by μ (natural mortality).

dCS tð Þ
dt

= η2D tð Þ + η1CT tð Þ + α2
CT tð ÞE tð Þ

N
− μ + δð ÞCS tð Þ:

ð6Þ

Hence, we present the diabetic model by the following
system of differential equations:

with Hð0Þ ≥ 0, Pð0Þ ≥ 0, Eð0Þ ≥ 0, Dð0Þ ≥ 0, CTð0Þ ≥ 0, and
CSð0Þ ≥ 0:

2.2. Positivity of Solutions

Theorem 1. If Hð0Þ ≥ 0, Pð0Þ ≥ 0, Eð0Þ ≥ 0,Dð0Þ ≥ 0, CTð0Þ
≥ 0, and CSð0Þ > 0, the solutions HðtÞ, PðtÞ, EðtÞ, DðtÞ,
CTðtÞ, and CSðtÞ of system (7) are positive for all t ≥ 0.

Proof. It follows from the first equation of system (7) that

dH tð Þ
dt

= I − μ + θ1 + θ2ð ÞH tð Þ ≥ − μ + θ1 + θ2ð ÞH tð Þ
dH tð Þ
dt

+ μ + θ1 + θ2ð ÞH tð Þ ≥ 0
ð8Þ

dH tð Þ
dt

= I − μ + θ1 + θ2ð ÞH tð Þ,
dP tð Þ
dt

= θ1H tð Þ − μ + β1 + β3ð ÞP tð Þ,
dE tð Þ
dt

= θ2H tð Þ − μ + γð ÞE tð Þ,
dD tð Þ
dt

= β1P tð Þ + γE tð Þ − α1
D tð ÞE tð Þ

N
− μ + β2 + η2ð ÞD tð Þ,

dCT tð Þ
dt

= β3P tð Þ + β2D tð Þ + α1
D tð ÞE tð Þ

N
− α2

CT tð ÞE tð Þ
N

− μ + η1ð ÞCT tð Þ,
dCS tð Þ
dt

= η2D tð Þ + η1CT tð Þ + α2
CT tð ÞE tð Þ

N
− μ + δð ÞCS tð Þ,

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð7Þ
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Both sides in the last inequality are multiplied with exp
ððμ + θ1 + θ2ÞtÞ:

We obtain

exp μ + θ1 + θ2ð Þtð Þ · dH tð Þ
dt

+ μ + θ1 + θ2ð Þ exp μ + θ1 + θ2ð Þtð Þ ·H tð Þ ≥ 0,
ð9Þ

then

d
dt

exp μ + θ1 + θ2ð Þtð Þ ⋅H tð Þð Þ ≥ 0: ð10Þ

Integrating this inequality from 0 to t gives

ðt
0

d
ds

exp μ + θ1 + θ2ð Þsð Þ ⋅H sð Þð Þds ≥ 0, ð11Þ

then

H tð Þ ≥H 0ð Þ exp μ + θ1 + θ2ð Þtð Þ⇒H tð Þ > 0: ð12Þ

Similarly, we prove that PðtÞ ≥ 0, EðtÞ ≥ 0,DðtÞ ≥ 0,CT
ðtÞ ≥ 0, and CSðtÞ ≥ 0:

2.2.1. Boundedness of the Solutions

Theorem 2. The set Ω = fðH, P, E,D, CT , CSÞ ∈ℝ5/0 ≤H +
P + E +D + CT + CS ≤ I/μg is positively invariant under sys-
tem (7) with initial conditions Hð0Þ ≥ 0, Pð0Þ ≥ 0, Eð0Þ ≥ 0,
Dð0Þ ≥ 0, CTð0Þ ≥ 0, and CSð0Þ > 0.

Proof. By adding the equations of system (7), we obtain

dN
dt

= I − μN − δCS ≤ I − μN ⇒N tð Þ ≤ I
μ
+N 0ð Þe−μt , ð13Þ

where Nð0Þ represents the initial values of the total
population.

Thus, lim
t→∞

sup NðtÞ = ðI/μÞ. It implies that the region Ω

is a positively invariant set for system (7). So, we only need
to consider the dynamics of the system on the set Ω.

2.2.2. Existence of Solutions

Theorem 3. The system (7) that satisfies a given initial condi-
tion ðHð0Þ, Pð0Þ, Eð0Þ,Dð0Þ, CTð0Þ, and CSð0ÞÞ has a unique
solution.

Proof. Let

X =

S tð Þ
P tð Þ
E tð Þ
D tð Þ
CT tð Þ
CS tð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

φ Xð Þ =

dH tð Þ/dt
dP tð Þ/dt
dE tð Þ/dt
dD tð Þ/dt
dCT tð Þ/dt
dCS tð Þ/dt

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

ð14Þ

so the system (7) can be rewritten in the following form:

φ X
·� �

= X = AX + B Xð Þ, ð15Þ

where

A =

− μ + θ1 + θ2ð Þ 0 0 0 0 0
θ1 − μ + β1 + β3ð Þ 0 0 0 0
θ2 0 −μ + γ 0 0 0
0 β1 γ − μ + β2 + η2ð Þ 0 0
0 β3 0 β2 − μ + η1ð Þ 0
0 0 0 η2 η1 − μ + δð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

B Xð Þ =

I

0
0

−α1
D tð ÞE tð Þ

N

α1
D tð ÞE tð Þ

N
− α2

CT tð ÞE tð Þ
N

α2
CT tð ÞE tð Þ

N

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

ð16Þ
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The second term on the right-hand side of (15) satisfies

B X1ð Þ − B X2ð Þj j ≤M D1 tð Þ −D2 tð Þj j + CT:1 tð Þ −CT:2 tð Þj jð Þ,
B X1ð Þ − B X2ð Þj j ≤M ⋅ X1 − X2k k,

ð17Þ

where M = 2ðI/μÞðjα1/Nj + jα2/Nj ; jα1/Nj + jα2/NjÞ,then

φ X1ð Þ − φ X2ð Þk k ≤V ⋅ X1 − X2k k, ð18Þ

where V =max ðM, kAkÞ <∞:
Thus, it follows that the function φ is uniformly Lipschitz

continuous, and the restriction on HðtÞ ≥ 0, PðtÞ ≥ 0, EðtÞ ≥
0,DðtÞ ≥ 0,CTðtÞ ≥ 0, and CSðtÞ ≥ 0, we see that a solution
of the system (7) exists [22].

3. Formulation of the Model

Our objective in this proposed strategy of control is to mini-
mize the number of people evolving from the stage of predi-
abetes to the stages of diabetes without complications and to
diabetes with treatable complications. In this model, we
include four controls u1ðtÞ, u2ðtÞ, u3ðtÞ, and u4ðtÞ for t ∈ ½0,
T f �. The first control we note u1 represented treatment that
will work to treat diabetic patients with treatable complica-
tions. The second control u2 represented the awareness pro-
gram throughmedia and education, by raising awareness and
awareness of the seriousness of the negative impact of behav-
ioral factors on diabetes. The third control u3 represented
treatment and education, by treating complications, with
sensitivity to the negative effect of behavioral factors on dia-
betic patients with complications. The fourth control u4 rep-
resented the awareness program, through raising awareness
on nondiabetics against the negative impact of behavioral,
economic, and social factors that lead to diabetes at time t:

So the controlled mathematical system is given by the fol-
lowing system of differential equations:

The problem is to minimize the objective functional

J u1, u2, u3, u4ð Þ = CT T f

� �
−D Tf

� �
− E T f

� �

+
ðT f

0
CT tð Þ −D tð Þ − E tð Þ + A

2 u
2
1 tð Þ

+ B
2 u

2
2 tð Þ + F

2 u
2
3 tð Þ + G

2 u
2
4 tð Þ

�
dt,

ð20Þ

where A > 0, B > 0, F > 0, and G > 0 are the cost coefficients;
they are selected to weigh the relative importance of u1ðtÞ,
u2ðtÞ, u3ðtÞ, and u4ðtÞ at time t, and T f is the final time.

In other words, we seek the optimal controls u∗1 ðtÞ,
u∗2 ðtÞ, u∗3 ðtÞ, and u∗4 ðtÞ such that

J u∗1 , u∗2 , u∗3 , u∗4ð Þ = min
u1,u2,u3,u4∈U

J u1, u2, u3, u4ð Þ, ð21Þ

where U is the set of admissible controls defined by

U = u1, u2, u3, u4ð Þ/0 ≤ u1 min ≤ u1 tð Þ ≤ u1 maxf
≤ 1, 0 ≤ u2 min ≤ u2 tð Þ ≤ u2 max ≤ 1, 0 ≤ u3 min
≤ u3 tð Þ ≤ u3 max ≤ 1, 0 ≤ u4 min ≤ u4 tð Þ ≤ u4 max
≤ 1/t ∈ 0, T f �g

�
ð22Þ

4. The Optimal Control: Existence
and Characterization

We first show the existence of solutions of the system
(18),thereafter, we will prove the existence of optimal control.

4.1. Existence of an Optimal Control

Theorem 4. Consider the control problem with system (18).
There exists an optimal control ðu∗1 , u∗2 , u∗3 , u∗4 Þ ∈U4such that

J u∗1 , u∗2 , u∗3 , u∗4ð Þ = min
u1 ,u2 ,u3 ,u4∈U

J u1, u2, u3, u4ð Þ: ð23Þ

dH tð Þ
dt

= I − μ + θ1 + θ2ð ÞH tð Þ,
dP tð Þ
dt

= θ1H tð Þ − μ + β1 + β3ð ÞP tð Þ,
dE tð Þ
dt

= θ2H tð Þ − μE tð Þ − γ 1 − u4 tð Þð ÞE tð Þ,
dD tð Þ
dt

= β1P tð Þ + γ 1 − u4 tð Þð ÞE tð Þ − α1 1 − u2 tð Þð ÞD tð ÞE tð Þ
N

− μ + β2 + η2ð ÞD tð Þ + u1 tð ÞCT tð Þ,
dCT tð Þ
dt

= β3P tð Þ + β2D tð Þ + α1 1 − u2 tð Þð ÞD tð ÞE tð Þ
N

− α2 1 − u3 tð Þð ÞCT tð ÞE tð Þ
N

− μ + η1 + u1 tð Þð ÞCT tð Þ,
dCS tð Þ
dt

= η2D tð Þ + η1CT tð Þ + α2 1 − u3 tð Þð ÞCT tð ÞE tð Þ
N

− μ + δð ÞCS tð Þ:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð19Þ
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Proof. The existence of the optimal control can be obtained
using a result by Fleming and Rishel [23], checking the fol-
lowing steps:

(i) It follows that the set of controls and corresponding
state variables is not empty. we will use a simplified
version of an existence result ([24], Theorem 7.1.1)

(ii) Jðu1, u2, u3, u4Þ is convex in U

(iii) The control space U = fðu1, u2, u3, u4/u1, u2, u3, u4Þ
is measurable, 0 ≤ u1 min ≤ u1ðtÞ ≤ u1 max ≤ 1, 0 ≤
u2 min ≤ u2ðtÞ ≤ u2 max ≤ 1, and 0 ≤ u3 min ≤ u3ðtÞ ≤
u3 max ≤ 1, 0 ≤ u4 min ≤ u4ðtÞ ≤ u4 max ≤ 1/t ∈ ½0, T f �g
is convex and closed by definition

(iv) All the right-hand sides of equations of system are
continuous, bounded above by a sum of bounded
control and state, and can be written as a linear func-
tion of u, v, andwwith coefficients depending on the
time and state

(v) The integrand in the objective functional, CTðtÞ −
DðtÞ − EðtÞ + ðA/2Þu21ðtÞ + ðB/2Þu22ðtÞ + ðF/2Þu23ðtÞ
+ ðG/2Þu24ðtÞ, is clearly convex on U

(vi) It rests to show that there exist constants ζ1, ζ2,
ζ3, ζ4, ζ5 > 0 and ζ such that CTðtÞ −DðtÞ − EðtÞ +
ðA/2Þu21ðtÞ + ðB/2Þu22ðtÞ + ðF/2Þu23ðtÞ + ðG/2Þu24ðtÞ
satisfies

CT tð Þ −D tð Þ − E tð Þ + A
2 u

2
1 tð Þ + B

2 u
2
2 tð Þ + F

2 u
2
3 tð Þ + G

2 u
2
4 tð Þ

≥ −ζ1 + ζ2 u1j jζ + ζ3 u2j jζ + ζ4 u3j jζ + ζ5 u4j jζ
ð24Þ

The state variables are being bounded; let ζ1 = sup
t∈½0,T f �

ðCTðtÞ

−DðtÞ − EðtÞÞ, ζ2 = A, ζ3 = B, ζ4 = F, ζ5 =G and ζ = 2; then,
it follows that

CT tð Þ −D tð Þ − E tð Þ + A
2 u

2
1 tð Þ + B

2 u
2
2 tð Þ + F

2 u
2
3 tð Þ + G

2 u
2
4 tð Þ

≥ −ζ1 + ζ2 u1j jζ + ζ3 u2j jζ + ζ4 u3j jζ + ζ5 u4j jζ:
ð25Þ

Then, from Fleming and Rishel [23], we conclude that
there exists an optimal control.

4.2. Characterization of the Optimal Control. In order to
derive the necessary conditions for the optimal control, we
apply Pontryagin’s maximum principle to the Hamiltonian
Ĥ at time t defined by

Ĥ tð Þ = CT tð Þ −D tð Þ − E tð Þ + A
2 u

2
1 tð Þ + B

2 u
2
2 tð Þ + F

2 u
2
3 tð Þ

+ G
2 u

2
4 tð Þ + 〠

6

i=1
λi tð Þf i H, P, E,D, CT , CSð Þ,

ð26Þ

where f i is the right side of the difference equation of the ith

state variable:

Theorem 5. Given the optimal controls ðu∗1 , u∗2 , u∗3 , u∗4 Þ and
the solutionsH∗, P∗, E∗,D∗, C∗

T , and C∗
S of the corresponding

state system (18), there exists adjoint variables λ1, λ2, λ3, λ4,
λ5, and λ6 satisfying

λ1′ = λ1 μ + θ1 + θ2ð Þ − λ2θ1 − λ3θ2,

λ2′ = λ2 μ + β1 + β3ð Þ − λ4β1 − λ5β3,

λ3′ = 1 + λ3 μ + γ 1 − u4 tð Þð Þ½ �
− λ4 γ 1 − u4 tð Þð Þ − α1 1 − u2 tð Þð ÞD tð Þ

N

� �

− λ5 α1 1 − u2 tð Þð ÞD tð Þ
N

− α2 1 − u3 tð Þð ÞCT tð Þ
N

� �

− λ6 α2 1 − u3 tð Þð ÞCT tð Þ
N

� �
,

λ4′ = 1 − λ4

�
α1 1 − u2 tð Þð ÞE tð Þ

N
+ μ + β2 + η2ð Þ

�

− λ5 β2 + α1 1 − u2 tð Þð ÞE tð Þ
N

� �
− λ6η2,

λ5′ = −1 − λ4u1 tð Þ + λ5

�
−α2 1 − u3 tð Þð Þ E tð Þ

N
− μ + η1ð

+ u1 tð ÞÞ
�
− λ6 η1 + α2 1 − u3 tð Þð Þ E tð Þ

N

� �
,

λ6′ = λ6 μ + δð Þ

ð27Þ

With the transversality conditions at time T f , λ1ðT f Þ
= 0, λ2ðT f Þ = 0, λ3ðT f Þ = 1, λ4ðT f Þ = 1, λ5ðT f Þ = −1, and λ6
ðT f Þ = 0:

Furthermore, for t ∈ ½0, T f �, the optimal controls u∗1 , u∗2 ,
u∗3 , and u∗4 are given by

u∗1 = min 1, max 0, λ5 − λ4ð Þ
A

CT tð Þ
	 
	 


,

u∗2 = min 1, max 0, α1 ×
λ5 − λ4ð Þ

B
× D tð ÞE tð Þ

N

	 
	 

,

u∗3 = min 1, max 0, α2 ×
λ6 − λ5ð Þ

F
× CT tð ÞE tð Þ

N

	 
	 

,

u∗4 = min 1, max 0, λ4 − λ3ð Þ
G

× γE tð Þ
	 
	 


,

ð28Þ
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Proof. The Hamiltonian is defined as follows:

Ĥ tð Þ = CT tð Þ −D tð Þ − E tð Þ + A
2 u

2
1 tð Þ + B

2 u
2
2 tð Þ + F

2 u
2
3 tð Þ

+ G
2 u

2
4 tð Þ + 〠

6

i=1
λi tð Þf i H, P, E,D, CT , CSð Þ,

ð29Þ

where

f1ðH, P, E,D, CT , CSÞ = I − ðμ + θ1 + θ2ÞHðtÞ
f2ðH, P, E,D, CT , CSÞ = θ1HðtÞ − ðμ + β1 + β3ÞPðtÞ,
f3ðH, P, E, D, CT , CSÞ = θ2HðtÞ − μEðtÞ + γð1 − u4ðtÞÞ

EðtÞ,
f4ðH, P, E,D, CT , CSÞ = β1PðtÞ + γð1 − u4ðtÞÞEðtÞ − α1ð1

− u2ðtÞÞðDðtÞEðtÞ/NÞ − ðμ + β2 + η2ÞDðtÞ + u1ðtÞCTðtÞ,
f5ðH, P, E,D, CT , CSÞ = β3PðtÞ + β2DðtÞ + α1ð1 − u2ðtÞÞ

ðDðtÞEðtÞ/NÞ − α2ð1 − u3ðtÞÞðCTðtÞEðtÞ/NÞ − ðμ + η1ÞCTðtÞ
− u1ðtÞCTðtÞ,

f6ðH, P, E,D, CT , CSÞ = η2DðtÞ + η1CTðtÞ + α2ð1 − u3ðtÞÞ
ðCTðtÞEðtÞ/NÞ − ðμ + δÞCSðtÞ:

For t ∈ ½0, T f �, the adjoint equations and transversality
conditions can be obtained by using Pontryagin’s maximum
principle [13, 25] such that

λ1′ = −
∂Ĥ
∂H

= λ1 μ + θ1 + θ2ð Þ − λ2θ1 − λ3θ2,

λ2′ = −
∂Ĥ
∂P

= λ2 μ + β1 + β3ð Þ − λ4β1 − λ5β3,
ð30Þ

λ3′ = −
∂Ĥ
∂E

= 1 + λ3 μ + γ 1 − u4 tð Þð Þ½ �

− λ4 γ 1 − u4 tð Þð Þ − α1 1 − u2 tð Þð ÞD tð Þ
N

� �

− λ5 α1 1 − u2 tð Þð ÞD tð Þ
N

− α2 1 − u3 tð Þð ÞCT tð Þ
N

� �

− λ6 α2 1 − u3 tð Þð ÞCT tð Þ
N

� �
,

ð31Þ
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Figure 2: The evolution of the number of diabetics with and without complications without controls.
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λ4′ = −
∂Ĥ
∂D

= 1 − λ4 α1 1 − u2 tð Þð Þ E tð Þ
N

+ μ + β2 + η2ð Þ
� �

− λ5 β2 + α1 1 − u2 tð Þð Þ E tð Þ
N

� �
− λ6η2,

λ5′ = −
∂Ĥ
∂CT

= −1 − λ4u1 tð Þ + λ5

�
−α2 1 − u3 tð Þð Þ E tð Þ

N

− μ + η1 + u1 tð Þð Þ
�
− λ6 η1 + α2 1 − u3 tð Þð Þ E tð Þ

N

� �
,

λ6′ = −
∂Ĥ
∂CS

= λ6 μ + δð Þ:

ð32Þ
For, t ∈ ½0, T f � the optimal controls u∗1 , u∗2 , u∗3 , and u∗4 can

be solved from the optimality condition,

∂Ĥ
∂u1

= 0,

∂H
∂u2

= 0,

∂Ĥ
∂u3

= 0,

∂Ĥ
∂u4

= 0,

ð33Þ

that are

−
∂Ĥ
∂u1

= −Au1 tð Þ + λ2 − λ4ð ÞCT tð Þ = 0,

−
∂Ĥ
∂u2

= −Bu2 tð Þ + α1 λ5 − λ4ð ÞD tð ÞE tð Þ
N

= 0,

−
∂Ĥ
∂u3

= −Fu3 tð Þ + α2 λ6 − λ5ð ÞCT tð ÞE tð Þ
N

= 0,

−
∂Ĥ
∂u4

= −Gu4 tð Þ + λ4 − λ3ð ÞγE tð Þ = 0:

ð34Þ

We have

u1 tð Þ = λ2 − λ4ð Þ
A

CT tð Þ, ð35Þ

u2ðtÞ = α1 × ððλ5 − λ4Þ/BÞ × ðDðtÞEðtÞ/NÞ,

u3 tð Þ = α2 ×
λ6 − λ5ð Þ

F
× CT tð ÞE tð Þ

N
,

u4 tð Þ = λ4 − λ3ð Þ
G

× γE tð Þ:
ð36Þ

By the bounds in U of the controls, it is easy to obtain
u∗1 , u∗2 , u∗3 , and u∗4 and are given in (13–16) the form of sys-
tem and in the form of system (18).

5. Numerical Simulation

In this section, we present the results obtained by solving
numerically the optimality system (18). In our control prob-
lem, we have initial conditions for the state variables and ter-
minal conditions for the adjoints. That is, the optimality

Table 2: Evolution of number of diabetics without control after 120
days.

Population without control after 120 days Without control

Diabetics without complications 3 : 05 × 106

Diabetics with treatable complications 1 : 49 × 107

Diabetics with serious complications 1 × 108

Table 1: Parameter values used in numerical simulation.

Paramater Value in mth-1 Description

μ 0 : 02 Natural mortality

δ 0 : 001 Mortality rate due to complications

β1 0 : 2 The probability of developing diabetes

β2 0.08 The probability of a diabetic person developing a complication

β3 0.01 The probability of developing diabetes at stage of complications

a1 0 : 4 The rate of negative impact on diabetics without complications

Y 0.06 Rate of patients become diabetic without complications through lifestyle

I 2000000 Denote the incidence of healthy people

a2 0 : 6 The rate of negative impact on diabetics with treatable complications

θ1 0 : 1 Rate of prediabetic people through genetic factor

θ1 0 : 2 Rate of prediabetic people through lifestyle factor

η1 0 : 6 The probability of a diabetic person developing a serious complication

η2 0 : 3 Rate of diabetics whose serious complications are because of a sudden shock
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system is a two-point boundary value problem with sepa-
rated boundary conditions at times step i = 0 and i = T f .
We solve the optimality system by an iterative method with
forward solving of the state system followed by backward
solving of the adjoint system. We start with an initial guess
for the controls at the first iteration, and then before the next
iteration, we update the controls by using the characteriza-
tion. We continue until convergence of successive iterates is
achieved. A code is written and compiled in MATLAB using
the following data.

Different simulations can be carried out using various
values of parameters. In the present numerical approach,
we use the following parameters values taken from [6].

Since control and state functions are on different scales,
the weight constant value is chosen as follows: A = 10000,
B = 10000, F = 10000, andG = 10000 and with the intial value
of Hð0Þ = 14000000,Pð0Þ = 6660000, Eð0Þ = 13000000, Dð0Þ
= 6200000,CTð0Þ = 4500000, andCSð0Þ =2000000 (Figure 2).

After the parameter values (Tables 1 and 2), we noted
that diabetics without complications after 120 months
decreased from 6:2 × 106 to 3:05 × 106 (Figure 2) This trans-
formation is due to three main things: first, it is by the
genetic factors. Second, due to the negative impact of behav-
ioral factors on the patient (nutrition pattern and psycholog-
ical and moral problems) and the third by sudden shock
(family problem, work problem), we noted that diabetics
with treatable complications are increasing. Indeed, we noted

that the number of the transition becomes from 4:5 × 106 to
1:49 × 107 (Figure 2) and, as mentioned above, has disease
progression for diabetics without complications, and also a
sudden shift in the potential for people diagnosed with diabe-
tes by means of genetics and with negative impact of behav-
ioral factors.

We noted that diabetics with serious complications are
increasing and that the number of the transition becomes
from 2 × 106 to 1 × 108 (Figure 1) and, as mentioned above,
has disease progression for diabetics without complications
by sudden shock and with negative impact of behavioral fac-
tors, and by developing the disease of diabetics with treatable
complications.

In this formulation, there are initial conditions for the
state variables and terminal conditions for the adjoints.

That is, the optimality system is a two-point boundary
value problem with separated boundary conditions at time
steps i = 0 and i = T . We solve the optimality system by an
iterative method with forward solving of the state system
followed by backward solving of the adjoint system. We start
with an initial guess for the controls at the first iteration, and
then before the next iteration, we update the controls by
using the characterization.

We continue until convergence of successive iterates is
achieved.

The proposed control strategy in this work helps to
achieve several objectives.

5.1. Strategy A. In this strategy, we applied two controls u1ðtÞ
and u2ðtÞ in order to reduced the number of diabetics with
treatable complications to diabetics without complications,
through Figure 2, we noted that after applied different strate-
gics, the number of diabetics with treatable complications
decreased from 1:49 × 107 to 1:26 × 107 by the end of the
strategy (Figure 3).

The reason of this increase was justified by the fact that
the number of diabetics with treatable complications will
become diabetics without complications. For improving the
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Figure 3: The evolution of the number of diabetics with and without complications without controls.

Table 3: Evolution of the number of diabetics with two controls
u1ðtÞ and u2ðtÞ after 120 days.

Population without control after
120 days

Without
control

With two controls
u1 tð Þ and u2 tð Þ

Diabetics without complications 1 : 26 × 106 1:78 × 107

Diabetics with treatable
complications

107 2:14 × 107
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effectiveness of this strategy, we added the elements of
follow-up and psychological support and education about
the negative impact of behavioral factors which are repre-
sented in the proposed strategy by the optimal controls vari-
ables u1ðtÞ and u2ðtÞ (Figure 3 and Table 3), combining
follow-up and psychological support with treatment and
education results in an obvious decreased in the number of
diabetics with treatable complications.

5.2. Strategy C: Control with Awareness Program,Treatment,
and Psychological Support with Follow-Up. We combined
three optimal controls u1ðtÞ, u2ðtÞ, and u3ðtÞ.

In this strategy, the three optimal controls u1ðtÞ, u2ðtÞ,
and u3ðtÞ are activated at the same time, in order to reduced
the number of diabetics with treatable complications to dia-
betics without complications (Figure 4).

In this strategy (Figure 4 and Table 4), we used three con-
trols optimal u1ðtÞ, u2ðtÞ, and u3ðtÞ. That is, we combined the
previous two strategies to achieved better results that repre-
sented treatment, and psychological support with follow-
up, and also awareness program through education and
media for lower the negative impact of behavioral factors.
In Figure 4 and Table 4, we observe that the number of dia-
betics with treatable complications is decreasing from 1:5 ×

107 to 1:28 × 107, and also, the number of diabetics with seri-
ous complications is decreasing from 108 to 7:32 × 107:

5.3. Strategy D: Prevention and Protection E from Diabetes.
We we use only the optimal control u4ðtÞ:

In this strategy, we focus the effort of the awareness cam-
paign to reduce the negative impact of behavioral factors
(Figure 5).

In this strategy, we used control u4ðtÞ (Figure 5 and
Table 5); the objective of this control u4ðtÞ is to raise aware-
ness campaigns for this target group on the risks of diabetes
and its complications as cardiovascular disease, blindness,
kidney failure, and lower limb amputation, with tracking
healthy and balanced diet program. after Figure 5 and
Table 5, we observed that the number of diabetics without
complications is decreasing from 1:29 × 106 to 106:

Remark 6. We could also merge multiple assemblies as
ðu1ðtÞ, u2ðtÞ, u3ðtÞÞ, and ðu1ðtÞ, u2ðtÞ, u3ðtÞ, u4ðtÞÞ and thus
get a variety of results.

6. Conclusion

In this paper, we formulated a mathematical model of pop-
ulations of diabetics, having six compartments: prediabetics
through the genetics effects and others by behavioral fac-
tors, diabetics without complications, and diabetics with
treatable and serious complications, in order to minimize
the number of diabetics with treatable complications, and
reduce the effect of behavioral factors. We also introduced
four controls which, respectively, represent awareness pro-
gram through education and media, treatment, and psycho-
logical support with follow-up. We applied the results of the
control theory, and we managed to obtain the characteriza-
tions of the optimal controls. The numerical simulation of
the obtained results showed the effectiveness of the pro-
posed control strategies.
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Figure 4: The evolution of the number of diabetics with treatable and serious complications with three controls u1ðtÞ, u2ðtÞ, and u3ðtÞ:

Table 4: Evolution of number of diabetics with three controls
u1ðtÞ, u2ðtÞ, and u3ðtÞ after 120 days.

Population without control
after 120 days

Without
control

With three controls
u1 tð Þ, u2 tð Þ, and u3 tð Þ

Diabetics with treatable
complications

1 : 5 × 107 1:28 × 107

Diabetics with serious
complications

108 7 : 32 × 107
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