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In this paper, a collocation method using sinc functions and Chebyshev wavelet method is implemented to solve linear systems of 
Volterra integro-differential equations. To test the validity of these methods, two numerical examples with known exact solution 
are presented. Numerical results indicate that the convergence and accuracy of these methods are in good a agreement with the 
analytical solution. However, according to comparison of these methods, we conclude that the Chebyshev wavelet method provides 
more accurate results.

1. Introduction

Systems of integro-differential equations have motivated huge 
amounts of research in recent years. �ey arise in many phys-
ical phenomena like wind ripple in the desert, nano-hydrody-
namics, population growth model, glass-forming process, and 
oceanography [1–3]. Various numerical methods for solving 
systems of linear integro-differential equations have been 
developed by many researchers. Hesameddini and Rahimi [4] 
used the reconstruction of variational iteration method 
(RVIM) for solving systems of Volterra integro-differential 
equations. In [5], Hesameddini and Asadolhifard, imple-
mented the sinc-collocation method to approximate the solu-
tion of systems of linear Volterra integro-differential equations 
with initial conditions. Aminikhah and Hosseini [6] applied 
the wavelet method for the numerical solution of systems of 
integro-differential equations. �ey used the operational 
matrix of integration to solve these systems. Draidi and 
Qatanani [7] emplemented product Nystrom and sinc-collo-
cation methods to solve Volterra integral equation with 
Carleman kernel. Hamaydi and Qatanani [8] used the Taylor 
expansion and the variational iteration methods to give 
approximate solution of Volterra integral equation of the sec-
ond kind. In addition, Issa [9] has employed several numerical 
techniques for solving systems of Volterra integro-differential 
equations. Other numerical methods for systems of integro-dif-
ferential equations are (power) functions and Chebyshev 

polynomials [10], single term Walsh series [11], Chebyshev 
collocation [12], rationalized Haar functions [13], differential 
transform [14], homotopy perturbation [15], power series 
[16], and finite difference approximation [17]. Regarding the 
stability of a system of Volterra integro-differential equations, 
some stability results are proposed for the linear system VIDEs 
in the 1980s, those of Burton are worthy to mention. His work 
[18, 19] laid the foundation for a systematic treatment of the 
basic structure and stability properties of VIDEs via the direct 
method of Lyapunov. A more recent result is by Elaydi [20], 
who proposed a type of Lyapunov functional that is also appli-
cable to delay equations. Moreover, Zhang [21] proposed 
recently a stability result from which certain well-known result 
could be derived. Also, Vanualailai and Nakagiri [22] have 
proposed a new stability criteria based on new and known 
forms of Lyapunov functionals for a system of Volterra inte-
gro-differential equations. In this article, we propose two 
numerical methods, namely, a collocation method using sinc 
functions and Chebyshev wavelet method to approximate the 
solution of a system of linear Volterra integro-differential 
equations given by

subject to the initial conditions

(1)

�푢(�푛)
�푖 (�푥) = �푓�푖(�푥) + ∫�푥

�푎
( �푁∑

�푗=1
�푘�푖�푗(�푥, �푡)�푢�푗(�푡))�푑�푡, �푎 ≤ �푥 ≤ �푏, 1 ≤ �푖 ≤ �푁
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�e kernels �푘��(�푥, �푡) and the function �푓�(�푥) are given real val-
ued functions and the unknown functions �푢�(�푥) are to be 
determined. A comparison between these methods is carried 
out by solving some numerical examples. 

�e paper is organized as follows: In Section 2 the sinc-col-
location method based on sinc functions is presented. �e 
Chebyshev wavelet method is addressed in Section 3. In 
Section 5, the proposed methods are implemented using two 
numerical examples with known analytical solution by apply-
ing MAPLE so�ware. Conclusions are followed in Section 6.

2. Sinc Collocation Method Based on Sinc 
Functions

�e sinc collocation method based on sinc functions is widely 
used for obtaining the approximate solution of ordinary and 
partial differential equations and integral equations [5]. It is 
well-known that the sinc approximate solution converges 
exponentially to the exact solution.

Definition 1 (see [23]). �e sinc function is defined on the 
whole real line −∞ < �푥 < ∞ by

as shown in Figure 1.

Definition 2 (see [23]). Let �푘 = 0, ±1, ±2, ±3, . . . then the 
translated sinc basis functions are defined as

which are called the �th sinc functions.

Corollary 1 (see [5]). �e sinc function for the interpolating 
points �푥� = �푑�푟, is given by

Corollary 2 (see [5]). If �푝(�푥) is defined on the real axis and � 
is a positive integer, then the series

is called the Whittaker Cardinal expansion of �푝(�푥).
�e properties of the Whittaker Cardinal expansion have been 

extensively studied in [22]. �ese properties are derived in the 
infinite strip �� of the complex w–planes where for any �푔 > 0,

(2)
�푢(�푠)
�푖 = �푎�푖�푠, �푖 = 1, 2, 3, . . . , �푁, �푠 = 0, 1, 2, . . . , (�푛 − 1).

(3)sinc(�푥) = { sin(�휋�푥)�휋�푥 , �푥 ̸= 0
1, �푥 = 0

(4)

�푠(�푘, �푟)(�푥) = sinc(�푥 − �푘�푟�푟 ) = { sin[(�휋/�푟)(�푥 − �푘�푟)](�휋/�푟)(�푥 − �푘�푟) , �푥 ̸= �푘�푟
1, �푥 = �푘�푟

(5)�푠(�푘, �푟)(�푑�푟) = �휇�� = { 0, �푘 ̸= �푑1, �푘 = �푑

(6)�푎(�푝, �푟)(�푥) = ∞∑
�푘=−∞

�푝(�푘�푟)�푠(�푘, �푟)(�푥)

(7)�퐺� = {�푤 = �푡 + �푖�푠 : |�푠| < �푔 ≤ �휋2 }.

To construct an approximation on the interval (�푎, �푏), we use 
the conformal map:

�is map carries the eye-shaped region

For the sinc method, the basis functions on (�푎, �푏) for �푧 ∈ �퐺� 
are derived from the composite translated sinc functions,

where �푠(�푘, �푟) ∘ �휑(�푥) = �푠(�푘, �푟)(�휑(�푥)).
�e inverse map of �푤 = �휑(�푧) is

Also we define the range of �−1 on the real line as

and the interpolation points {�푥�} are then given by:

Definition 3 (see [23]). Let ��(��) be the set of all analytic 
functions. �en, there exists a constant �, such that:

where �훽(�푧) = �푒�휑(�푧).
Theorem 1 (see [23]). Let �푢 ∈ �퐿�(�퐺�) and � is a natural 
number, and � be selected by the formula

where

(8)�푤 = �휑(�푧) = ln(�푧 − �푎�푏 − �푧).

(9)�퐺� = {�푧 ∈ C : �儨�儨�儨�儨�儨�儨�儨arg(�푧 − �푎�푏 − �푧)
�儨�儨�儨�儨�儨�儨�儨 < �푔 ≤ �휋2 }.

(10)�푠(�푘, �푟) ∘ �휑(�푥) = sinc(�휑(�푥) − �푘�푟�푟 ),

(11)�푧 = �휑−1(�푤) = �푎 + �푏�푒�푤1 + �푒�푤 .

(12)�휏 = {�푦 < �푢 < ∞�휑−1(�푢) ∈ �퐺�퐸 : −∞ < �푢 < ∞}

(13)�푥�푑 = �휑−1(�푑�푟) = �푎 + �푏�푒�푑�푟
1 + �푒�푑�푟 , �푑 = 0 ± 1, ±2, . . . .

(14)|�푢(�푧)| ≤ �푐 �儨�儨�儨�儨�훽(�푧)�儨�儨�儨�儨�훼[1 + �儨�儨�儨�儨�훽(�푧)�儨�儨�儨�儨2�훼] , �푧 ∈ �퐺�퐸, 0 < �훼 ≤ 1,

(15)�푟 = ( �휋g�훼�푁)1/2,
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Figure 1: Sinc function.
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�en, there exists a positive constant �1, independent of �, 
such that

Theorem 2 (see [5]). Let �푢/�휑 ∈ �퐿�(�퐺�) and � is a natural 
number, and � be given as

where

Moreover, let �(−1)
�푘�푑  be defined as

�en, there exists a positive constant �2, independent of �, such 
that

Theorem 3 (see [5]). Let � be a conformal injective map of 
the simply connected domain �� onto ��. �en

We consider the system of linear Volterra integro-differential 
equations of the form:

Subject to the initial conditions:

in the domain [0, 1], and let �푢�(�푥) ∈ �퐿�(�퐺�). By using �eorem 
1, �푢�(�푥) is approximated as follows:

where

(16)0 < �훼 ≤ 1, �푔 ≤ �휋2 .

(17)sup
�푧∈�휏

�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨�푢(�푧) −
�푁∑

�푑=−�푁
�푢(�푧�푑)�푠(�푑, �푟) ∘ �휑(�푧)

�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨 ≤ �푐1�푒−(�휋g�훼�푁)1/2 .

(18)�푟 = ( �휋�푔�훼�푁)1/2,

(19)0 < �훼 ≤ 1, �푔 ≤ �휋2 .

(20)�휇(−1)
�푘�푑 = 12 + ∫�푘−�푑

0

sin(�휋�푡)�휋�푡 �푑�푡.

(21)

�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨∫
�푧�푘

�푎
�푢(�푡)�푑�푡 − �푟 �푁∑

�푑=−�푁
�휇(−1)
�푘�푑

�푢(�푧�푑)�휑(�푧�푑)
�儨�儨�儨�儨�儨�儨�儨�儨�儨�儨 ≤ �푐2�푒−(�휋g�훼�푁)1/2 .

(22)

�휇(0)
�푘�푑 = [�푠(�푘, �푑) ∘ �휑(�푥)]�儨�儨�儨�儨�푥=�푥�

= { 1, �푘 = �푑0, �푘 ̸= �푑
�휇(1)
�푘�푑 = �푟 �푑�푑�휑 [�푠(�푘, �푑) ∘ �휑(�푥)]�儨�儨�儨�儨�푥=�푥�

= {0, �푘 = �푑(−1)�푑−�푘�푑 − �푘 , �푘 ̸= �푑
�휇(2)
�푘�푑 = �푟2 �푑2

�푑�휑2 [�푠(�푘, �푑) ∘ �휑(�푥)]�儨�儨�儨�儨�푥=�푥�
= {{{{{{{

−�휋2

3 , �푘 = �푑
−2(−1)�푑−�푘
(�푑 − �푘)2 , �푘 ̸= �푑

(23)�푢(�푛)
�푖 (�푥) = �푓�푖(�푥) + ∫�푥

�푎
( �푁∑

�푗=1
�푘�푖�푗(�푥, �푡)�푢�푗(�푡))�푑�푡, 1 ≤ �푖 ≤ �푁.

(24)
�푢(�푠)
�푖 (0) = �푎�푖�푠, �푖 = 1, 2, . . . , �푁, �푠 = 0, 1, 2, . . . , (�푛 − 1),

(25)�푢�(�푥) = �푅�(�푥) + �퐴 �(�푥),

where �� are unknown coefficients and �푤(�푥) = �푥�(�푥 − 1)�.
Integrating both sides of Equation (25) from 0 to � we get

and by differentiating both sides of Equation (25) with respect 
to � we get

where

Substituting Equations (27) and (29) into Equation (23), and 
by evaluating the result at the sinc points

where �푗 = −�푁 − 1, . . . , �푁, and using �eorems 2 and 3, we 
obtain a system of algebraic equations. Solving this system we 
obtain the unknown coefficients

and

3. Chebyshev Wavelets Method (CWM)

�e main idea of using Chebyshev basis is that the problem 
under study reduces to a system of linear or nonlinear alge-
braic equations. �is may be done by truncated series of 
orthogonal basis functions for the solution of the problem and 
using the operational matrices [6]. Wavelets constitute a family 
of functions constructed from dilation and translation of a 
single function called the mother wavelet [24–26]. When dila-
tion � and translation � vary continuously, we have the fol-
lowing family of continuous wavelets as

If we choose the dilation and translation �−�푎, and ���−�푎, 
respectively, where �푝 > 1, �푞 > 0, then we have the following 
family of continuous wavelets as

where ��푎,�푏 forms a wavelet basis for

(26)

�푅�푖(�푥) = �푁∑
�푘=−�푁

�푐�푖�푘�푤(�푥)sinc(�휑(�푥) − �푘�푟�푟 ),
�퐴 �푖(�푥) = �푛∑

�푗=0
�푎�푖�푗�푥�푗,

(27)∫�푥

0
�푢�푖(�푡)�푑�푡 = ∫�푥

0
�푅�푖(�푡)�푑�푡 + ∫�푥

0
�퐴 �푖(�푡)�푑�푡

(28)�푢(�푛)
�푖 (�푥) = �푅(�푛)

�푖 (�푥) + �퐴(�푛)
�푖 (�푥),

(29)�푅(�푛)
�푖 (�푥) = �푁∑

�푘=−�푁
�푐�푘 �푑

�푛(�푤(�푥)sinc((�휑(�푥) − �푘�푟)/�푟))
�푑�푥�푛 .

(30)�푥� = �푒��
1 + �푒�� ,

(31){��푖�푘}�푁�푘=−�푁

(32){�푎�푖�푗}�푛�푗=0.

(33)�휓�푝,�푞(�푥) = 1
√�����푝����

�휓(�푥 − �푞�푝 ), �푝, �푞 ∈ R, �푝 ̸= 0.

(34)�휓�푎,�푏(�푥) = √�����푝�����푎 �휓(�푝−�푎�푥 − �푏�푞), �푎, �푏 ∈ Z
+,
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If the wavelet series is truncated, then it can be written as

where � and �휓(�푥) are 2�푎−1�푐 × 1 matrices given by

Corollary 5 (see [27]). �e integral of the multiple of two 
Chebyshev wavelets vector functions with respect to �푤�(�푥) 
from 0 to 1 is an identity matrix. Moreover, a function ℎ(�푥, �푦) 
defined on [0, 1] × [0, 1] can be approximated as:

where � = [���] is a matrix of the entries 2�푎−1�푐 × 2�푎−1�푐, that can 
be determined by:

�푖 = 1, 2, 3, . . . , 2�푎−1�푐 and �푗 = 1, 2, 3, . . . , 2�푎−1�푐.
�e integral of the vector �휓(�푥) defined in Equation (46), 

is given as:

where � is the 2�푎−1�푐 × 2�푎−1�푐 operational matrix of integration [2].
�is matrix has the form:

where �, �, and � are � × � matrices given by

(45)ℎ(�푥) ≅ 2�푎−1∑
�푏=1

�푐−1∑
�푐=0

�푑�푏�푐�휓�푏�푐(�푥) = �퐷�푇�휓(�푥),

(46)

�퐷 = [�푑1,0, �푑1,1, . . . , �푑1,�푐−1, �푑2,0, �푑2,1, . . . , �푑2,�푐−1, . . . ,
�푑2�푎−1 ,0, . . . , �푑2�푎−1 ,�푐−1]�푇

= [�푑1, �푑2, . . . , �푑�푐, �푑�푐+1, . . . , �푑2�푎−1 ,�푐]�푇,
�휓(�푥) = [�휓1,0(�푥), �휓1,1(�푥), . . . , �휓1,�푐−1(�푥), �휓2,0(�푥), �휓2,1(�푥), . . . ,

�휓2,�푐−1(�푥), . . . , �휓2�푎−1 ,0(�푥), . . . , �휓2�푎−1 ,�푐−1(�푥)]�푇
= [�휓1(�푥), �휓2(�푥), . . . , �휓�푐(�푥), �휓�푐+1(�푥), . . . , �휓2�푎−1 ,�푐(�푥)]�푇.

(47)ℎ(�푥, �푦) ≅ 2�푎−1�푐∑
�푖=1

2�푎−1�푐∑
�푗=1

�푎�푖�푗�휓�푖(�푥)�휓�푗(�푦) = �휓�푇(�푥)�퐴�휓(�푦),

(48)�푎�� = (�휓�(�푥), (ℎ(�푥, �푦), �휓�(�푦))�푤�(�푦))�푤�(�푥),

(49)∫�푥

0
�휓(�푡)�푑�푡 = �퐵�휓(�푥),

(50)�퐵 = 2−�푎(
(

�푀 �퐸 �퐸 ⋅ ⋅ ⋅ �퐸
�푂 �푀 �퐸 . . .

.

.

.

�푂 �푂 �푀 . . .
.
.
.

.

.

.
. . .

. . .
. . . �퐸�푂 . . . �푂 �푂 �푀

)
)

,

(51)

�푀 =
(((((((((((((((
(

1 1√2 0 0 0 ⋅ ⋅ ⋅ 0
− √24 0 14 0 0 ⋅ ⋅ ⋅ 0
− √23 −12 0 16 0 ⋅ ⋅ ⋅ 0

.

.

.
. . .

. . .
. . .

. . .
. . .

.

.

.√2(−1)�2 (1�휆 − 1− 1�휆) ⋅ ⋅ ⋅ −12(�휆 − 1) 0 12�휆 ⋅ ⋅ ⋅ 0
.
.
.

. . .
. . .

. . .
. . .

. . .
.
.
.√2(−1)�2 ( 1�푐 − 1 − 1�푐) 0 0 0 ⋅ ⋅ ⋅ −12(�푐 − 1) 0

)))))))))))))))
)

where �퐿2(R): set of all square integrable functions equipped 
with norm

For the particular case, when �푝 = 2 and �푞 = 1, then �휓�푎,�푏(�푥) 
forms an orthogonal basis.

Chebyshev wavelets �휓�푏,�푐(�푥) = �휓�푎,�푏,�푐(�푥) have four parame-
ters, �푏 = 1, 2, 3, . . . , 2(�푎−1), �푎 ∈ Z

+ and c is the degree of 
Chebyshev polynomials of the first kind. �ey are defined on 
the interval 0 ≤ �푥 ≤ 1 by:

where

and �푐 = 0, 1, 2, . . . , �퐶 − 1, and �푏 = 1, 2, 3, . . . , 2�푎−1.�푇�(�푥) are the famous Chebyshev polynomials of the first 
kind of degree � which are orthogonal with respect to the 
weight function

and satisfy the following recurrence relation

Corollary 3 (see [6]). �e set of Chebyshev wavelets is an 
orthogonal set with respect to the weight function

Definition 4 (see [6]). A function ℎ(�푥) defined on the interval 0 ≤ �푥 ≤ 1 is called the wavelet series if this function is written 
in the following form

where

is the inner product in �퐿2
w�
[0, 1].

Corollary 4 (see [6]). �e wavelet series in �퐿2[0, 1] is 
convergent if

(35)�퐿2(R) = {�儨�儨�儨�儨�푔 : R → C |∫∞

−∞

�儨�儨�儨�儨�푔(�푥)�儨�儨�儨�儨2�푑�푥 < ∞},

(36)�����푓�����퐿2[�푎,�푏] = (∫�푏

�푎

�����푓(�푥)����2�푑�푥)1/2.

(37)

�휓�푏,�푐(�푥) = �휓�푎,�푏,�푐(�푥)
= { 2�푎/2 ∼�푇�푐 (2�푎�푥 − 2�푏 + 1), for

�푏 − 12�푎 − 1 ≤ �푥 ≤ �푏2�푎 − 1 ,0, otherwise,

(38)
∼�푇�푐(�푥) = {{{{{

1√�휋, �푐 = 0
√ 1�휋 �푇�푐(�푥), �푐 > 0

(39)�푤(�푥) = √1 − �푥2, −1 ≤ �푥 ≤ 1

(40)
�푇0(�푥) = 1, �푇1(�푥) = �푥, �푇�푐+1(�푥) = 2�푥�푇�푐(�푥) − �푇�푐−1(�푥),�푐 = 1, 2, 3, . . .

(41)�푤�(�푥) = �푤(2��푥 − 2�푏 + 1).

(42)ℎ(�푥) = ∞∑
�푏=1

∞∑
�푐=0

�푑�푏�푐�휓�푏�푐(�푥),

(43)�푑�� = (ℎ(�푥), �휓��(�푥))�푤�(�푥)

(44)
lim�푢1 ,�푢2→∞

����������ℎ(�푥) −
�푢1∑
�푏=1

�푢2∑
�푐=0

�푑�푏�푐�휓�푏�푐(�푥)
���������� = 0.
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where ��� and �� are known matrices for �푖 = 1, 2, 3, . . . , �푛, �푗 = 1, 2, 3, . . . , �푐.
By substituting the approximations Equations (56) and 

(59) into the system equation (54), we obtain:

�erefore,
(60)

�퐷�푇
�푖 �휓(�푥) ≅ �퐹�푇

�푖 �휓(�푥) + �푐∑
�푗=1

∫�푥

0
(�휓�푇(�푥)�푘�푖�푗�휓(�푡))(�퐷�푇

�푖 �퐵�휓(�푡) + �퐸�푇
�푖 �휓(�푡))�푑�푡

= �퐹�푇
�푖 �휓(�푥) + �푐∑

�푗=1
(�휓�푇(�푥)�푘�푖�푗)(∫�푥

0
�휓(�푡)(�퐷�푇

�푖 �퐵�휓(�푡) + �퐸�푇
�푖 �휓(�푡))�푑�푡)

= �퐹�푇
�푖 �휓(�푥) + �푐∑

�푗=1
(�휓�푇(�푥)�푘�푖�푗)(∫�푥

0
�휓(�푡)(�퐷�푇

�푖 �퐵 + �퐸�푇
�푖 )�휓(�푡)�푑�푡).

(61)

�퐷�푇
�푖 �휓(�푥) ≅ �퐹�푇

�푖 �휓(�푥) + �푐∑
�푗=1

�휓�푇(�푥)�푘�푖�푗 ∼�푍�푖�퐵�휓(�푡), �푖 = 1, 2, 3, . . . , �푛

�e product characteristic of two Chebyshev wavelets vector 
functions are given as

where � is a given vector and 
∼�푍 = [ ∼�푍�푖�푗]

2�푎−1�푐×2�푎−1�푐
 is an opera-

tional matrix. We consider the system of linear Volterra inte-
gro-differential equations of the form:

with the following conditions

Now we approximate �푢(�푛)
�푖 (�푥) by using Chebyshev wavelet space 

as follows

�erefore we have

where � and �휓(�푥) are 2�푎−1�푐 × 1 matrices given by

In virtue of Equations (55) and (56) we have the following 
approximations:

(52)

�퐸 =
(((((((((((
(

2 0 0 ⋅ ⋅ ⋅ 00 0 0 ⋅ ⋅ ⋅ 0−2√23 0 0 ⋅ ⋅ ⋅ 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.√22 (1 − (−1)�휆�휆 − 1 − (−1)�휆−2�휆 − 2 ) 0 0 ⋅ ⋅ ⋅ 0

.

.

.
.
.
. : . . .

.

.

.√22 (1 − (−1)�퐶�퐶 − 1 − (−1)�퐶−2�퐶 − 2 ) 0 0 ⋅ ⋅ ⋅ 0

)))))))))))
)

and

�푂 = ( 0 ⋅ ⋅ ⋅ 0
.
.
.

. . .
.
.
.0 ⋅ ⋅ ⋅ 0).

(53)�휓(�푥)�휓�푇�푍 ≈ ∼�푍�휓(�푥),

(54)�푢(�푛)
�푖 (�푥) = �푓�푖(�푥) + �푐∑

�푗=1
∫�푥

0
�푘�푖�푗(�푥, �푡)�푢�푗(�푡)�푑�푡

(55)
�푢(�푟)
�푖 (0) = �푎�푖�푟, �푖 = 1, 2, 3, . . . , �푛, �푟 = 0, 1, 2, . . . , (�푛 − 1),

�푐 = 1, 2, 3, . . . .

(56)�푢(�푛)
�푖 (�푥) = �퐷�푇

�푖 �휓(�푥), �푖 = 1, 2, 3, . . . , �푛.

(57)�푢(�푟)
�푖 (�푥) = �퐷�푇

�푖 �퐵�푛−�푟�휓(�푥) + �푛−�푟−1∑
�푗=0

�푎�푖�푟 �푥�푗�푗! , �푖 = 1, 2, 3, . . . , �푛,

(58)

�퐷 = [�푑�푖
1,0, �푑�푖

1,1, . . . , �푑�푖
1,�푐−1, �푑�푖

2,0, �푑�푖
2,1, . . . ,

�푑�푖
2,�푐−1, . . . , �푑�푖

2�푎−1 ,0, . . . , �푑�푖
2�푎−1 ,�푐−1]�푇

= [�푑�푖,1, �푑�푖,2, . . . , �푑�푖,�푐, �푑�푖,�푐+1, . . . , �푑�푖,2�푎−1 ,�푐]�푇,
�휓(�푥) = [�휓1,0(�푥), �휓1,1(�푥), . . . , �휓1,�푐−1(�푥), �휓2,0(�푥), �휓2,1(�푥), . . . ,

�휓2,�푐−1(�푥), . . . , �휓2�푎−1 ,0(�푥), . . . , �휓2�푎−1 ,�푐−1(�푥)]�푇
= [�휓1(�푥), �휓2(�푥), . . . , �휓�푐(�푥), �휓�푐+1(�푥), . . . , �휓2�푎−1 ,�푐(�푥)]�푇.

(59)

�푓�(�푥) ≅ �퐹�
� �휓(�푥),�푢�(�푥) ≅ �퐷�
� �퐵�휓(�푥) + �퐸�

� �휓(�푥),�푘��(�푥, �푡) ≅ �휓��푘���휓(�푡),

1: Input:
(i) �푁,�푀, �훼, �푑, �푛
(ii) �푓�(�푥)�푓�표�푟 �푖 = 1, 2, . . . , �푁
(iii) �푘��(�푥)�푓�표�푟 �푖 = 1, 2, . . . , �푁, �푗 = 1, 2, . . . , �푁
(iv) Initial Condition �푈�(0) �푓�표�푟 �푖 = 1, 2, . . . , �푁
(v)  Initial Condition �푈�

� (0) �푓�표�푟 �푖 = 1, 2, . . . , �푁,�푑 = 1, 2, . . . , �푛 − 1
2: Define:

(i) Sinc Function �푆(�푘, ℎ, �푥)
(ii) �푃�푖(�푥) = ∑�푛

�푗=0�푎�푖�푗�푥�푗 �푓�표�푟 �푖 = 1, 2, . . . , �푛
(iii) �푌�(�푥) = ∑�

�=−��퐶���푆(�푘, ℎ, �푥)�푓�표�푟 �푖 = 1, 2, . . . , �푁
3:  Replace �푢�(�푥) = �푌�(�푥) + �푃�(�푥)�푓�표�푟 �푖 = 1, 2, . . . , �푁, in 

each equation
4:  Calculate Sinc point �푥� �푓�표�푟�푝 = −�푀 − 1, −�푀, −�푀+1, . . . , 0, 1, . . . ,�푀
5:  Evaluate �푢�푖(�푥)�푝 = �푓�푖(�푥)�푝 + ∫�푥�

0 ∑�푁
�푗=1�푘�푖�푗(�푥�푝, �푡) ∗ �푢�푗(�푡)�푑�푡 �푓�표�푟�푝 = −�푀 − 1, −�푀, −�푀 + 1, . . . , 0, 1, . . . ,�푀, for �푖 = 1, 2, . . . , �푁

 From this step, we get (2(�푀 + 1) ∗ �푁) equation
6:  Evaluate �푢�(0) = �푈�(0) �푓�표�푟 �푖 = 1, 2, . . . , �푁. From this 

step, we get (�푁) equation
7:  Evaluate �푢�

� (0) = �푈�
� (0) �푓�표�푟 �푖 = 1, 2, . . . , �푁, �푑 = 1,2, . . . , �푛 − 1. From this step, we get (�푁 ∗ (�푛 − 1)) 

equation
8:  Solving the algebraic system to get ��� and �푎�� �푓�표�푟 �푖 = 1, 2, . . . , �푁, �푗 = 1, 2, . . . , �푁, �푘 = 1, 2, . . . , �푛
9: Set �푢(�������)(�푥) = sup �푐�� and ��� in �푢�(�푥)
10: Input �푢(�푒�푥�푎�푐�푡�푖)(�푥)
11: Plot �푢(�푎�푝�푟�푟�표�푥�푖)(�푥); �푢(�푒�푥�푎�푐�푡�푖)(�푥)
12: Define the error |�푢(�푒�푥�푎�푐�푡�푖)(�푥) − �푢(�푎�푝�푟�푟�표�푥�푖)(�푥)|
13: Plot the error

Algorithm 1: Numerical Realization Using the Sinc Collocation 
Method.
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Definition 5 (see [22]). If �휇 : [0, �푥0] → R
�푛 is a continuous 

initial function, then �푢(�푥, �푥0, �휇) will denote the solution 
of (1) on [�푥0,∞]. Frequently, it is sufficient to write �푢(�푥).  
If �푓�(0) = �푢�(0) = 0, then �푢(�푥) ≡ 0 is a solution of (1) 
called the zero solution. �e norm on the initial function �휇(�푥) = (�휇1(�푥), �휇2(�푥), ⋅ ⋅ ⋅ , �휇�푛(�푥)) is given by

�e definition of stability of the zero solution is given in 
Burton [18] and is restated below.

Definition 6 (see [22]). �e zero solution of (1) is stable if for 
each �휖 > 0 and each �푥0 ≥ 0, there exists � such that �儨�儨�儨�儨�휇(�푥)�儨�儨�儨�儨 ≤ �훿 
on [0, �푥0] and � ≥ �0 imply �儨�儨�儨�儨�푢(�푥, �푥0, �휇)�儨�儨�儨�儨 ≤ �휖.

We next define the statement “a Lyapunov functional for 
system (1)”. Let �푉(�푥, Ψ(.)) be defined for �푥 ≥ 0 and Ψ ∈ ([0, �푥];R�) and let � be locally Lipschitz in Ψ. For each �푥 ≥ 0 and every Ψ ∈ ([0, �푥];R�), we define the derivative � 
along a solution of (1) by

where �푢(�휉; �푥, Ψ) is the unique solution of (1) with initial con-
ditions � and Ψ. �en the following result by Driver ([28]) 
gives a definition of the Lyapunov functional.

Theorem 4 (see [28]). If �푉(�푥, Ψ(.)) is defined for �푥 ≥ 0 and 
every Ψ ∈ ([0, �푥];R�) with

(1) �푉(�푥, 0) ≡ 0.
(2) � continuous in � and Lipschitz in Ψ.
(3)  �푉(�푥, Ψ(.)) ≥ �푊(|Ψ(.)|), where �푊: [0,∞] → [0,∞] 

is a continuous function with

and � strictly increasing (positive definiteness).
(4) �푉�耠

(1)(�푥, Ψ(.)) ≤ 0.
then the zero solution of (1) is stable, and

is called a Lyapunov functional for system (1).

Finally, we assumed that the functions in (1) are well 
behaved, that continuous initial functions generate solutions, 
and that solutions which remain bounded can be 
continued.

5. Numerical Examples and Results

In this section, some numerical examples are presented to 
show the validity of the proposed methods. In addition, the 
numerical results are compared with exact solution.

(62)�儩�儩�儩�儩�휇�儩�儩�儩�儩 = sup{�儨�儨�儨�儨�휇(�푥)�儨�儨�儨�儨 = �푛∑
�푖=1

�휇(�푖) : 0 ≤ �푥 ≤ �푥0}.

(63)

�푉�耠
(1)(�푥, Ψ(.)) = lim

Δ�푥→0+
sup

�푉(�푥 + Δ�푥, �푢(⋅, �푥, Ψ)) − �푉(�푥, Ψ(.))Δ�푥 ,

(64)�푊(0) = 0, �푊(�푟) > 0, �푟 > 0

(65)�푉(�푥, Ψ(.)) = �푉(�푥, Ψ(�푡)) : 0 ≤ �푡 ≤ �푥�푐 = 1, 2, 3, . . ., where � is the 2�푎−1�푐 × 2�푎−1�푐 operational matrix 
of integration and 

∼�� are 2�푎−1�푐 × 1 matrices.
We multiply both sides of Equation (61) by �푤�(�푥)�휓�(�푥) 

and integrating with respect to � from 0 to 1, we obtain a linear 
system in terms of input �퐷�, �푖 = 1, 2, 3, . . . , �푛. Consequently, 
the vector functions �� elements are calculated by solving this 
system.

4. Stability of Systems of Volterra Integro-
Differential Equations (VIDEs)

In this section, we present some important results on the 
 stability of VIDEs (1) (for more details see [22]).

1:   Input:

(i) �푁,�푀, �푘, �푏, �푛
(ii) �푓�(�푥)�푓�표�푟 �푖 = 1, 2, . . . , �푁
(iii) �푘��(�푥)�푓�표�푟 �푖 = 1, 2, . . . , �푁, �푗 = 1, 2, . . . , �푁
(iv) Initial Condition �푈�(0) �푓�표�푟 �푖 = 1, 2, . . . , �푁
(v)  Initial Condition �푈�

� (0) �푓�표�푟 �푖 = 1, 2, . . . , �푁,�푟 = 1, 2, . . . , �푛 − 1
2:   Define:

(i) Chebyshev Function �푇(�푘, �푏,�푚, �푥)
(ii) weight function �푊(�푥)
(iii) �퐷�푖(�푥) = [�푑�푖1, �푑�푖2, . . . , �푑�푖�푀]�푓�표�푟 �푖 = 1, 2, . . . , �푁
(iv) �휓(�푥) = [�푇(�푘, 0, �푚, �푥), . . . , �푇(�푘, �푏,�푀 − 1, �푥)]
(v) �퐷�푀[ℎ(�푥)] as definition (4)
(vi) operator �퐷�푀[ℎ(�푥, �푦)] as remark (5)

3:   Calculate �퐹� = �퐷�푀[�퐹�(�푥)], �푓�표�푟 �푖 = 1, 2, . . . , �푁
4:   Calculate �푄� = �퐷�푀[�푈�(0)], �푓�표�푟 �푖 = 1, 2, . . . , �푁
5:    Calculate �푘� = �퐷�푀[�푘��(�푥)], �푓�표�푟 �푖 = 1, 2, . . . , �푁,�푗 = 1, 2, . . . , �푁
6:   Define operation matrix �
7:   Define �푢(�푛)

�푖 (�푥) = �퐷�푇
�푖 ⋅ �휓(�푥), �푓�표�푟 �푖 = 1, 2, . . . , �푁

8:    Define �푢(�푟)
�푖 (�푥) = �퐷�푖 ⋅ �퐵�푛−�푟 ⋅ �휓(�푥) + ∑�푛−�푟−1

�푗=0 �푎�푖�푟(�푥�/�푗!) , for 

�푖 = 1, 2, . . . , �푁, �푟 = 1, 2, . . . , �푛 − 1
9:     Substituting �푢(�푟)

�푖 (�푥), �푓�표�푟 �푖 = 1, 2, . . . , �푁�푓�표�푟 �푟 = 1,2, . . . , �푛 in the system
10:  Multiplying each equation by �푊(�푥) ⋅ (�푥)�휓(�푥)
11:  Applying ∫1

0 ⋅ �푑�푥 for all equations
12:  From this step, we get �푀∗�푁 equation
13:   Solving the algebraic system to get �푑��, �푓�표�푟 �푖 = 1, 2, . . . , �푁, �푗 = 1, 2, . . . , �푁
14:  Set �푢(�������)(�푥) = sup�푑�� in �푢�(�푥)
15:  Input �푢(�푒�푥�푎�푐�푡�푖)(�푥)
16:  Plot �푢(�푎�푝�푟�푟�표�푥�푖)(�푥); �푢(�푒�푥�푎�푐�푡�푖)(�푥)
17:  Define the error |�푢(�푒�푥�푎�푐�푡�푖)(�푥) − �푢(�푎�푝�푟�푟�표�푥�푖)(�푥)|
18:  Plot the error

Algorithm 2: Numerical Realization Using the Chebyshev Wavelets 
Method.
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Table 1: �e exact and numerical solutions of applying Algorithm 1 for system (66) with �푀 = 8.

� Exact solution �푢1(�푥) = �푥4 − 2�푥 Numerical solution �1�푎�푝�푝

Exact solution �푢2(�푥) = 1 − �푥3
Numerical solution �2�푎�푝�푝

Exact solution �푢3(�푥) = �푥 + 2 �푒�푥 Numerical solution �1�푎�푝�푝

0 0 0 1 1 2 2
0.1 −0.1999 −0.1998999986410037 0.999 0.9989999996164405 2.3103418361512955 2.310341836911406
0.2 −0.3984 −0.39840000469382025 0.992 0.992000001268595 2.64280551632034 2.642805513660997
0.3 −0.5919 −0.5919000795392859 0.973 0.9730000216099085 2.999717615152006 2.9997175706314225
0.4 −0.7744 −0.77440022803092 0.936 0.9360000615945837 3.3836493952825406 3.3836492678242998
0.5 −0.9375 −0.9375003156846542 0.875 0.8750000858865024 3.7974425414002564 3.7974423632300143
0.6 −1.0704 −1.0704001918522101 0.784 0.784000056734032 4.244237600781018 4.244237484652817
0.7 −1.1599 −1.1598998894031196 0.657 0.6569999842789827 4.727505414940953 4.72750545433764
0.8 −1.1904 −1.190399643757478 0.488 0.4879999282244343 5.251081856984936 5.251082019406921
0.9 −1.1439 −1.1438996142131692 0.271 0.2709999270259329 5.8192062223139 5.819206393371196

Table 2: �e resulting error for the numerical solution.

� Absolute error �儨�儨�儨�儨�儨�푢1 − �푢1�푎�푝�푝
�儨�儨�儨�儨�儨 Absolute error �儨�儨�儨�儨�儨�푢2 − �푢2�푎�푝�푝

�儨�儨�儨�儨�儨 Absolute error �儨�儨�儨�儨�儨�푢3 − �푢3�푎�푝�푝
�儨�儨�儨�儨�儨

0 0 −1 0
0.1 1.358996248868038�푒 − 9 3.835595174805917�푒 − 10 7.601106410959346�푒 − 10
0.2 4.693820221390865�푒 − 9 1.268595006820305�푒 − 9 2.659342968058808�푒 − 9
0.3 7.953928582438152�푒 − 8 2.160990852928535�푒 − 8 4.452058366410938�푒 − 8
0.4 2.280309290281224�푒 − 7 6.159458376675531�푒 − 8 1.274582408505864�푒 − 7
0.5 3.156846541951807�푒 − 7 8.588650235452633�푒 − 8 1.781702421155273�푒 − 7
0.6 1.91852210118526�푒 − 7 5.673403202788307�푒 − 8 1.161282012773767�푒 − 7
0.7 1.10596880320557�푒 − 7 1.572101726576846�푒 − 8 3.939668680175146�푒 − 8
0.8 3.562425212599862�푒 − 7 7.177556560211684�푒 − 8 1.624219851947828�푒 − 7
0.9 3.857868307033385�푒 − 7 7.297406701134435�푒 − 8 1.710572963276035�푒 − 7
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Figure 2: A comparison between exact and numerical solutions by applying Algorithm 1 for system (66) with �푀 = 8. (a) �e exact and 
numerical solutions of �1. (b) �e exact and numerical solutions of �2. (c) �e exact and numerical solutions of �3.
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Table 3: �e exact and numerical solutions of applying Algorithm 2 for system (66).

� Exact solution �푢1(�푥) = �푥4 − 2�푥 Numerical solution �1�푎�푝�푝

Exact 
solution �푢2(�푥) = 1 − �푥3

Numerical solution �2�푎�푝�푝

Exact solution �푢3(�푥) = �푥 + 2 �푒�푥 Numerical solution �1�푎�푝�푝

0 0 2.690833666996184�푒 − 13 1 0.9999999999543171 2 1.9999999974820484
0.1 −0.1999 −0.19990000000022942 0.999 0.9990000000727636 2.3103418361512955 2.3103418351947798
0.2 −0.3984 −0.39839999999984066 0.992 0.991999999990548 2.64280551632034 2.6428055151638277
0.4 −0.7744 −0.7744000000009819 0.936 0.9360000000694738 3.3836493952825406 3.3836493955712172
0.5 −0.9375 −0.9374999999997702 0.875 0.875000000131186 3.7974425414002564 3.7974425389296056
0.6 −1.0704 −1.0703999999956941 0.784 0.7840000001191981 4.244237600781018 4.244237600772698
0.7 −1.1599 −1.1598999999883794 0.657 0.6570000000729469 4.727505414940953 4.727505417496077
0.8 −1.1904 −1.190399999977122 0.488 0.4880000000954549 5.251081856984936 5.2510818561222665
0.9 −1.1439 −1.1438999999585011 0.271 0.27100000021849296 5.8192062223139 5.819206221276965

Table 4: �e resulting error for the numerical solution.

� Absolute error �儨�儨�儨�儨�儨�푢1 − �푢1�푎�푝�푝
�儨�儨�儨�儨�儨 Absolute error �儨�儨�儨�儨�儨�푢2 − �푢2�푎�푝�푝

�儨�儨�儨�儨�儨 Absolute error �儨�儨�儨�儨�儨�푢3 − �푢3�푎�푝�푝
�儨�儨�儨�儨�儨

0 2.690833666996184�푒 − 13 4.568290190576363�푒 − 11 2.517951624980696�푒 − 9
0.1 2.293998324631729�푒 − 13 7.276357294472291�푒 − 11 9.565157554902726�푒 − 10
0.2 1.593725151849412�푒 − 13 9.451994742448733�푒 − 12 1.156512219324668�푒 − 9
0.3 4.383160501220118�푒 − 13 9.397482791939638�푒 − 12 2.494912720862885�푒 − 9
0.4 9.818812429784884�푒 − 13 6.947387110045611�푒 − 11 2.886766381493544�푒 − 10
0.5 2.298161660974074�푒 − 13 1.311859509911528�푒 − 10 2.470650795061146�푒 − 9
0.6 4.305888978706207�푒 − 12 1.191982068604602�푒 − 10 8.319567257331073�푒 − 12
0.7 1.162048235414658�푒 − 11 7.294698178839099�푒 − 11 2.555123224112776�푒 − 9
0.8 2.287792177924075�푒 − 11 9.545503276697787�푒 − 11 8.62669047307918�푒 − 10
0.9 4.14988043928588�푒 − 11 2.184930569804066�푒 − 10 1.0369349823236�푒 − 9
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Figure 3: A comparison between exact and numerical solutions by applying Algorithm 2 for system (66) with �푀 = 8. (a) �e exact and 
numerical solutions of �1. (b) �e exact and numerical solutions of �2. (c) �e exact and numerical solutions of �3.
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�e exact solution of system (66) is
 

We start by implementing Algorithm 1 to solve system (66) 
using the Sinc collocation method based on sinc functions.

Tables 1 and 2 contain the exact and numerical solutions 
together with the resulting error with �푀 = 8.

Figure 2 shows a comparison between the exact and 
numerical solutions for system (66). �e maximum error cor-
responding to �푢1, �푢2, and �3 is �퐸1 ≈ 3.9�푒−7, �퐸2 ≈ 8.5�푒−8, and �퐸3 ≈ 1.79�푒−7, respectively. 

Next, we implement Algorithm 2 to solve system (66) 
using the Chebyshev wavelets method. Tables 3 and 4 contain 
the exact and numerical solutions for system (66) together 
with the resulting error with �푀 = 8.

�e maximum error corresponding to �푢1, �푢2 and �3 is �퐸1 ≈ 7.7�푒−11, �퐸2 ≈ 2.5�푒−10, and �퐸3 ≈ 2.6�푒−9, respectively. 
Figure 3 displays a comparison between the exact and numer-
ical solutions for systems (66) using Algorithm 2. 

Example 2. Consider the system of Volterra integro-
differential equations:

together with the initial conditions

�e exact solution of system (69) is

We implement Algorithm 1 to solve system (69) using the sinc 
collocation method based on sinc functions. Table 5 contains 
the exact and numerical solutions using Algorithm 1 for sys-
tem (69) together with the resulting error with �푀 = 8.

Figure 4 compares the exact and numerical solutions �푢1(�푥) = �푒�푥 + 1 and the approximate solution with �푀 = 8. �e 
maximum error corresponding to �1 and �2 is �퐸1 ≈ 0.081 and �퐸2 ≈ 0.229.

Figure 5 compares the exact solution �푢2(�푥) = cos�푥 and 
the approximate solution with �푀 = 8.

Next, we implement Algorithm 2 to solve system (69) 
using the Chebyshev wavelets method. Table 6 contains the 
exact and numerical solutions with �푀 = 8.

Figures 6 and 7 compare the exact solutions using 
Chebyshev wavlet method with �푀 = 8. �e maximum error 
corresponding to �1 and �2 is �퐸1 ≈ 1.7 �푒−9 and �퐸2 ≈ 9.57 �푒−9 
respectively.

Figure 7 compares the exact solution �푢2(�푥) = cos�푥 and 
the approximate solution with �푀 = 8.

(68)
�푢1(�푥) = �푥4 − 2�푥, �푢2(�푥) = 1 − �푥3, �푢3(�푥) = �푥 + 2�푒�푥.

(69)

�푢�耠�耠
1 (�푥) = −1 − �푥 + cosh�푥 − sin

3�푥3 − sinh�푥 + �푒�푥
+ ∫�푥

0
((�푒−�푡)�푢1 + (sin2�푡)�푢2)�푑�푡

�푢�耠�耠
2 (�푥) = −3 + �푥2 − 2�푥3

3 − 2 �푒�푥(�푥 − 1)
+ ∫�푥

0
((�푥2 − �푡2)�푢1 + (�푥 − �푡)�푢2)�푑�푡

(70)�푢1(0) = 2, �푢�耠
1(0) = 1, �푢2(0) = 1, �푢�耠

2(0) = 0.
(71)�푢1(�푥) = �푒�푥 + 1, �푢2(�푥) = cos�푥.

Example 1. Consider the system of Volterra integro-
differential equations:

together with the initial conditions

(66)

�푢�耠
1(�푥) = −2 + �푥2 − �푥4 + 3�푥5

20 + 2�푥6 + �푥7

5 − �푥8

8
+ ∫�푥

0
((�푡3 − �푥2)�푢1 + (12�푡2 − �푥)�푢2)�푑�푡

�푢�耠
2(�푥) = 4 − 8�푥 − �푥4 − �푥3

3 + 2�푥4 − 8�푥5

5 + �푥6

30 − 4�푒�푥
+ ∫�푥

0
((�푡 − �푥)�푢1 + 8(1 − �푡)�푢2 + 2�푢3)�푑�푡

�푢�耠
3(�푥) = 3 − 7�푥2

2 + 4�푥3

3 + 6�푥5

5 − 7�푥6

30
+ ∫�푥

0
((2�푥 − �푡)�푢1 + 6�푡�푢2 + �푢3)�푑�푡

(67)�푢1(0) = 0, �푢2(0) = 1, �푢3(0) = 2.
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Figure 4: �e exact and numerical solutions of �1 using Algorithm 1 
for system (69).
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